Skip to main content

Latin Squares Based on Groups

  • Chapter
  • First Online:
Orthogonal Latin Squares Based on Groups

Part of the book series: Developments in Mathematics ((DEVM,volume 57))

Abstract

Latin squares and orthogonal Latin squares have been used in the construction of many classes of designs: nets, affine planes, projective planes, and transversal designs, in particular. When orthogonal sets of Latin squares are obtained from the multiplication table of a finite group by permuting columns, each square is determined by its first row, which is a permutation of the elements of the group. This enables us to describe and study orthogonality from a purely algebraic point of view, using difference matrices, complete mappings, and orthomorphisms. The nets, affine planes, projective planes, and transversal designs constructed in this way are characterized by the action of the group on these designs. We introduce these concepts in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abel, R.J.R., Colbourn, C.J., Dinitz, J.H.: Mutually orthogonal Latin squares (MOLS). In: Colbourn, C.J., Dinitz, J.H. (eds) Handbook of Combinatorial Designs, 2nd. edn., pp. 160–193. Chapman & Hall/CRC, Florida (2007)

    Google Scholar 

  2. Anderson, I., Colbourn, C.J., Dinitz, J.H., Griggs, T.S.: Design theory: antiquity to 1950. In: Colbourn, C.J., Dinitz, J.H. (eds) Handbook of Combinatorial Designs, 2nd. edn., pp. 11–22, Chapman & Hall/CRC, Florida (2007)

    Google Scholar 

  3. Bedford, D.: Orthomorphisms and near orthomorphisms of groups and orthogonal Latin squares: a survey. Bull. Inst. Combin. Appl. 15, 13–33 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Bedford, D.: Addendum to: “Orthomorphisms and near orthomorphisms of groups and orthogonal Latin squares: a survey”. Bull. Inst. Combin. Appl. 18, 86 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd. edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  6. Bose, R.C., Chakravarti, I.M., Knuth, D.E.: On methods of constructing sets of mutually orthogonal Latin squares using a computer I. Technometrics 2, 507–516 (1960)

    Article  MathSciNet  Google Scholar 

  7. Bose, R.C., Shrikhande, S.S.: On the falsity of Euler’s conjecture about the non-existence of two orthogonal Latin squares of order 4t + 2. Proc. Natl. Acad. Sci. USA 45, 734–737 (1959)

    Article  MathSciNet  Google Scholar 

  8. Bose, R.C., Shrikhande, S.S., Parker, E.T.: Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Canad. J. Math. 12, 189–203 (1960)

    Article  MathSciNet  Google Scholar 

  9. Cayley, A.: On the theory of groups as depending on the symbolical equation θn = 1. Philos. Mag. 7, 40–47 (1854)

    Article  Google Scholar 

  10. Cayley, A.: On the theory of groups. Proc. Lond. Math. Soc. 9, 126–133 (1877/78)

    Article  MathSciNet  Google Scholar 

  11. Colbourn, C.J., Dinitz, J.H.: Mutually orthogonal Latin squares: a brief survey of constructions. J. Statist. Plann. Inference 95, 9–48 (2001)

    Article  MathSciNet  Google Scholar 

  12. Colbourn, C.J., Dinitz, J.H. (eds): Handbook of Combinatorial Designs, 2nd. edn. Chapman & Hall/CRC, Florida (2007)

    MATH  Google Scholar 

  13. Dembowski, H.P.: Finite geometries. Springer-Verlag, Berlin - Heidelberg - New York (1968)

    Book  Google Scholar 

  14. Dénes, J., Keedwell, A.D.: Latin Squares and Their Applications. English Universities Press, London (1974)

    MATH  Google Scholar 

  15. Dénes, J., Keedwell, A.D.: Latin Squares: New Developments in the Theory and Applications. Annals of Discrete Mathematics 46, North Holland, Amsterdam (1991)

    Google Scholar 

  16. Dénes, J., Keedwell, A.D.: Latin Squares and Their Applications, 2nd. edn. North Holland, Amsterdam (2015)

    MATH  Google Scholar 

  17. Egan, J., Wanless, I.M.: Enumeration of MOLS of small order. Math. Comp. 85, 799–824 (2016).

    Article  MathSciNet  Google Scholar 

  18. Euler, L.: Recherche sur une nouvelle espèce de quarrès magiques. Leonardi Euleri Opera Omnia series 1 7, 291–392 (1923)

    Google Scholar 

  19. Evans, A.B.: Latin squares without orthogonal mates. Des. Codes Cryptogr. 40, 121–130 (2006)

    Article  MathSciNet  Google Scholar 

  20. Frisinger, H.H.: The solution of a famous two-centuries-old problem. The Leonhard Euler Latin square conjecture. Hist. Math. 8, 56–60 (1981)

    MathSciNet  MATH  Google Scholar 

  21. Hall, M., Paige, L.J.: Complete mappings of finite groups. Pacific J. Math. 5, 541–549 (1955)

    Article  MathSciNet  Google Scholar 

  22. Hughes, D.R., Piper, F.C.: Projective planes. Springer, Berlin-Heidelberg-New York (1973)

    MATH  Google Scholar 

  23. Johnson, D.M., Dulmage, A.L., Mendelsohn, N.S.: Orthomorphisms of groups and orthogonal Latin squares. I. Canad. J. Math. 13, 356–372 (1961)

    Article  MathSciNet  Google Scholar 

  24. Kallaher, M.J.: Affine Planes with Transitive Collineation Groups. North-Holland, New York-Amsterdam (1982)

    MATH  Google Scholar 

  25. Klyve, D., Stemkosi, L.: Graeco-Latin squares and a mistaken conjecture of Euler. College Math. J. 37, 2–15 (2006)

    Article  MathSciNet  Google Scholar 

  26. Laywine, C.F., Mullen, G.L.: Discrete Mathematics using Latin squares. Wiley, New York (1998)

    MATH  Google Scholar 

  27. MacNeish, H.F.: Euler squares. Ann. of Math. 23, 221–227 (1922)

    Article  MathSciNet  Google Scholar 

  28. Mann, H.B.: On orthogonal Latin squares. Bull. Amer. Math. Soc. 50, 249–257 (1944)

    Article  MathSciNet  Google Scholar 

  29. Ostrom, T.G.: Replaceable nets, net collineations, and net extensions. Canad. J. Math. 18, 666–672 (1966)

    Article  MathSciNet  Google Scholar 

  30. Parker, E.T.: Construction of some sets of mutually orthogonal Latin squares. Proc. Amer. Math. Soc. 10, 946–949 (1959)

    Article  MathSciNet  Google Scholar 

  31. Quinn, K.A.S.: Difference matrices and orthomorphisms over non-abelian groups. Ars Combin. 52, 289–295 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Tarry, G.: Le problème des 36 officiers. Assoc. Franc. Paris 29, 170–203 (1900)

    MATH  Google Scholar 

  33. Ullrich, P.: An Eulerian square before Euler and an experimental design before R.A. Fisher: on the early history of Latin squares. Chance 12, 22–27 (1999)

    Article  MathSciNet  Google Scholar 

  34. Ullrich, P.: Officers, playing cards, and sheep. On the history of Eulerian squares and the design of experiments. Metrika 56, 189–204 (2002)

    MATH  Google Scholar 

  35. van Rees, G.H.J.: Subsquares and transversals in Latin squares. Ars Combin. 29B, 193–204 (1990)

    MathSciNet  MATH  Google Scholar 

  36. Wanless, I.M., Webb, B.S.: The existence of Latin squares without orthogonal mates. Des. Codes Cryptogr. 40, 131–135 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evans, A.B. (2018). Latin Squares Based on Groups. In: Orthogonal Latin Squares Based on Groups. Developments in Mathematics, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-94430-2_1

Download citation

Publish with us

Policies and ethics