Skip to main content

Experimental Investigation of Thermogravitational Convection in Ferrofluids

  • Chapter
  • First Online:
  • 443 Accesses

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 40))

Abstract

Specific features of thermogravitational instability and thermogravitational flows arising in ferrofluids are discussed. It is shown that in contrast to ordinary fluids, the characteristics of convection setting in ferrofluids depend on the history of its storage and the conditions of experiment. This is found to be due to a complex composition of ferrocolloids containing carrier fluid, solid particles, their aggregates and surfactant that make them essentially multiphase systems. The results of a comprehensive experimental study of convective heat transfer and flow patterns arising in such fluids when they are non-uniformly heated are presented. Spatially and temporally chaotic ferrofluid flows similar to those previously found in gases and binary mixtures are detected in close proximity of the convection onset. In particular, regimes are detected where convection sets and decays spontaneously drastically changing heat transfer across the domain occupied by the fluid. It is noted that the possibility of such a behavior of nanofluids must be taken into account to avoid malfunction of advanced heat exchangers make use of nanofluids as working media.

See Appendix B for the list of previously published materials reused in this chapter with permission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The intensity of thermodiffusion is proportional to the Soret coefficient St = DTD, where DT and D are the coefficients of thermodiffusion and Brownian diffusion, respectively. It is positive for magnetic fluids in the absence of magnetic field and has the value of approximately 0.1 K−1 [23, 75, 162], which is several orders of magnitude larger than for binary mixtures.

  2. 2.

    Synthesised in Ferrofluid Manufacturing Laboratory “Polus”, Ivanovo, Russian Federation.

  3. 3.

    The efficiency of centrifuging is characterised by separation factor F that is the ratio of the centripetal acceleration to the gravity acceleration g: F(z) = F0(1 + (Lz)∕r0cosγ, where L = 115 mm is the length of the sample container tube, F0 = (ω2 r0cosγ)∕g = 38, r0 = 17 mm is the distance between the top of the tube and the axis of the centrifuge and γ = 30 is the angle inclination angle with respect to the horizontal.

References

  1. Ahlers, G., Behringer, R.P.: Evolution of turbulence from the Rayleigh-Bénard instability. Phys. Rev. Lett. 40(11), 712–716 (1978)

    Article  Google Scholar 

  2. Ahlers, G., Lerman, K., Cannell, D.S.: Different convection dynamics in mixtures with the same separation ratio. Phys. Rev. E. 53(3), 2041–2044 (1996)

    Article  Google Scholar 

  3. Assenheimer, M., Steinberg, V.: Rayleigh-Bénard convection near the gas-liquid critical point. Phys. Rev. Lett. 70(25), 3888–3891 (1993)

    Article  Google Scholar 

  4. Bajaj, K., Cannell, D.S., Ahlers, G.: Competition between spiral-defect chaos and rolls in Rayleigh-Benard convection. Phys. Rev. E. 55(5), 4869–4872 (1997)

    Article  MathSciNet  Google Scholar 

  5. Bashtovoy, V.G., Berkovsky, B.M., Vislovich, A.N.: Introduction to thermomechanics of magnetic fluids (in Russian). Institute of High Temperatures of the Russian Academy of Sciences, Moscow (1985)

    Google Scholar 

  6. Behringer, R.P., Ahlers, G.: Heat transport and temporal evolution of fluid flow near the Rayleigh-Bénard instability in cylindrical containers. J. Fluid Mech. 125, 219–258 (1982)

    Article  Google Scholar 

  7. Bestehorn, M., Friedrich, R., Haken, H.: Pattern formation in convective instabilities. J. Modern Phys. B 4(3), 365–400 (1990)

    Article  MathSciNet  Google Scholar 

  8. Blums, E., Cebers, A.O., Maiorov, M.M.: Magnetic Fluids. Walter de Gruyter, Berlin (1997)

    Google Scholar 

  9. Bodenschatz, E., de Bruyn, J.R., Ahlers, G., Cannell, D.S.: Transitions between patterns in thermal convection. Phys. Rev. Lett. 67(22), 3078–3081 (1991)

    Article  Google Scholar 

  10. Bodenschatz, E., Pesch, W., Ahlers, G.: Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech. 32, 709–778 (2000)

    Article  Google Scholar 

  11. Bozhko, A., Bulychev, P.V., Putin, G.F., Tynjälä, T.: Spatio-temporal chaos in colloid convection. Fluid Dyn. 42(1), 24–32 (2007)

    Article  Google Scholar 

  12. Bozhko, A.A., Putin, G.F.: Heat transfer and flow patterns in ferrofluid convection. Magnetohydrodynamics 39(2), 147–169 (2003)

    Google Scholar 

  13. Bozhko, A.A., Putin, G.F., Sidorov, A.S., Suslov, S.A.: Convection in a vertical layer of stratified magnetic fluid. Magnetohydrodynamics 49(1–2), 143–152 (2013)

    Google Scholar 

  14. Busse, F.H.: Fundamentals of thermal convection. In: Mantle Convection: Plate Tectonics and Global Dynamics, pp. 23–95. Montreux, Gordon and Breach (1989)

    Google Scholar 

  15. Busse, F.H., Clever, R.N.: Three-dimensional convection in an inclined layer heated from below. J. Eng. Math. 26, 1–19 (1992)

    Article  MathSciNet  Google Scholar 

  16. Chashechkin, Y.D., Popov, V.A.: Methods of laboratory modelling of processes in inhomogeneous systems in normal and reduced gravity conditions. In: Hydrodynamics and Heat and Mass Transfer in Weightless Environment (in Russian), pp. 119–146. Nauka, Moscow (1982)

    Google Scholar 

  17. Chen, C.F., Briggs, D.G., Wirtz, R.A.: Stability of thermal convection in a salinity gradient due to lateral heating. Int. J. Heat Mass Transfer 14, 57–65 (1971)

    Article  Google Scholar 

  18. Croquette, V.: Convective pattern dynamics at low Prandtl number: part I. Contemp. Phys. 30(2), 113–133 (1989)

    Article  Google Scholar 

  19. Croquette, V., Williams, H.: Nonlinear waves of the oscillatory instability on finite convective rolls. Phys. D 37(1–3), 300–314 (1989)

    Article  Google Scholar 

  20. Cross, M.C., Hohenberg, P.C.: Pattern formation out of equilibrium. Rev. Mod. Phys. 65(3), 851–1112 (1993)

    Article  Google Scholar 

  21. Cross, M.C., Hohenberg, P.C.: Spatiotemporal chaos. Science 263(5153), 1569–1570 (1994)

    Article  MathSciNet  Google Scholar 

  22. Daniels, K.E., Plapp, B.B., Bodenschatz, E.: Pattern formation in inclined layer convection. Phys. Rev. Let. 84(23), 5320–5323 (2000)

    Article  Google Scholar 

  23. Daniels, K.E., Richard, J.W., Bodenschatz, E.: Localized transverse bursts in inclined layer convection. Phys. Rev. Let. 91(11), 114,501 (2003)

    Article  Google Scholar 

  24. Decker, W., Pesch, W., Weber, A.: Spiral defect chaos in Rayleigh-Bénard convection. Phys. Rev. Lett. 73(5), 648–651 (1994)

    Article  Google Scholar 

  25. Demouchy, G., Mezulis, A., Bee, A., Talbot, D., Bacri, J.C., Bourdon, A.: Diffusion and thermodiffusion studies in ferrofluids with a new two-dimensional forced Rayleigh-scattering technique. J. Phys. D: Appl. Phys. 37, 1417–1428 (2004)

    Article  Google Scholar 

  26. Dennin, M., Ahlers, G., Cannell, D.S.: Chaotic localized states near the onset of electroconvection. Phys. Rev. Lett. 77(12), 2475–2478 (1996)

    Article  Google Scholar 

  27. Donzelli, G., Cerbino, R., Vailati, A.: Bistable heat transfer in a nanofluid. Phys. Rev. Lett. 102(10), 104503 (2009)

    Article  Google Scholar 

  28. Elfimova, E.A., Ivanov, A.O., Lakhtina, E.V., Pshenichnikov, A.F., Camp, P.J.: Sedimentation equilibria in polydisperse ferrofluids: critical comparisons between experiment, theory, and computer simulationlaminar free convection in a slot. Soft Matter 12, 4103–4112 (2016)

    Article  Google Scholar 

  29. Fauve, S., Laroch, C., Libchaber, A., Perrin, B.: Spatial instabilities and temporal chaos. In: J.E. Wesfreid, S. Zaleski (eds.) Lecture Notes in Physics. Cellular Structures in Instabilities, pp. 278–284. Springer, Berlin (1984)

    Chapter  Google Scholar 

  30. Fertman, V.E.: Magnetic fluids—Natural convection and heat transfer. Izdatel’stvo Nauka i Tekhnika, Minsk (1978)

    Google Scholar 

  31. Finlayson, B.A.: Convective instability of ferromagnetic fluids. J. Fluid Mech. 40, 753–767 (1970)

    Article  Google Scholar 

  32. Gebhart, B., Jaluria, Y., Mahajan, R., Sammakia, B.: Buoyancy-Induced Flow and Transpot. Hemisphere, Washington (1988)

    MATH  Google Scholar 

  33. Gershuni, G.Z., Zhukhovitsky, E.M.: Convective Stability of Incompressible Fluid. Keter, Jerusalem (1976)

    Google Scholar 

  34. Gershuni, G.Z., Zhukhovitsky, E.M., Nepomnjashchy, A.A.: Stability of Convective Flows (in Russian). Science, Moscow (1989)

    Google Scholar 

  35. Getling, A.V.: Rayleigh-Bénard Convection: Structures and Dynamics. World Scientific, Singapore (1998)

    Book  Google Scholar 

  36. Glukhov, A.F.: Experimental investigation of thermal convection in mixtures in conditions of gravitational separation. Ph.D. Thesis, Perm State University, Perm (1995)

    Google Scholar 

  37. Glukhov, A.F., Putin, G.F.: Attainment of the equilibrium barometric distribution of magnetic fluid particles. In: Lyubimov, D.V. (ed.) Hydrodynamics: Collection of Papers (in Russian), vol. 12, pp. 92–103. Perm State University, Perm (1999)

    Google Scholar 

  38. Glukhov, A.F., Putin, G.F.: Convection of magnetic fluids in connected channels heated from below. Fluid Dyn. 45(5), 713–718 (2010)

    Article  Google Scholar 

  39. Hart, J.E.: Stability of the flow in a differentially heated inclined box. J. Fluid Mech. 47, 547–576 (1971)

    Article  Google Scholar 

  40. Huke, B., Lucke, M.: Roll, square, and cross-roll convection in ferrofluids. J. Magn. Magn. Mater. 289, 264–267 (2005)

    Article  Google Scholar 

  41. Kolodner, P., Bensimon, D., Surko, C.M.: Traveling-wave convection in annulus. Phys. Rev. Lett. 60(17), 1723–1726 (1988)

    Article  Google Scholar 

  42. Kolodner, P., Surko, C.M.: Weakly nonlinear traveling-wave convection. Phys. Rev. Lett. 61(7), 842–845 (1988)

    Article  Google Scholar 

  43. Koronovsky, A.A., Hramov, A.E.: Continuous Wavelet Analysis and its Applications (in Russian). Fizmatlit, Moscow (2003)

    Google Scholar 

  44. Koschmieder, E.L.: Bénard Cells and Taylor Vortices. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  45. Krauzina, M.T., Bozhko, A.A., Putin, G.F., Suslov, S.A.: Intermittent flow regimes near the convection threshold in ferromagnetic nanofluids. Phys. Rev. E 91(1), 013010 (2015)

    Article  Google Scholar 

  46. Kutateladze, S.S., Berdnikov, V.S.: Structure of thermogravitational convection in a flat variously oriented layers of liquid and on a vertical wall. Int. J. Heat Mass Transfer 27(9), 1595–1611 (1984)

    Article  Google Scholar 

  47. Lee, J., Hyun, M.T., Kang, Y.S.: Confined natural convection due to lateral heating in a stably stratified solution. Int. J. Heat Mass Transfer 33, 869–875 (1990)

    Article  Google Scholar 

  48. Malomed, B.A., Nepomnyashchy, A.A., Tribelsky, M.I.: Domain boundaries in convection patterns. Phys. Rev. A 42(12), 7244–7263 (1990)

    Article  MathSciNet  Google Scholar 

  49. Morozov, K.I.: On the theory of the Soret effect in colloids. In: Köhler, W., Wiegand, S. (eds.) Thermal Nonequilibrium Phenomena in Fluid Mixtures, pp. 38–60. Springer, Berlin (2002)

    Chapter  Google Scholar 

  50. Morris, S.W., Bodenschatz, E., Cannell, D.S., Ahlers, G.: The spatio-temporal structure of spiral-defect chaos. Phys. D 97(1–3), 164–179 (1996)

    Article  Google Scholar 

  51. Moses, E., Fineberg, J., Steinberg, V.: Multistability and confined state, traveling-wave patterns in a convecting binary mixture. Phys. Rev.: Gen. Phys. 35(6), 2757–2760 (1987)

    Article  Google Scholar 

  52. Normand, C., Pomeau, Y., Velarde, M.G.: Convective instability: a physicists approach. Rev. Mod. Phys. 49(3), 581–624 (1977)

    Article  MathSciNet  Google Scholar 

  53. Ogorodnikova, N.P., Putin, G.F.: Periodic and irregular convective self-oscillations in an ellipsoid (in Russian). Akademiia Nauk SSSR, Doklady 269(1), 1065–1068 (1983)

    Google Scholar 

  54. Ovchinnikov, A.P., Shaidurov, G.F.: Convective stability of homogeneous fluid in a spherical cavity (in Russian). Hydrodynamics 1, 3–21 (1968)

    Google Scholar 

  55. Paliwal, R.C., Chen, C.F.: Double-diffusive instability in an inclined fluid layer. Part 1. Experimental investigation. J. Fluid Mech. 98, 755–768 (1980)

    Google Scholar 

  56. Plapp, B.B., Egolf, D.A., Bodenschatz, E., Pesch, W.: Dynamics and selection of giant spirals in Rayleigh-B enard convection. Phys. Rev. Lett. 81(24), 5334–5337 (1998)

    Article  Google Scholar 

  57. Pocheau, A.A., Croquette, V.: Dislocation motion: a wavenumber selection mechanism in Rayleigh-Bénard convection. J. Phys. 45, 35–48 (1984)

    Article  Google Scholar 

  58. Putin, G.F.: Experimental investigation of the effect of a barometric distribution on ferromagnetic colloid flow. In: Proceedings of the 11th Riga Workshop on Magnetohydrodynamics (in Russian), vol. 3, pp. 15–18. Physics Institute of the Latvian Academy of Sciences, Riga (1984)

    Google Scholar 

  59. Rabinovich, M.I., Trubetzkov, D.I.: Introduction to the Theory of Oscillations and Waves (in Rusian). Nauka, Moscow (1984)

    Google Scholar 

  60. Rogers, J.L., Schatz, M.F., Bougie, J.L., Swift, J.B.: Rayleigh-Bénard onvection in a vertically oscillated fluid layer. Phys. Rev. Lett. 84(1), 87–90 (2000)

    Article  Google Scholar 

  61. Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  62. Ryskin, A., Muller, H.W., Pleiner, H.: Thermal convection in binary fluid mixures with a weak concentration diffusivity, but strong solutal buoyancy forces. Phys. Rev. E 67, 046302 (2003)

    Article  Google Scholar 

  63. Shadid, J.N., Goldstein, R.J.: Visualization of longitudinal convection roll instabilities in an inclined enclosure heated from below. J. Fluid Mech. 215, 61–84 (1990)

    Article  Google Scholar 

  64. Shaidurov, G.F.: Stability of convective boundary layer in fluid filling the horizontal cylinder (in Russian). J. Eng. Phys. Thermophys. 2(12), 68–71 (1959)

    Google Scholar 

  65. Shliomis, M.I.: Magnetic fluids. Sov. Phys. Uspekhi 17, 153–169 (1974)

    Article  Google Scholar 

  66. Suslov, S.A., Bozhko, A.A., Sidorov, A.S., Putin, G.F.: Thermomagnetic convective flows in a vertical layer of ferrocolloid: perturbation energy analysis and experimental study. Phys. Rev. E 86(1), 016301 (2012)

    Article  Google Scholar 

  67. Vecsey, L.: Chaos in thermal convection and the wavelet analysis of geophysical fields. Ph.D. Thesis, Charles University, Prague (2002)

    Google Scholar 

  68. Völker, T., Blums, E., Odenbach, S.: Determination of the Soret coefficient of agnetic particles in a ferrofluid from the steady and unsteady part of the separation curve. Int. J. Heat Mass Trans. 47, 4315–4325 (2004)

    Article  Google Scholar 

  69. Yih, C.S.: Convective instability of a spherical fluid inclusion. Phys. Fluids 30(1), 36–44 (1986)

    Article  MathSciNet  Google Scholar 

  70. Zhong, F., Ecke, R.: Pattern dynamics and heat transfer in rotating Rayleigh-Bénard convection. Chaos 2(2), 163–171 (1992)

    Article  MathSciNet  Google Scholar 

  71. Zhukhovitsky, E.M.: On stability of non-uniformly heated fluid in a spherical cavity (in Russian). J. Appl. Math. Mech. 21(5), 689–693 (1957)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bozhko, A.A., Suslov, S.A. (2018). Experimental Investigation of Thermogravitational Convection in Ferrofluids. In: Convection in Ferro-Nanofluids: Experiments and Theory. Advances in Mechanics and Mathematics, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-94427-2_5

Download citation

Publish with us

Policies and ethics