Skip to main content

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 40))

  • 419 Accesses

Abstract

The methodology of experimental investigation of thermogravitational and thermomagnetic convection in ferrofluids is discussed. The necessary physical conditions for the observation of thermomagnetic convection in external uniform magnetic field are identified. The methods of registering heat fluxes and visualising convection flow patterns in nontransparent ferrofluids are discussed. Various designs of experimental chambers, sensors and measuring devices are presented, and the main features distinguishing the behaviour of magneto-polarisable fluids from that of their non-magnetic counterparts are highlighted. Specifically, the influence of the working chamber geometries, sizes and boundaries on the distribution of a magnetic field inside cavities and thus on the characteristics of the arising convective flows and heat transfer is emphasised.

See Appendix B for the list of previously published materials re-used in this chapter with permission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arefyev, I.M., Arefyeva, T.A., Kazakov, Y.B.: Patent 2517704 of the russian federation (2014)

    Google Scholar 

  2. Avdeev, M.V., Bica, D., Vekas, L., Aksenov, V.L.: Comparative structure analysis of non-polar organic ferrofluids stabilised by saturated monocarboxylic acids. J. Colloid Interface Sci. 334, 37–41 (2009)

    Article  Google Scholar 

  3. Bashtovoy, V.G., Berkovsky, B.M., Vislovich, A.N.: Introduction to Thermomechanics of Magnetic Fluids. Hemisphere, Washington (1988)

    Google Scholar 

  4. Berkovsky, B.M., Medvedev, V.F., Krakov, M.S.: Magnetic Fluids: Engineering Application. Oxford University Press, Oxford (1993)

    Google Scholar 

  5. Blums, E., Cebers, A.O., Maiorov, M.M.: Magnetic Fluids. Walter de Gruyter, Berlin (1997)

    Google Scholar 

  6. Bozhko, A.A.: Thermal convection in magnetic fluids in gravitational and magnetic fields (in Russian). Doctor of Sciences Dissertation. Perm State University, Perm (2011). dslib.net

  7. Bozhko, A.A., Putin, G.F.: Experimental investigation of thermo-magnetic convection in uniform external field. Bull. Acad. Sci. USSR Phys. Ser. 55, 1149–1156 (1991)

    Google Scholar 

  8. Bozhko, A.A., Putin, G.F.: Heat transfer and flow patterns in ferrofluid convection. Magnetohydrodynamics 39(2), 147–169 (2003)

    Google Scholar 

  9. Bozhko, A.A., Putin, G.F.: Magnetic action on convection and heat transfer in ferrofluid. Indian J. Eng. Mater. Sci. 11, 309–314 (2004)

    Google Scholar 

  10. Bozhko, A.A., Putin, G.F., Sidorov, A.S., Suslov, S.A.: Convection in a vertical layer of stratified magnetic fluid. Magnetohydrodynamics 49(1–2), 143–152 (2013)

    Google Scholar 

  11. Buzmakov, V.M., Pshenichnikov, A.F.: On the structure of microaggregates in magnetite colloids. J. Colloid Interface Sci. 182, 63–70 (1996)

    Article  Google Scholar 

  12. Chekanov, V.V.: On the interaction of particles in magnetic colloids. In: E. Blums (ed.) Hydrodynamics and Thermal Physics of Magnetic Fluids (in Russian), Salaspils, Latvia, pp. 69–76 (1980)

    Google Scholar 

  13. Einstein, A.: On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat. Ann. Phys. 17, 549–560 (1905)

    Article  Google Scholar 

  14. Elmore, W.C.: The magnetisation of ferromagnetic colloids. Phys. Rev. 54, 1092–1095 (1938)

    Article  Google Scholar 

  15. Fertman, V.E.: Magnetic fluids—Natural convection and heat transfer. Izdatel’stvo Nauka i Tekhnika, Minsk (1978)

    Google Scholar 

  16. Gershuni, G.Z., Zhukhovitsky, E.M.: Convective Stability of Incompressible Fluid. Keter, Jerusalem (1976)

    Google Scholar 

  17. Getling, A.V.: Rayleigh-Bénard Convection: Structures and Dynamics. World Scientific, Singapore (1998)

    Book  Google Scholar 

  18. Krauzina, M.T., Bozhko, A.A., Krauzin, P.V., Suslov, S.A.: Oscillatory instability of convection in ferromagnetic nanofluid and in transformer oil. Fluid Dyn. Res. 48, 061407 (2016)

    Article  MathSciNet  Google Scholar 

  19. Krauzina, M.T., Bozhko, A.A., Putin, G.F., Suslov, S.A.: Intermittent flow regimes near the convection threshold in ferromagnetic nanofluids. Phys. Rev. E 91(1), 013010 (2015)

    Article  Google Scholar 

  20. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1960)

    MATH  Google Scholar 

  21. Leshe, A.: Nuclear Induction. Foreign Literature (Russian translation), Moscow (1963)

    Google Scholar 

  22. Magnetic colloids manufactured in Ferrohydrodynamics laboratory at Ivanovo State Energy University, Ivanovo, Russian Federation and at “Ferrohydrodynamika” Scientific and Industrial Laboratory, Nikolaev, Ukraine (trademark “Blesk”) were used in experiments.

    Google Scholar 

  23. Odenbach, S.: Drop tower experiments on thermomagnetic convection. Microgravity Sci. Tech. 6(3), 161–163 (1993)

    Google Scholar 

  24. Odenbach, S.: Magnetoviscous Effects in Ferrofluids. Springer, New York (2002)

    Book  Google Scholar 

  25. Ovchinnikov, A.P., Shaidurov, G.F.: Convective stability of homogeneous fluid in a spherical cavity (in Russian). Hydrodynamics 1, 3–21 (1968)

    Google Scholar 

  26. Peterson, E.A., Kruger, D.A.: Field induced agglomeration in magnetic colloids. J. Colloid Interface Sci. 62(1), 24–34 (1977)

    Article  Google Scholar 

  27. Pop, L.M., Odenbach, S.: Investigation of microscopic reason for the magnetoviscous effect in ferrofluid studied by small angle neutron scattering. J. Phys. Condens. Mater. 18, S2785–S2802 (2006)

    Article  Google Scholar 

  28. Rahman, H., Suslov, S.A.: Thermomagnetic convection in a layer of ferrofluid placed in a uniform oblique external magnetic field. J. Fluid Mech. 764, 316–348 (2015)

    Article  MathSciNet  Google Scholar 

  29. Rahman, H., Suslov, S.A.: Magneto-gravitational convection in a vertical layer of ferrofluid in a uniform oblique magnetic field. J. Fluid Mech. 795, 847–875 (2016)

    Article  MathSciNet  Google Scholar 

  30. Rosensweig, R.E.: Fluid dynamics and science of magnetic fluids. Adv. Electron. Electron Phys. 48, 103–199 (1979)

    Article  Google Scholar 

  31. Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  32. Schmidt, R.J., Milverton, S.W.: On the instability of a fluid when heated from below. Proc. Roy. Soc. Lond. A 152, 586–594 (1935)

    Article  Google Scholar 

  33. Schwab, L.: Field induced wavevector selection by magnetic Bénard convection. J. Magn. Magn. Mater. 65, 315–316 (1987)

    Article  Google Scholar 

  34. Schwab, L., Hildebrandt, U., Stierstadt, K.: Magnetic Bénard convection. J. Magn. Magn. Mater. 39, 113–114 (1983)

    Article  Google Scholar 

  35. Sidorov, A.S.: The influence of an oblique magnetic field on convection in a vertical layer of magnetic fluid. Magnetohydrodynamics 52(1), 223–233 (2016)

    Google Scholar 

  36. Stasiek, J.A., Kowalewski, T.A.: Thermochromic liquid crystals applied for heat transfer research. Opto-Electron. Rev. 10(1), 1–10 (2002)

    Google Scholar 

  37. Suslov, S.A., Bozhko, A.A., Sidorov, A.S., Putin, G.F.: Thermomagnetic convective flows in a vertical layer of ferrocolloid: perturbation energy analysis and experimental study. Phys. Rev. E 86(1), 016301 (2012)

    Article  Google Scholar 

  38. Vargaftik, N.B.: Handbook of Physical Properties of Liquids and Gases. Hemisphere, New York (1975)

    Book  Google Scholar 

  39. Vonsovsky, S.V.: Magnetism (in Russian). Nauka, Moscow (1971)

    Google Scholar 

  40. Wen, C.Y., Chen, C.Y.Y.S.F.: Flow visualization of natural convection of magnetic fluid in a rectangular Hele-Shaw cell. J. Magn. Magn. Mater. 252, 206–208 (2002)

    Article  Google Scholar 

  41. Yih, C.S.: Convective instability of a spherical fluid inclusion. Phys. Fluids 30(1), 36–44 (1986)

    Article  MathSciNet  Google Scholar 

  42. Zharkova, G.M., Kovrizhina, V.N., Khachaturyan, V.M.: A study of the flow structure in the near wall region of a complex shaped channel using liquid crystal. In: Greated, C., Cosgrov, J., Buick, J.M. (eds.) Optical methods and data proceeding in heat and fluid flow, Trowbridge, pp. 143–150 (2002)

    Google Scholar 

  43. Zhukhovitsky, E.M.: On stability of non-uniformly heated fluid in a spherical cavity (in Russian). J. Appl. Math. Mech. 21(5), 689–693 (1957)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bozhko, A.A., Suslov, S.A. (2018). Experimental Methodology. In: Convection in Ferro-Nanofluids: Experiments and Theory. Advances in Mechanics and Mathematics, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-94427-2_4

Download citation

Publish with us

Policies and ethics