Skip to main content

Ferrofluids: Composition and Physical Processes

  • Chapter
  • First Online:
Convection in Ferro-Nanofluids: Experiments and Theory

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 40))

  • 466 Accesses

Abstract

A brief history and an overview of the current state of knowledge of ferrofluids (also known as ferrocolloids or ferro-nanofluids) are given. Applications of ferrofluids as advanced heat carrier media in heat management systems are emphasised. It is discussed that in the absence of a magnetic field, ferrofluids can be considered as a type of synthesised nanofluids or ordinary colloids. However, when they are placed in an external magnetic field, they behave as magneto-polarisable media, the magnetic susceptibility of which is several orders of magnitude larger than that of natural fluids and gases. Various physical mechanisms of heat and mass transfer in ferrofluids are identified. It is shown that the macroscopic behaviour of ferrofluids is strongly affected by their microstructure that depends on the way they are synthesised, stored and used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Not to be confused with magnetorheological fluids containing much larger, of the order of a micron, particles.

  2. 2.

    Particles with Neel [166] relaxation where magnetic moments align with the field within a particle not causing its overall rotation do not lead to magnetoviscous effect.

References

  1. Altan, C.L., Elkatmis, A., Yuksel, M., Aslan, N., Bucak, S.: Enhancement of thermal conductivity upon application of magnetic field to Fe3O4 nanofluids. J. Appl. Phys. 110, 093917 (2011)

    Article  Google Scholar 

  2. Avdeev, M.V., Aksenov, V.L.: Small-angle neutron scattering in structure studies of magnetic fluids (in Russian). Phys. Usp. 180(10), 1009–1034 (2010)

    Article  Google Scholar 

  3. Bashirnezhad, K., Bazri, S., Safaei, M.R., Goodarzi, M., Dahari, M., Mahian, O., Dalklca, A.S., Wongwises, S.: Viscosity of nanofluids: a review of recent experimental studies. Int. Commun. Heat Mass Trans. 73, 114–123 (2016)

    Article  Google Scholar 

  4. Bashtovoy, V.G., Berkovsky, B.M., Vislovich, A.N.: Introduction to thermomechanics of magnetic fluids (in Russian). Institute of High Temperatures of the Russian Academy of Sciences, Moscow (1985)

    Google Scholar 

  5. Bashtovoy, V.G., Berkovsky, B.M., Vislovich, A.N.: Introduction to Thermomechanics of Magnetic Fluids. Hemisphere, Washington (1988)

    Google Scholar 

  6. Bibik, E.E., Lavrov, I.S.: Preparing ferrofluids (in Russian). USSR Patent 467666 (1975)

    Google Scholar 

  7. Blums, E., Cebers, A.O., Maiorov, M.M.: Magnetic Fluids. Walter de Gruyter, Berlin (1997)

    Google Scholar 

  8. Blums, E., Mezulis, A., Maiorov, M., Kronkalns, G.: Thermal diffusion of magnetic nanoparticles in ferrocolloids: experiments on particle separation in vertical columns. J. Magn. Magn. Mater. 169, 220–228 (1997)

    Article  Google Scholar 

  9. Blums, E., Odenbach, S., Mezulis, A., Maiorov, M.: Soret coefficient of nanoparticles in ferrofluids in the presence of magnetic field. Phys. Fluids 10(9), 2155–2163 (1998)

    Article  Google Scholar 

  10. Blums, E.Y., Maiorov, M.M., Tsebers, A.O.: Magnetic Fluids (in Russian). Zinatne, Riga, Latvia (1989)

    Google Scholar 

  11. Bozhko, A., Bulychev, P.V., Putin, G.F., Tynjälä, T.: Spatio-temporal chaos in colloid convection. Fluid Dyn. 42(1), 24–32 (2007)

    Article  Google Scholar 

  12. Bozhko, A.A., Putin, G.F.: Experimental investigation of thermo-magnetic convection in uniform external field. Bull. Acad. Sci. USSR Phys. Ser. 55, 1149–1156 (1991)

    Google Scholar 

  13. Bozhko, A.A., Putin, G.F.: Heat transfer and flow patterns in ferrofluid convection. Magnetohydrodynamics 39(2), 147–169 (2003)

    Google Scholar 

  14. Bozhko, A.A., Putin, G.F., Sidorov, A.S., Suslov, S.A.: Convection in a vertical layer of stratified magnetic fluid. Magnetohydrodynamics 49(1–2), 143–152 (2013)

    Google Scholar 

  15. Brown, W.F.: Micromagnetics. Wiley, New York (1963)

    MATH  Google Scholar 

  16. Brown, W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677–1686 (1963)

    Article  Google Scholar 

  17. Büscher, K., Helm, C.A., Gross, C., Glöckl, G., Romanus, E., Weitschies, W.: Nanoparticle composition of a ferrofluid and its effects on the magnetic properties. Langmuir 20(6), 2435–2444 (2004)

    Article  Google Scholar 

  18. Buzmakov, V.M., Pshenichnikov, A.F.: On the structure of microaggregates in magnetite colloids. J. Colloid Interface Sci. 182, 63–70 (1996)

    Article  Google Scholar 

  19. Chekanov, V.V.: Formation of aggregates as a result of phase transition in magnetic colloids. In: Physical Properties of Magnetic Fluids (in Russian), pp. 42–49. Ural Branch of the Academy of Sciences of the USSR, Sverdlovsk (1983)

    Google Scholar 

  20. Chikazumi, S., Taketomi, S., Ukita, M., Mizukami, M., Miyajima, H., Setogava, M., Kurihara, Y.: Physics of magnetic fluid. J. Magn. Magn. Mater. 65, 245–251 (1987)

    Article  Google Scholar 

  21. Choi, S.U.S.: Nanofluids: from vision to reality through research. J. Heat Transfer 131, 033106 (2009)

    Article  Google Scholar 

  22. Demouchy, G., Mezulis, A., Bee, A., Talbot, D., Bacri, J.C., Bourdon, A.: Diffusion and thermodiffusion studies in ferrofluids with a new two-dimensional forced Rayleigh-scattering technique. J. Phys. D: Appl. Phys. 37, 1417–1428 (2004)

    Article  Google Scholar 

  23. Devendiran, D.K., Amirtham, V.A.: A review on preparation, characterization, properties and applications of nanofluids. Renew. Sust. Energ. Rev. 60, 21–40 (2016)

    Article  Google Scholar 

  24. Einstein, A.: Eine neue Bestimmung der moleküldimensionen. Ann. Phys. 19, 298–306 (1906)

    MATH  Google Scholar 

  25. Elfimova, E.A., Ivanov, A.O., Lakhtina, E.V., Pshenichnikov, A.F., Camp, P.J.: Sedimentation equilibria in polydisperse ferrofluids: critical comparisons between experiment, theory, and computer simulationlaminar free convection in a slot. Soft Matter 12, 4103–4112 (2016)

    Article  Google Scholar 

  26. Elmore, W.C.: The magnetisation of ferromagnetic colloids. Phys. Rev. 54, 1092–1095 (1938)

    Article  Google Scholar 

  27. Fertman, V.E.: Magnetic fluids—Natural convection and heat transfer. Izdatel’stvo Nauka i Tekhnika, Minsk (1978)

    Google Scholar 

  28. Gavili, A., Zabihi, F., Isfahani, T.D., Sabbaghzadeh, J.: The thermal conductivity of water base ferrofluids under magnetic field. Exp. Therm. Fluid Sci. 41, 94–98 (2012)

    Article  Google Scholar 

  29. Glukhov, A.F.: Experimental investigation of thermal convection in mixtures in conditions of gravitational separation. Ph.D. Thesis, Perm State University, Perm (1995)

    Google Scholar 

  30. Godson, L., Raja, B., Lal, D.M., Wongwises, S.: Enhancement of heat transfer using nanofluids—an overview. Renew. Sust. Energ. Rev. 14, 629–641 (2010)

    Article  Google Scholar 

  31. Goldina, O.A., Lebedev, A.V., Ivanov, A.O., Elfmova, E.A.: Themperature dependence of initial magnetic susceptibility of polydisperse ferrofluids: a critical comparison between experiment and theory. Magnetohydrodynamics 52, 35–42 (2016)

    Google Scholar 

  32. Gubin, S.P., Koksharov, Y.A., Khomutov, G.B., Yurkov, G.Y.: Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev. 74(6), 489–520 (2005)

    Article  Google Scholar 

  33. Hall, W.F., Busenberg, S.N.: Viscosity of magnetic suspensions. J. Chem. Phys. 51, 137–144 (1969)

    Article  Google Scholar 

  34. Hirschberg, A.: Role of asphaltenes in compositional grading of a reservoirs fluid column. J. Petrol. Technol. 40(1), 89–94 (1988)

    Article  MathSciNet  Google Scholar 

  35. Ivanov, A.S.: Magnetophoresis and diffusion colloid particles in a thin layer of magnetic fluid. Ph.D. Thesis, Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, Perm (2011)

    Google Scholar 

  36. Ivanov, A.S., Pshenichnikov, A.F.: On natural solutal convection in magnetic fluids. Phys. Fluids 27, 092001 (2015)

    Article  Google Scholar 

  37. Jakobs, I.S., Bean, C.P.: Fine particles, thin films and exchange anisotropy. In: Rado, G.T., Suhl, H. (eds.) Magnetism, vol. 3, pp. 271–350. Academic Press, New York (1963)

    Google Scholar 

  38. Kandelousi, S.M., Ganji, D.D.: External Magnetic Field Effects on Hydrothermal Treatment of Nanofluid. William Andrew, Amsterdam (2016)

    MATH  Google Scholar 

  39. Krauzina, M.T., Bozhko, A.A., Krauzin, P.V., Suslov, S.A.: Oscillatory instability of convection in ferromagnetic nanofluid and in transformer oil. Fluid Dyn. Res. 48, 061407 (2016)

    Article  MathSciNet  Google Scholar 

  40. Kronkalns, G.E.: Measurements of coefficients of thermal and electric conductivity of a ferrofluid in magnetic field (in Russian). Magnetohydrodynamics 31, 138–140 (1977)

    Google Scholar 

  41. Kumar, A., Subudhi, S.: Preparation, characteristics, convection and applications of magnetic nanofluids: a review. Heat Mass Transfer 54, 241–265 (2018)

    Article  Google Scholar 

  42. Lakhtina, E.V.: Centrifugation of dilute ferrofluids. Phys. Procedia 9, 221–223 (2010)

    Article  Google Scholar 

  43. Lakhtina, E.V., Pshenichnikov, A.F.: Dispersion of magnetic susceptibility and the microstructure of magnetic fluid. Colloid J. 68(3), 327–337 (2006)

    Article  Google Scholar 

  44. Li, Q., Xuan, Y., Wang, J.: Experimental investigations on transport properties of magnetic fluids. Exp. Therm. Fluid Sci. 30, 109–116 (2005)

    Google Scholar 

  45. Mamiya, H., Nakatani, I., Furubayshy, T.: Phase transitions of iron-nitride magnetic fluids. Phys. Rev. Lett. 84, 6106–6109 (2000)

    Article  Google Scholar 

  46. Martsenyuk, M.A.: Thermal conductivity of a suspension of ellipsoidal particles in a magnetic field. In: Proceedings of the 8th Riga MHD Conference, Riga, Latvia, vol. 1, pp. 108–109 (1975)

    Google Scholar 

  47. Maxwell, J.C.: A Treatise on Electricity and Magnetism. Clarendon Press, Oxford (1881)

    MATH  Google Scholar 

  48. McTaque, J.P.: Magnetoviscosity of magnetic colloids. J. Chem. Phys. 51(1), 133–136 (1969)

    Article  Google Scholar 

  49. Mezquia, D.A., Larranaga, M., Bou-Ali, M.M., Madariaga, J.A., Santamaria, C., Platten, J.K.: Contribution to thermodiffusion coefficient measurements in dcmix project. Int. J. Therm. Sci. 92, 14–16 (2015)

    Article  Google Scholar 

  50. Montel, F.: Importance de la thermodiffusion en exploration et production petrolieres. Entropie 184–185, 86–93 (1994)

    Google Scholar 

  51. Morozov, K.I.: On the theory of the Soret effect in colloids. In: Köhler, W., Wiegand, S. (eds.) Thermal Nonequilibrium Phenomena in Fluid Mixtures, pp. 38–60. Springer, Berlin (2002)

    Chapter  Google Scholar 

  52. Neel, L.: Influence of thermal fluctuations on the magnetization of ferromagnetic small particles. C. R. Acad. Sci. Paris 228(6), 664–666 (1949)

    Google Scholar 

  53. Nkurikiyimfura, I., Wang, Y., Pan, Z.: Heat transfer enhancement by magnetic nanofluids—a review. Renew. Sust. Energ. Rev. 21, 548–561 (2013)

    Article  Google Scholar 

  54. Odenbach, S.: Ferrofluids: Magnetically Controllable Fluids and Their Applications. Springer, New York (2002)

    Book  Google Scholar 

  55. Odenbach, S.: Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids. Springer Lecture Notes in Physics, vol. 763. Springer, New York (2009)

    Google Scholar 

  56. Orlov, D.V., Kurbatov, V.G., Silaev, V.A., Sizov, A.P., Trofimenko, M.I.: Ferromagnetic fluid for magnetofluidic seals. USSR Patent 516861 (1976)

    Google Scholar 

  57. Padovani, S., Sada, C., Mazzoldi, P., Brunetti, B., Borgia, I., Sgamellotti, A., Giulivi, A., D’Acapito, F., Battaglin, G.: Copper in glazes of renaissance luster pottery: nanoparticles, ions, and local environment. J. Appl. Phys. 93(12), 10058–10063 (2003)

    Article  Google Scholar 

  58. Papell, S.S.: Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. US Patent 3215572 (1965)

    Google Scholar 

  59. Parekh, K., Lee, H.S.: Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J. Appl. Phys. 107(9), 09A310 (2010)

    Google Scholar 

  60. Peterson, E.A., Kruger, D.A.: Field induced agglomeration in magnetic colloids. J. Colloid Interface Sci. 62(1), 24–34 (1977)

    Article  Google Scholar 

  61. Philip, J., Shima, P.D., Raj, B.: Evidence for enhanced thermal conduction through percolating structures in nanofluids. Nanotechnology 19, 305706 (2008)

    Article  Google Scholar 

  62. Platten, J.K.: The Soret effect: a review of recent experimental results. J. Appl. Mech. 73, 5–15 (2006)

    Article  Google Scholar 

  63. Polunin, V.M.: Acoustic Properties of Nanodisperse Magnetic Fluids (in Russian). Fizmatlit, Moscow (2012)

    Google Scholar 

  64. Pop, L.M., Odenbach, S.: Investigation of microscopic reason for the magnetoviscous effect in ferrofluid studied by small angle neutron scattering. J. Phys. Condens. Mater. 18, S2785–S2802 (2006)

    Article  Google Scholar 

  65. Pshenichnikov, A., Lebedev, A., Lakhtina, E., Kuznetsov, A.: Effect of centrifugation on dynamic susceptibility of magnetic fluids. J. Magn. Magn. Matter. 432, 30–36 (2017)

    Article  Google Scholar 

  66. Pshenichnikov, A.F.: Equilibrium magnetization of concentrated ferrocolloids. J. Magn. Magn. Matter. 145(3), 319–326 (1995)

    Article  Google Scholar 

  67. Pshenichnikov, A.F., Elfimova, E.A., Ivanov, A.O.: Magnetophoresis, sedimentation, and diffusion of particles in concentrated magnetic fluids. J. Chem. Phys. 134, 184508 (2011)

    Article  Google Scholar 

  68. Putin, G.F.: Experimental investigation of the effect of a barometric distribution on ferromagnetic colloid flow. In: Proceedings of the 11th Riga Workshop on Magnetohydrodynamics (in Russian), vol. 3, pp. 15–18. Physics Institute of the Latvian Academy of Sciences, Riga (1984)

    Google Scholar 

  69. Raja, M., Vijayan, R., Dineshkumar, P., Venkatesan, M.: Review on nanofluids characterization, heat transfer characteristics and applications. Renew. Sus. Energy Rev. 64, 163–173 (2016)

    Article  Google Scholar 

  70. Rosensweig, R.E.: Ferrohydrodynamics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  71. Sage, B.H., Member, A.I.M.E., Lacey, W.N.: Gravitational concentration gradietns in static columns of hydrocarbon fluids. Tans. AIME 132(3), 120–131 (1939)

    Article  Google Scholar 

  72. Schere, C., Figueiredo Neto, A.M.: Ferrofluids: properties and applications. Braz. J. Phys. 35(3A), 718–727 (2005)

    Article  Google Scholar 

  73. Shliomis, M.I.: Magnetic fluids. Sov. Phys. Uspekhi 17, 153–169 (1974)

    Article  Google Scholar 

  74. Si, S., Li, C., Wang, X., Yu, D., Peng, Q., Li, Y.: Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth Des. 5(2), 391–393 (2005)

    Article  Google Scholar 

  75. Sidorov, N.I.: On the history of M. V. Lomonosov’s mosaic recipes (in Russian). Proc. Acad. Sci. USSR, Ser. VII Phys. Math. 7, 679–706 (1930)

    Google Scholar 

  76. Skibin, Y.N.: Magneto-optical method of determining magnetic moment of magnetic fluid particles. In: Devices and Methods of Measurement of Physical Parameters of Ferrocolloids (in Russian), pp. 85–89. Ural Branch of the Academy of Sciences of the USSR, Sverdlovsk (1991)

    Google Scholar 

  77. Soret, C.: Influence de la température sur la distribution des sels dans leurs solutions. C. R. Acad. Sci. Paris 91, 289–291 (1880)

    Google Scholar 

  78. Sprenger, L., Lange, A., Odenbach, S.: Thermodiffusion in concentrated ferrofluids: experimental and numerical results on magnetic thermodiffusion. Phys. Fluids 26, 022001 (2014)

    Article  Google Scholar 

  79. Sprenger, L., Lange, A., Zubarev, A.Y., Odenbach, S.: Experimental, numerical and theoretical investigation on concentration-dependent Soret effect in magnetic fluids. Phys. Fluids 27, 022001 (2015)

    Article  Google Scholar 

  80. Taketomi, S., Tikadzumi, S.: Magnetic Fluids (in Russian: Trans. from Japanese). Mir, Moscow (1993)

    Google Scholar 

  81. Tareev, V.M.: Thermal conductivity of colloidal systems (in Russian). Colloid J. 6, 545–550 (1940)

    Google Scholar 

  82. Terekhov, V.I., Kalinin, S.V., Lehmanov, V.V.: The mechanism of heat transfer in nanofluids: state of the art (review). Part 2. Convective heat exchange (in Russian). Thermophys. Aeromech. 2, 173–188 (2010)

    Google Scholar 

  83. Völker, T., Blums, E., Odenbach, S.: Determination of the Soret coefficient of agnetic particles in a ferrofluid from the steady and unsteady part of the separation curve. Int. J. Heat Mass Trans. 47, 4315–4325 (2004)

    Article  Google Scholar 

  84. Völker, T., Odenbach, S.: The influence of a uniform magnetic field on the Soret coefficient of magnetic nanoparticles. Phys. Fluids 15, 2198–2207 (2003)

    Article  Google Scholar 

  85. Wang, X.Q., Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46, 1–19 (2007)

    Article  Google Scholar 

  86. Zhong, L., He, R., Gu, H.C.: Oleic acid coating on the monodisperse magnetic nanoparticles. Appl. Surf. Sci. 253, 2611–2617 (2006)

    Article  Google Scholar 

  87. Zsigmondy, R.A., Thiessen, P.A.: Das kolloide Gold. Lpz. (1925)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bozhko, A.A., Suslov, S.A. (2018). Ferrofluids: Composition and Physical Processes . In: Convection in Ferro-Nanofluids: Experiments and Theory. Advances in Mechanics and Mathematics, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-94427-2_1

Download citation

Publish with us

Policies and ethics