Skip to main content

Hemodynamic Monitoring: What’s Out There? What’s Best for You?

  • Chapter
  • First Online:
Adult Critical Care Medicine
  • 2172 Accesses

Abstract

This chapter on hemodynamic monitoring presents the case of an elderly woman with multiple comorbidities who presents with undefined shock. The differential diagnosis and management of this patient’s shock is discussed with reference to the available hemodynamic monitoring devices and techniques, including bedside and biomarker assessment, central catheter-based monitoring, ultrasonography, arterial pressure waveform analysis, bioreactance monitoring, and fingertip-based monitoring, used to assess tissue perfusion, cardiac output, and volume responsiveness needed to guide treatment of the critically ill patient in shock. Advantages and limitations of the devices will be discussed to ensure the reader gains the knowledge needed to select the ideal hemodynamic monitoring device suitable to an individual’s working environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vincent JL, De Backer D. Circulatory shock. N Engl J Med. 2013;369(18):1726–34.

    Article  CAS  PubMed  Google Scholar 

  2. Weil MH, Henning RJ. New concepts in the diagnosis and fluid treatment of circulatory shock. Thirteenth annual Becton, Dickinson and company Oscar Schwidetsky memorial lecture. Anesth Analg. 1979;58(2):124–32.

    Article  CAS  PubMed  Google Scholar 

  3. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis campaign: international guidelines for Management of Sepsis and Septic Shock: 2016. Crit Care Med. 2017;45(3):486–552.

    Article  PubMed  Google Scholar 

  5. Cavallaro F, Sandroni C, Marano C, La Torre G, Mannocci A, De Waure C, et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010;36(9):1475–83.

    Article  PubMed  Google Scholar 

  6. Latham HE, Bengtson CD, Satterwhite L, Stites M, Subramaniam DP, Chen GJ, et al. Stroke volume guided resuscitation in severe sepsis and septic shock improves outcomes. J Crit Care. 2017;42:42–6.

    Article  PubMed  Google Scholar 

  7. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.

    Article  PubMed  Google Scholar 

  8. Marik PE, Lemson J. Fluid responsiveness: an evolution of our understanding. Br J Anaesth. 2014;112(4):617–20.

    Article  CAS  PubMed  Google Scholar 

  9. Hamzaoui O, Monnet X, Teboul JL. Evolving concepts of hemodynamic monitoring for critically ill patients. Indian J Crit Care Med. 2015;19(4):220–6.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41(6):1412–20.

    Article  CAS  PubMed  Google Scholar 

  11. Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;1(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94.

    Article  CAS  PubMed  Google Scholar 

  13. Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19:251.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marik PE, Linde-Zwirble WT, Bittner EA, Sahatjian J, Hansell D. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database. Intensive Care Med. 2017;43(5):625–32.

    Article  PubMed  Google Scholar 

  15. Rosenberg AL, Dechert RE, Park PK, Bartlett RH, Network NNA. Review of a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume study cohort. J Intensive Care Med. 2009;24(1):35–46.

    Article  PubMed  Google Scholar 

  16. Sirvent JM, Ferri C, Baro A, Murcia C, Lorencio C. Fluid balance in sepsis and septic shock as a determining factor of mortality. Am J Emerg Med. 2015;33(2):186–9.

    Article  PubMed  Google Scholar 

  17. Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care. 2000;4(5):282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.

    Article  PubMed  Google Scholar 

  19. Fessler HE, Brower RG, Wise RA, Permutt S. Mechanism of reduced LV afterload by systolic and diastolic positive pleural pressure. J Appl Physiol. 1988;65(3):1244–50.

    Article  CAS  PubMed  Google Scholar 

  20. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7.

    Article  PubMed  Google Scholar 

  21. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121(6):2000–8.

    Article  PubMed  Google Scholar 

  22. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31(4):517–23.

    Article  PubMed  Google Scholar 

  23. De Backer D, Taccone FS, Holsten R, Ibrahimi F, Vincent JL. Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology. 2009;110(5):1092–7.

    Article  PubMed  Google Scholar 

  24. Augusto JF, Teboul JL, Radermacher P, Asfar P. Interpretation of blood pressure signal: physiological bases, clinical relevance, and objectives during shock states. Intens Care Med. 2011;37(3):411–9.

    Article  Google Scholar 

  25. Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent JL. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Med. 2012;38(3):422–8.

    Article  PubMed  Google Scholar 

  26. Hartog C, Bloos F. Venous oxygen saturation. Best Pract Res Clin Anaesthesiol. 2014;28(4):419–28.

    Article  PubMed  Google Scholar 

  27. Investigators A, Group ACT, Peake SL, Delaney A, Bailey M, Bellomo R, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371(16):1496–506.

    Article  CAS  Google Scholar 

  28. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–11.

    Article  CAS  PubMed  Google Scholar 

  29. Pro CI, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.

    Article  CAS  Google Scholar 

  30. Lyu X, Xu Q, Cai G, Yan J, Yan M. Efficacies of fluid resuscitation as guided by lactate clearance rate and central venous oxygen saturation in patients with septic shock. Zhonghua Yi Xue Za Zhi. 2015;95(7):496–500.

    PubMed  Google Scholar 

  31. Levy B. Lactate and shock state: the metabolic view. Curr Opin Crit Care. 2006;12(4):315–21.

    Article  PubMed  Google Scholar 

  32. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182(6):752–61.

    Article  PubMed  Google Scholar 

  33. Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA, et al. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303(8):739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tian HH, Han SS, Lv CJ, Wang T, Li Z, Hao D, et al. The effect of early goal lactate clearance rate on the outcome of septic shock patients with severe pneumonia. Zhongguo wei zhong bing ji jiu yi xue = Chinese critical care medicine = Zhongguo weizhongbing jijiuyixue. 2012;24(1):42–5.

    PubMed  Google Scholar 

  35. Monge Garcia MI, Gil Cano A, Gracia Romero M, Monterroso Pintado R, Perez Madueno V, Diaz Monrove JC. Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Ann Intensive Care. 2012;2:9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Monnet X, Bataille A, Magalhaes E, Barrois J, Le Corre M, Gosset C, et al. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Med. 2013;39(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  37. Magder S, Bafaqeeh F. The clinical role of central venous pressure measurements. J Intensive Care Med. 2007;22(1):44–51.

    Article  PubMed  Google Scholar 

  38. Hughes RE, Magovern GJ. The relationship between right atrial pressure and blood volume. AMA Arch Surg. 1959;79(2):238–43.

    Article  CAS  PubMed  Google Scholar 

  39. Latham HE, Rawson ST, Dwyer TT, Patel CC, Wick JA, Simpson SQ. Peripherally inserted central catheters are equivalent to centrally inserted catheters in intensive care unit patients for central venous pressure monitoring. J Clin Monit Comput. 2012;26(2):85–90.

    Article  PubMed  Google Scholar 

  40. Godje O, Peyerl M, Seebauer T, Lamm P, Mair H, Reichart B. Central venous pressure, pulmonary capillary wedge pressure and intrathoracic blood volumes as preload indicators in cardiac surgery patients. Eur J Cardiothorac Surg. 1998;13(5):533–9. discussion 9-40

    Article  CAS  PubMed  Google Scholar 

  41. Hoeft A, Schorn B, Weyland A, Scholz M, Buhre W, Stepanek E, et al. Bedside assessment of intravascular volume status in patients undergoing coronary bypass surgery. Anesthesiology. 1994;81(1):76–86.

    Article  CAS  PubMed  Google Scholar 

  42. Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32(3):691–9.

    Article  PubMed  Google Scholar 

  43. Oohashi S, Endoh H. Does central venous pressure or pulmonary capillary wedge pressure reflect the status of circulating blood volume in patients after extended transthoracic esophagectomy? J Anesth. 2005;19(1):21–5.

    Article  PubMed  Google Scholar 

  44. Wagner JG, Leatherman JW. Right ventricular end-diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest. 1998;113(4):1048–54.

    Article  CAS  PubMed  Google Scholar 

  45. Heenen S, De Backer D, Vincent JL. How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care. 2006;10(4):R102.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637.

    Article  PubMed  Google Scholar 

  47. Eskesen TG, Wetterslev M, Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med. 2016;42(3):324–32.

    Article  CAS  PubMed  Google Scholar 

  48. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35(1):64–8.

    Article  PubMed  Google Scholar 

  49. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119(3):867–73.

    Article  CAS  PubMed  Google Scholar 

  50. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89(6):1313–21.

    Article  CAS  PubMed  Google Scholar 

  51. Forrester JS, Ganz W, Diamond G, McHugh T, Chonette DW, Swan HJ. Thermodilution cardiac output determination with a single flow-directed catheter. Am Heart J. 1972;83(3):306–11.

    Article  CAS  PubMed  Google Scholar 

  52. Cohen MG, Kelly RV, Kong DF, Menon V, Shah M, Ferreira J, et al. Pulmonary artery catheterization in acute coronary syndromes: insights from the GUSTO IIb and GUSTO III trials. Am J Med. 2005;118(5):482–8.

    Article  PubMed  Google Scholar 

  53. Goldstein JA. Pathophysiology and management of right heart ischemia. J Am Coll Cardiol. 2002;40(5):841–53.

    Article  PubMed  Google Scholar 

  54. Zion MM, Balkin J, Rosenmann D, Goldbourt U, Reicher-Reiss H, Kaplinsky E, et al. Use of pulmonary artery catheters in patients with acute myocardial infarction. Analysis of experience in 5,841 patients in the SPRINT registry. SPRINT study group. Chest. 1990;98(6):1331–5.

    Article  CAS  PubMed  Google Scholar 

  55. Oh JK. Echocardiography as a noninvasive swan-Ganz catheter. Circulation. 2005;111(24):3192–4.

    Article  PubMed  Google Scholar 

  56. Thom O, Taylor DM, Wolfe RE, Cade J, Myles P, Krum H, et al. Comparison of a supra-sternal cardiac output monitor (USCOM) with the pulmonary artery catheter. Br J Anaesth. 2009;103(6):800–4.

    Article  CAS  PubMed  Google Scholar 

  57. Wiener RS, Welch HG. Trends in the use of the pulmonary artery catheter in the United States, 1993-2004. JAMA. 2007;298(4):423–9.

    Article  CAS  PubMed  Google Scholar 

  58. Connors AF, Speroff T, Dawson NV, Thomas C, Harrell FE, Wagner D, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. J Am Med Assoc. 1996;276(11):889–97.

    Article  Google Scholar 

  59. Rhodes A, Cusack RJ, Newman PJ, Grounds RM, Bennett ED. A randomised, controlled trial of the pulmonary artery catheter in critically ill patients. Intensive Care Med. 2002;28(3):256–64.

    Article  PubMed  Google Scholar 

  60. Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome - a randomized controlled trial. J Am Med Assoc. 2003;290(20):2713–20.

    Article  CAS  Google Scholar 

  61. Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, deBoisblanc B, et al. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. New Engl J Med. 2006;354(21):2213–24.

    Article  PubMed  Google Scholar 

  62. Evans DC, Doraiswamy VA, Prosciak MP, Silviera M, Seamon MJ, Rodriguez Funes V, et al. Complications associated with pulmonary artery catheters: a comprehensive clinical review. Scand J Surg. 2009;98(4):199–208.

    Article  CAS  PubMed  Google Scholar 

  63. Manasia AR, Nagaraj HM, Kodali RB, Croft LB, Oropello JM, Kohli-Seth R, et al. Feasibility and potential clinical utility of goal-directed transthoracic echocardiography performed by noncardiologist intensivists using a small hand-carried device (SonoHeart) in critically ill patients. J Cardiothorac Vasc Anesth. 2005;19(2):155–9.

    Article  PubMed  Google Scholar 

  64. Mandavia DP, Hoffner RJ, Mahaney K, Henderson SO. Bedside echocardiography by emergency physicians. Ann Emerg Med. 2001;38(4):377–82.

    Article  CAS  PubMed  Google Scholar 

  65. Melamed R, Sprenkle MD, Ulstad VK, Herzog CA, Leatherman JW. Assessment of left ventricular function by intensivists using hand-held echocardiography. Chest. 2009;135(6):1416–20.

    Article  PubMed  Google Scholar 

  66. Pershad J, Myers S, Plouman C, Rosson C, Elam K, Wan J, et al. Bedside limited echocardiography by the emergency physician is accurate during evaluation of the critically ill patient. Pediatrics. 2004;114(6):e667–71.

    Article  PubMed  Google Scholar 

  67. Vignon P, Chastagner C, Francois B, Martaille JF, Normand S, Bonnivard M, et al. Diagnostic ability of hand-held echocardiography in ventilated critically ill patients. Crit Care. 2003;7(5):R84–91.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vignon P, Dugard A, Abraham J, Belcour D, Gondran G, Pepino F, et al. Focused training for goal-oriented hand-held echocardiography performed by noncardiologist residents in the intensive care unit. Intensive Care Med. 2007;33(10):1795–9.

    Article  PubMed  Google Scholar 

  69. Vignon P, Mucke F, Bellec F, Marin B, Croce J, Brouqui T, et al. Basic critical care echocardiography: validation of a curriculum dedicated to noncardiologist residents. Crit Care Med. 2011;39(4):636–42.

    Article  PubMed  Google Scholar 

  70. Husain LF, Hagopian L, Wayman D, Baker WE, Carmody KA. Sonographic diagnosis of pneumothorax. J Emerg Trauma Shock. 2012;5(1):76–81.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lichtenstein DA, Meziere GA. Relevance of lung ultrasound in the diagnosis of acute respiratory failure: the BLUE protocol. Chest. 2008;134(1):117–25.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lichtenstein DA, Meziere GA, Lagoueyte JF, Biderman P, Goldstein I. Gepner a. A-lines and B-lines: lung ultrasound as a bedside tool for predicting pulmonary artery occlusion pressure in the critically ill. Chest. 2009;136(4):1014–20.

    Article  PubMed  Google Scholar 

  73. McLean AS. Echocardiography in shock management. Crit Care. 2016;20:275.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ristic AD, Imazio M, Adler Y, Anastasakis A, Badano LP, Brucato A, et al. Triage strategy for urgent management of cardiac tamponade: a position statement of the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur Heart J. 2014;35(34):2279–84.

    Article  PubMed  Google Scholar 

  75. Soldati G, Testa A, Sher S, Pignataro G, La Sala M, Silveri NG. Occult traumatic pneumothorax: diagnostic accuracy of lung ultrasonography in the emergency department. Chest. 2008;133(1):204–11.

    Article  PubMed  Google Scholar 

  76. Kory PD, Pellecchia CM, Shiloh AL, Mayo PH, DiBello C, Koenig S. Accuracy of ultrasonography performed by critical care physicians for the diagnosis of DVT. Chest. 2011;139(3):538–42.

    Article  PubMed  Google Scholar 

  77. Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul JL. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med. 2007;33(7):1125–32.

    Article  PubMed  Google Scholar 

  78. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, et al. Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med. 2005;31(9):1195–201.

    Article  PubMed  Google Scholar 

  79. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34(5):1402–7.

    Article  PubMed  Google Scholar 

  80. Solus-Biguenet H, Fleyfel M, Tavernier B, Kipnis E, Onimus J, Robin E, et al. Non-invasive prediction of fluid responsiveness during major hepatic surgery. Br J Anaesth. 2006;97(6):808–16.

    Article  CAS  PubMed  Google Scholar 

  81. Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr. 2007;20(7):857–61.

    Article  PubMed  Google Scholar 

  82. Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30(9):1834–7.

    Article  PubMed  Google Scholar 

  83. Barbier C, Loubieres Y, Schmit C, Hayon J, Ricome JL, Jardin F, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–6.

    PubMed  Google Scholar 

  84. Hodgson LE, Forni LG, Venn R, Samuels TL, Wakeling HG. A comparison of the non-invasive ultrasonic cardiac output monitor (USCOM) with the oesophageal Doppler monitor during major abdominal surgery. J Intensive Care Soc. 2016;17(2):103–10.

    Article  PubMed  Google Scholar 

  85. Hodgson LE, Venn R, Forni LG, Samuels TL, Wakeling HG. Measuring the cardiac output in acute emergency admissions: use of the non-invasive ultrasonic cardiac output monitor (USCOM) with determination of the learning curve and inter-rater reliability. J Intensive Care Soc. 2016;17(2):122–8.

    Article  PubMed  Google Scholar 

  86. Mackenzie DC, Khan NA, Blehar D, Glazier S, Chang Y, Stowell CP, et al. Carotid flow time changes with volume status in acute blood loss. Ann Emerg Med. 2015;66(3):277–82 e1.

    Article  PubMed  Google Scholar 

  87. Maizel J, Airapetian N, Lorne E, Tribouilloy C, Massy Z, Slama M. Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med. 2007;33(7):1133–8.

    Article  PubMed  Google Scholar 

  88. Marik PE, Levitov A, Young A, Andrews L. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest. 2013;143(2):364–70.

    Article  PubMed  Google Scholar 

  89. Marquez J, McCurry K, Severyn DA, Pinsky MR. Ability of pulse power, esophageal Doppler, and arterial pulse pressure to estimate rapid changes in stroke volume in humans. Crit Care Med. 2008;36(11):3001–7.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bataille B, Riu B, Ferre F, Moussot PE, Mari A, Brunel E, et al. Integrated use of bedside lung ultrasound and echocardiography in acute respiratory failure: a prospective observational study in ICU. Chest. 2014;146(6):1586–93.

    Article  PubMed  Google Scholar 

  91. Eichhorn V, Goepfert MS, Eulenburg C, Malbrain ML, Reuter DA. Comparison of values in critically ill patients for global end-diastolic volume and extravascular lung water measured by transcardiopulmonary thermodilution: a meta-analysis of the literature. Med Intensiva. 2012;36(7):467–74.

    Article  CAS  PubMed  Google Scholar 

  92. Jozwiak M, Teboul JL, Monnet X. Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care. 2015;5(1):38.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wesseling KH, Jansen JR, Settels JJ, Schreuder JJ. Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol. 1993;74(5):2566–73.

    Article  CAS  PubMed  Google Scholar 

  94. Alhashemi JA, Cecconi M, Hofer CK. Cardiac output monitoring: an integrative perspective. Crit Care. 2011;15(2):214.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Marque S, Gros A, Chimot L, Gacouin A, Lavoue S, Camus C, et al. Cardiac output monitoring in septic shock: evaluation of the third-generation Flotrac-Vigileo. J Clin Monit Comput. 2013;27(3):273–9.

    Article  PubMed  Google Scholar 

  96. Monnet X, Anguel N, Jozwiak M, Richard C, Teboul JL. Third-generation FloTrac/Vigileo does not reliably track changes in cardiac output induced by norepinephrine in critically ill patients. Br J Anaesth. 2012;108(4):615–22.

    Article  CAS  PubMed  Google Scholar 

  97. Suehiro K, Tanaka K, Funao T, Matsuura T, Mori T, Nishikawa K. Systemic vascular resistance has an impact on the reliability of the Vigileo-FloTrac system in measuring cardiac output and tracking cardiac output changes. Br J Anaesth. 2013;111(2):170–7.

    Article  CAS  PubMed  Google Scholar 

  98. Linton RA, Band DM, Haire KM. A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth. 1993;71(2):262–6.

    Article  CAS  PubMed  Google Scholar 

  99. Bein B, Meybohm P, Cavus E, Renner J, Tonner PH, Steinfath M, et al. The reliability of pulse contour-derived cardiac output during hemorrhage and after vasopressor administration. Anesth Analg. 2007;105(1):107–13.

    Article  PubMed  Google Scholar 

  100. Goedje O, Hoeke K, Lichtwarck-Aschoff M, Faltchauser A, Lamm P, Reichart B. Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med. 1999;27(11):2407–12.

    Article  CAS  PubMed  Google Scholar 

  101. Benes J, Chytra I, Altmann P, Hluchy M, Kasal E, Svitak R, et al. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care. 2010;14(3):R118.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Cecconi M, Rhodes A. Validation of continuous cardiac output technologies: consensus still awaited. Crit Care. 2009;13(3):159.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gruenewald M, Renner J, Meybohm P, Hocker J, Scholz J, Bein B. Reliability of continuous cardiac output measurement during intra-abdominal hypertension relies on repeated calibrations: an experimental animal study. Crit Care. 2008;12(5):R132.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mowat I, Todman E, Jaggar S. Validation of the LiDCO pulse contour system in patients with impaired left ventricular function. Anaesthesia. 2012;67(2):188; author reply −9

    Article  CAS  PubMed  Google Scholar 

  105. Nordstrom J, Hallsjo-Sander C, Shore R, Bjorne H. Stroke volume optimization in elective bowel surgery: a comparison between pulse power wave analysis (LiDCOrapid) and oesophageal Doppler (CardioQ). Br J Anaesth. 2013;110(3):374–80.

    Article  CAS  PubMed  Google Scholar 

  106. Renner J, Scholz J, Bein B. Monitoring fluid therapy. Best Pract Res Clin Anaesthesiol. 2009;23(2):159–71.

    Article  PubMed  Google Scholar 

  107. Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293(1):H583–9.

    Article  CAS  PubMed  Google Scholar 

  108. Dunham CM, Chirichella TJ, Gruber BS, Ferrari JP, Martin JA, Luchs BA, et al. Emergency department noninvasive (NICOM) cardiac outputs are associated with trauma activation, patient injury severity and host conditions and mortality. J Trauma Acute Care Surg. 2012;73(2):479–85.

    Article  PubMed  Google Scholar 

  109. Garcia X, Simon P, Guyette FX, Ramani R, Alvarez R, Quintero J, et al. Noninvasive assessment of acute dyspnea in the ED. Chest. 2013;144(2):610–5.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kossari N, Hufnagel G, Squara P. Bioreactance: a new tool for cardiac output and thoracic fluid content monitoring during hemodialysis. Hemodial Int. 2009;13(4):512–7.

    Article  PubMed  Google Scholar 

  111. Maurer MM, Burkhoff D, Maybaum S, Franco V, Vittorio TJ, Williams P, et al. A multicenter study of noninvasive cardiac output by bioreactance during symptom-limited exercise. J Card Fail. 2009;15(8):689–99.

    Article  PubMed  Google Scholar 

  112. Waldron NH, Miller TE, Thacker JK, Manchester AK, White WD, Nardiello J, et al. A prospective comparison of a noninvasive cardiac output monitor versus esophageal Doppler monitor for goal-directed fluid therapy in colorectal surgery patients. Anesth Analg. 2014;118(5):966–75.

    Article  PubMed  Google Scholar 

  113. Cannesson M, Delannoy B, Morand A, Rosamel P, Attof Y, Bastien O, et al. Does the Pleth variability index indicate the respiratory-induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analg. 2008;106(4):1189–94, table of contents

    Article  PubMed  Google Scholar 

  114. Feissel M, Kalakhy R, Banwarth P, Badie J, Pavon A, Faller JP, et al. Plethysmographic variation index predicts fluid responsiveness in ventilated patients in the early phase of septic shock in the emergency department: a pilot study. J Crit Care. 2013;28(5):634–9.

    Article  PubMed  Google Scholar 

  115. Keller G, Cassar E, Desebbe O, Lehot JJ, Cannesson M. Ability of pleth variability index to detect hemodynamic changes induced by passive leg raising in spontaneously breathing volunteers. Crit Care. 2008;12(2):R37.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sandroni C, Cavallaro F, Marano C, Falcone C, De Santis P, Antonelli M. Accuracy of plethysmographic indices as predictors of fluid responsiveness in mechanically ventilated adults: a systematic review and meta-analysis. Intensive Care Med. 2012;38(9):1429–37.

    Article  PubMed  Google Scholar 

  117. Biais M, Cottenceau V, Petit L, Masson F, Cochard JF, Sztark F. Impact of norepinephrine on the relationship between pleth variability index and pulse pressure variations in ICU adult patients. Crit Care. 2011;15(4):R168.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Broch O, Bein B, Gruenewald M, Hocker J, Schottler J, Meybohm P, et al. Accuracy of the pleth variability index to predict fluid responsiveness depends on the perfusion index. Acta Anaesthesiol Scand. 2011;55(6):686–93.

    Article  CAS  PubMed  Google Scholar 

  119. Bataille B, Bertuit M, Mora M, Mazerolles M, Cocquet P, Masson B, et al. Comparison of esCCO and transthoracic echocardiography for non-invasive measurement of cardiac output intensive care. Br J Anaesth. 2012;109(6):879–86.

    Article  CAS  PubMed  Google Scholar 

  120. Biais M, Berthezene R, Petit L, Cottenceau V, Sztark F. Ability of esCCO to track changes in cardiac output. Br J Anaesth. 2015;115(3):403–10.

    Article  CAS  PubMed  Google Scholar 

  121. Feissel M, Aho LS, Georgiev S, Tapponnier R, Badie J, Bruyere R, et al. Pulse wave transit time measurements of cardiac output in septic shock patients: a comparison of the estimated continuous cardiac output system with transthoracic echocardiography. PLoS One. 2015;10(6):e0130489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Permpikul C, Leelayuthachai T. Non-invasive estimated continuous cardiac output (escCO) during severe sepsis and septic shock resuscitation. J Med Assoc Thail. 2014;97(Suppl 3):S184–8.

    Google Scholar 

  123. Smetkin AA, Hussain A, Fot EV, Zakharov VI, Izotova NN, Yudina AS, et al. Estimated continuous cardiac output based on pulse wave transit time in off-pump coronary artery bypass grafting: a comparison with transpulmonary thermodilution. J Clin Monit Comput. 2017;31(2):361–70.

    Article  PubMed  Google Scholar 

  124. Terada T, Oiwa A, Maemura Y, Robert S, Kessoku S, Ochiai R. Comparison of the ability of two continuous cardiac output monitors to measure trends in cardiac output: estimated continuous cardiac output measured by modified pulse wave transit time and an arterial pulse contour-based cardiac output device. J Clin Monit Comput. 2016;30(5):621–7.

    Article  PubMed  Google Scholar 

  125. Ameloot K, Palmers PJ, Malbrain ML. The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Curr Opin Crit Care. 2015;21(3):232–9.

    Article  PubMed  Google Scholar 

  126. Fischer MO, Coucoravas J, Truong J, Zhu L, Gerard JL, Hanouz JL, et al. Assessment of changes in cardiac index and fluid responsiveness: a comparison of Nexfin and transpulmonary thermodilution. Acta Anaesthesiol Scand. 2013;57(6):704–12.

    Article  PubMed  Google Scholar 

  127. Lansdorp B, Ouweneel D, de Keijzer A, van der Hoeven JG, Lemson J, Pickkers P. Non-invasive measurement of pulse pressure variation and systolic pressure variation using a finger cuff corresponds with intra-arterial measurement. Br J Anaesth. 2011;107(4):540–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heath E. Latham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Latham, H.E. (2019). Hemodynamic Monitoring: What’s Out There? What’s Best for You?. In: LaRosa, J. (eds) Adult Critical Care Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-94424-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94424-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94423-4

  • Online ISBN: 978-3-319-94424-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics