Skip to main content

Computability of Ordinary Differential Equations

  • Conference paper
  • First Online:
Sailing Routes in the World of Computation (CiE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10936))

Included in the following conference series:

  • 534 Accesses

Abstract

In this paper we provide a brief review of several results about the computability of initial-value problems (IVPs) defined with ordinary differential equations (ODEs). We will consider a variety of settings and analyze how the computability of the IVP will be affected. Computational complexity results will also be presented, as well as computable versions of some classical theorems about the asymptotic behavior of ODEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birkhoff, G. (ed.): A Source Book in Classical Analysis, pp. 251–258. Harvard University Press, Cambridge (1973). Osgood’s Existence Theorem

    Google Scholar 

  2. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations, 4th edn. Wiley, Hoboken (1989)

    MATH  Google Scholar 

  3. Bournez, O., Graça, D.S., Pouly, A.: Solving analytic differential equations in polynomial time over unbounded domains. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 170–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22993-0_18

    Chapter  Google Scholar 

  4. Bournez, O., Graça, D.S., Pouly, A.: On the complexity of solving initial value problems. In: Proceedings of 37th International Symposium on Symbolic and Algebraic Computation (ISSAC 2012), vol. abs/1202.4407 (2012)

    Google Scholar 

  5. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing Conceptions of What is Computable, pp. 425–491. Springer, New York (2008). https://doi.org/10.1007/978-0-387-68546-5_18

    Chapter  MATH  Google Scholar 

  6. Braverman, M., Cook, S.: Computing over the reals: foundations for scientific computing. Not. Am. Math. Soc. 53(3), 318–329 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Collins, P., Graça, D.S.: Effective computability of solutions of differential inclusions – the ten thousand monkeys approach. J. Univers. Comput. Sci. 15(6), 1162–1185 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Graça, D.S., Buescu, J., Campagnolo, M.L.: Boundedness of the domain of definition is undecidable for polynomial ODEs. In: Dillhage, R., Grubba, T., Sorbi, A., Weihrauch, K., Zhong, N. (eds.) Proceedings of 4th International Conference on Computability and Complexity in Analysis (CCA 2007). Electronic Notes in Theoretical Computer Science, vol. 202, pp. 49–57. Elsevier (2007)

    Article  MathSciNet  Google Scholar 

  9. Graça, D.S., Zhong, N.: An analytic system with a computable hyperbolic sink whose basin of attraction is non-computable. Theory Comput. Syst. 57, 478–520 (2015)

    Article  MathSciNet  Google Scholar 

  10. Graça, D.S., Zhong, N., Buescu, J.: Computability, noncomputability and undecidability of maximal intervals of IVPs. Trans. Am. Math. Soc. 361(6), 2913–2927 (2009)

    Article  MathSciNet  Google Scholar 

  11. Graça, D.S., Zhong, N., Buescu, J.: Computability, noncomputability, and hyperbolic systems. Appl. Math. Comput. 219(6), 3039–3054 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Graça, D.S., Zhong, N., Dumas, H.S.: The connection between computability of a nonlinear problem and its linearization: the Hartman-Grobman theorem revisited. Theor. Comput. Sci. 457(26), 101–110 (2012)

    Article  MathSciNet  Google Scholar 

  13. Hartman, P.: Ordinary Differential Equations, 2nd edn. Birkhäuser, Basel (1982)

    MATH  Google Scholar 

  14. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-space complete. Comput. Complex. 19(2), 305–332 (2010)

    Article  MathSciNet  Google Scholar 

  15. Kawamura, A., Cook, S.: Complexity theory for operators in analysis. ACM Trans. Comput. Theory 42(2), Article No. 5 (2012)

    Google Scholar 

  16. Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of smooth differential equations. Log. Methods Comput. Sci. 10(1:6), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Ko, K.I.: On the computational complexity of ordinary differential equations. Inf. Control 58, 157–194 (1983)

    Article  MathSciNet  Google Scholar 

  18. Ko, K.I.: Complexity Theory of Real Functions. Birkhäuser, Basel (1991)

    Book  Google Scholar 

  19. Ko, K.I., Friedman, H.: Computing power series in polynomial time. Adv. Appl. Math. 9(1), 40–50 (1988)

    Article  MathSciNet  Google Scholar 

  20. Müller, N.T.: Uniform computational complexity of Taylor series. In: Ottmann, T. (ed.) ICALP 1987. LNCS, vol. 267, pp. 435–444. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-18088-5_37

    Chapter  Google Scholar 

  21. Pouly, A., Graça, D.S.: Computational complexity of solving polynomial differential equations over unbounded domains. Theor. Comput. Sci. 626(2), 67–82 (2016)

    Article  MathSciNet  Google Scholar 

  22. Pour-El, M.B., Richards, J.I.: A computable ordinary differential equation which possesses no computable solution. Ann. Math. Log. 17, 61–90 (1979)

    Article  MathSciNet  Google Scholar 

  23. Rettinger, R., Weihrauch, K., Zhong, N.: Topological complexity of blowup problems. J. Univers. Comput. Sci. 15(6), 1301–1316 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

  25. Zhong, N., Weihrauch, K.: Computability theory of generalized functions. J. ACM 50(4), 469–505 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Daniel Graça was partially supported by Fundação para a Ciência e a Tecnologia and EU FEDER POCTI/POCI via SQIG - Instituto de Telecomunicações through the FCT project UID/EEA/50008/2013. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 731143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Graça .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Graça, D.S., Zhong, N. (2018). Computability of Ordinary Differential Equations. In: Manea, F., Miller, R., Nowotka, D. (eds) Sailing Routes in the World of Computation. CiE 2018. Lecture Notes in Computer Science(), vol 10936. Springer, Cham. https://doi.org/10.1007/978-3-319-94418-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94418-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94417-3

  • Online ISBN: 978-3-319-94418-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics