Skip to main content

From Eventually Different Functions to Pandemic Numberings

  • Conference paper
  • First Online:
Sailing Routes in the World of Computation (CiE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10936))

Included in the following conference series:

Abstract

A function is strongly non-recursive (SNR) if it is eventually different from each recursive function. We obtain hierarchy results for the mass problems associated with computing such functions with varying growth bounds. In particular, there is no least and no greatest Muchnik degree among those of the form \({{\mathrm{SNR}}}_f\) consisting of SNR functions bounded by varying recursive bounds f.

We show that the connection between SNR functions and canonically immune sets is, in a sense, as strong as that between DNR (diagonally non-recursive) functions and effectively immune sets. Finally, we introduce pandemic numberings, a set-theoretic dual to immunity.

This work was partially supported by a grant from the Simons Foundation (#315188 to Bjørn Kjos-Hanssen).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambos-Spies, K., Kjos-Hanssen, B., Lempp, S., Slaman, T.A.: Comparing DNR and WWKL. J. Symb. Log. 69(4), 1089–1104 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bartoszyński, T., Judah, H.: Set Theory: On the Structure of the Real Line. A K Peters Ltd., Wellesley (1995)

    MATH  Google Scholar 

  3. Bartoszyński, T., Judah, H., Shelah, S.: The Cichoń diagram. J. Symb. Log. 58(2), 401–423 (1993)

    Article  Google Scholar 

  4. Beros, A.A., Beros, K.A.: Index sets of universal codes. arXiv e-prints, October 2016

    Google Scholar 

  5. Beros, A.A., Beros, K.A.: Canonical immunity and genericity. arXiv e-prints, July 2017

    Google Scholar 

  6. Beros, A.A., Khan, M., Kjos-Hanssen, B.: Effective Bi-immunity and randomness. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds.) Computability and Complexity. LNCS, vol. 10010, pp. 633–643. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50062-1_38

    Chapter  MATH  Google Scholar 

  7. Brendle, J., Brooke-Taylor, A., Ng, K.M., Nies, A.: An analogy between cardinal characteristics and highness properties of oracles. In: Proceedings of the 13th Asian Logic Conference, pp. 1–28. World Scientific Publishing, Hackensack (2015)

    Google Scholar 

  8. Cenzer, D., Hinman, P.G.: Degrees of difficulty of generalized r.e. separating classes. Arch. Math. Log. 46(7–8), 629–647 (2008)

    Article  MathSciNet  Google Scholar 

  9. Greenberg, N., Miller, J.S.: Lowness for Kurtz randomness. J. Symb. Log. 74(2), 665–678 (2009)

    Article  MathSciNet  Google Scholar 

  10. Greenberg, N., Miller, J.S.: Diagonally non-recursive functions and effective Hausdorff dimension. Bull. Lond. Math. Soc. 43(4), 636–654 (2011)

    Article  MathSciNet  Google Scholar 

  11. Khan, M.: Some results on algorithmic randomness and computability-theoretic strength. ProQuest LLC, Ann Arbor, MI, Ph.D. thesis, The University of Wisconsin, Madison (2014)

    Google Scholar 

  12. Khan, M., Miller, J.S.: Forcing with bushy trees. Bull. Symb. Log. 23(2), 160–180 (2017)

    Article  MathSciNet  Google Scholar 

  13. Kjos-Hanssen, B., Merkle, W., Stephan, F.: Kolmogorov complexity and the recursion theorem. Trans. Am. Math. Soc. 363(10), 5465–5480 (2011)

    Article  MathSciNet  Google Scholar 

  14. Nies, A., Stephan, F., Terwijn, S.A.: Randomness, relativization and Turing degrees. J. Symb. Log. 70(2), 515–535 (2005)

    Article  MathSciNet  Google Scholar 

  15. Rupprecht, N.: Relativized Schnorr tests with universal behavior. Arch. Math. Log. 49(5), 555–570 (2010)

    Article  MathSciNet  Google Scholar 

  16. Simpson, S.G.: Turing degrees and muchnik degrees of recursively bounded DNR functions. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds.) Computability and Complexity. LNCS, vol. 10010, pp. 660–668. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50062-1_40

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bjørn Kjos-Hanssen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beros, A.A., Khan, M., Kjos-Hanssen, B., Nies, A. (2018). From Eventually Different Functions to Pandemic Numberings. In: Manea, F., Miller, R., Nowotka, D. (eds) Sailing Routes in the World of Computation. CiE 2018. Lecture Notes in Computer Science(), vol 10936. Springer, Cham. https://doi.org/10.1007/978-3-319-94418-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94418-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94417-3

  • Online ISBN: 978-3-319-94418-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics