Advertisement

Dehydroepiandrosterone Administration as a Prophylaxis Against Acute Stress Reactivity in Military Personnel

Conference paper
  • 778 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 778)

Abstract

Stress in an inherent part of military operations that can impair or even compromise the readiness of military forces. Recent demands for multiple deployments amplify service member stress through family separation, chaos of the battlefield, and facing the death and injury of fellow-service members, and risks of the same for themselves. Dealing with stress takes a toll physically, emotionally, and morally, and exposure to recurrent and acute stressors may lead to stress-related ailments. In turn, widespread stress-related problems can burden the military health system and degrade the performance and readiness of our forces. Therefore, methods that allow for the successful mitigation and/or prevention of stress are highly desirable. This paper provides a literature review, along with a proposed research concept that would investigate the possibility of utilizing a well-known dietary supplement, DHEA, as a prophylaxis against acute stress for military personnel. Methods for testing this approach and its possible impact are discussed.

Keywords

DHEA Stress Military Stress prevention 

References

  1. 1.
    Thoits, P.A.: Stress and health: major findings and policy implication. J. Health Soc. Behav. 87, 54–58 (2010)Google Scholar
  2. 2.
    McEwen, B.S.: Protection and damage from acute stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann. N. Y. Acad. Sci. 1032, 1–7 (2004)CrossRefGoogle Scholar
  3. 3.
    Bray, R.M., Camlin, C.S., Fairbank, J.A., Dunteman, G.H., Wheeless, S.C., Dunteman, G.H.: The effects of stress on job functioning of military men and women. Armed Forces Soc. 27, 397–417 (2001)CrossRefGoogle Scholar
  4. 4.
    Klein, A., Falca-Dodson, M., Sussner, B., Ciccone, D.S., Chandler, H., Callahan, L., Losonczy, M.: Effects of repeated deployment to Iraq and Afghanistan on the health of New Jersey Army National Guard troops: implications for military readiness. Am. J. Public Health 100, 276–283 (2010)CrossRefGoogle Scholar
  5. 5.
    Lupien, S.J., McEwen, B.S., Gunnar, M.R., Heim, C.: Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445 (2009)CrossRefGoogle Scholar
  6. 6.
    Schumm, J.A., Chard, K.M.: Alcohol and stress in the military. Alcohol Res. Curr. Rev. 34, 401–407 (2012)Google Scholar
  7. 7.
    Bryan, C., Clemans, T.A., Leeson, B., Rudd, M.D.: Acute vs. chronic stressors, multiple suicide attempts, and persistent suicide ideation in US soldiers. J. Nerv. Mental Dis. 203, 48–53 (2015)CrossRefGoogle Scholar
  8. 8.
    Institute of Medicine: Treatment for Posttraumatic Stress Disorder in Military Veteran Populations: Initial Assessment. National Academies Press, Washington DC (2012)Google Scholar
  9. 9.
    Cannon, W.B.: The emergency function of the adrenal medulla in pain and the major emotions. Am. J. Physiol. 33, 356–372 (1914)Google Scholar
  10. 10.
    Bracha, H.S., Ralston, T.C., Matsukawa, J.M., Williams, A.E., Bracha, A.S.: Does “fight or flight” need updating? Psychosomatics 45, 448–449 (2004)CrossRefGoogle Scholar
  11. 11.
    Tsigos, C., Chrousos, G.P.: Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Med. 53, 865–871 (2002)CrossRefGoogle Scholar
  12. 12.
    Hellhammer, D.H., Wust, S., Kudielka, B.M.: Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology 34, 163–171 (2009)CrossRefGoogle Scholar
  13. 13.
    Vgontzas, A.N., Bixler, E.O., Lin, H.M., Prolo, P., Mastorakos, G., Vela-Bueno, A., Kales, A., Chrousos, G.P.: Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J. Clin. Endocrinol. Metab. 86, 3787–3794 (2001)CrossRefGoogle Scholar
  14. 14.
    Padgett, D.A., Glaser, R.: How stress influences the immune response. Trends Immunol. 24, 444–448 (2003)CrossRefGoogle Scholar
  15. 15.
    Sephton, S.E., Sapolsky, R.M., Kraemer, H.C., Spiegel, D.: Diurnal cortisol rhythm as a predictor of breast cancer survival. J. Natl. Cancer Inst. 92, 994–1000 (2000)CrossRefGoogle Scholar
  16. 16.
    Sephton, S.E., Lush, E., Dedert, E.A., Floyd, A.R., Rebholz, W.N., Dhabhar, F.S., Spiegel, D., Salmon, P.: Diurnal cortisol rhythm as a predictor of lung cancer survival. Brain Behav. Immun. 30, S163–S170 (2013)CrossRefGoogle Scholar
  17. 17.
    Wang, D.Y., Bulbrook, R.D., Sneddon, A., Hamilton, T.: The metabolic clearance rates of dehydroepiandrosterone and their sulphate esters in man, rat and rabbit. J. Endocri nol. 38, 307–318 (1967)CrossRefGoogle Scholar
  18. 18.
    Nussey, S., Whitehead, S.: Endocrinology: An Integrated Approach. BIOS Scientific Publishers, Oxford (2001)CrossRefGoogle Scholar
  19. 19.
    Grillon, C., Pine, D.S., Baas, J.M.P., Lawley, M., Ellis, V., Charney, D.S.: Cortisol and DHEA-S are associated with startle potentiation during aversive conditioning in humans. Psychopharmacology 186, 434–441 (2006)CrossRefGoogle Scholar
  20. 20.
    Kroboth, P.D., Salek, F.S., Pittenger, A.L., Fabian, T.J., Frye, R.F.: DHEA and DHEA-S: a review. J. Clin. Pharmacol. 39, 327–348 (1999)CrossRefGoogle Scholar
  21. 21.
    Kimonides, V.G., Khatibi, N.H., Svendsen, C.N., Sofroniew, M.V., Herbert, J.: Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc. Natl. Acad. Sci. 95, 1852–1857 (1998)CrossRefGoogle Scholar
  22. 22.
    Lur, G., Rakos, G., Juhasz-Vedres, G., Farkas, T., Kis, Z., Toldi, J.: Effects of dehydroepiandrosterone on the evoked cortical activity of controls and of brain-injured rats. Cell. Mol. Neurobiol. 26, 1505–1519 (2006)CrossRefGoogle Scholar
  23. 23.
    Fleshner, M., Pugh, C.R., Trembley, D., Rudy, J.W.: DHEA-S selectively impairs contextual-fear conditioning: support for the antiglucocorticoid hypothesis. Behav. Neurosci. 111, 512–517 (1997)CrossRefGoogle Scholar
  24. 24.
    Maninger, N., Wolkowitz, O.M., Reus, V.I., Epel, E.S., Mellon, S.H.: Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front. Neuroendocrinol. 30, 1–7 (2009)CrossRefGoogle Scholar
  25. 25.
    Alhaj, H.A., Massey, A.E., McAllister-Williams, R.H.: Effects of DHEA administration on episodic memory, cortisol and mood in healthy young men: a double-blind, placebo-controlled study. Psychopharmacologia 188, 541–551 (2006)CrossRefGoogle Scholar
  26. 26.
    Lennartsson, A.K., Kushnir, M.M., Bergquist, J., Jonsdottir, I.H.: DHEA and DHEA-S response to acute psychosocial stress in healthy men and women. Biol. Psychol. 90, 143–149 (2012)CrossRefGoogle Scholar
  27. 27.
    Gallagher, P., Leitch, M., Massey, A., McAllister-Williams, R., Young, A.: Assessing cortisol and dehydroepiandrosterone (DHEA) in saliva: effects of collection method. J. Psychopharmacol. 20, 643–649 (2006)CrossRefGoogle Scholar
  28. 28.
    Phillips, A.C., Carroll, D., Gale, C.R., Lord, J.M., Arlt, W., Batty, G.D.: Cortisol, DHEA sulphate, their ratio, and all-cause and cause-specific mortality in the Vietnam experience study. Eur. J. Endocrinol. 163, 285–292 (2010)CrossRefGoogle Scholar
  29. 29.
    Phillips, A.C., Carroll, D., Gale, C.R., Lord, J.M., Arlt, W., Batty, G.D.: Cortisol, DHEA sulphate, their ratio, and metabolic syndrome. Eur. J. Endocrinol. 163, 919–923 (2010)CrossRefGoogle Scholar
  30. 30.
    Hoge, E.A., Austin, E.D., Pollack, M.H.: Resilience: research evidence and conceptual considerations for posttraumatic stress disorder. Depress. Anxiety 24, 139–152 (2007)CrossRefGoogle Scholar
  31. 31.
    Taylor, M.K., Sausen, K.P., Potterat, E.G., Mujica-Parodi, L.R., Reis, J.P., Markham, A.E., Padilla, G.A., Taylor, D.L.: Stressful military training: endocrine reactivity, performance, an psychological impact. Aviat. Space Environ. Med. 78, 1143–1149 (2007)CrossRefGoogle Scholar
  32. 32.
    Charney, D.S.: Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. Am. J. Psychiatry 161, 195–216 (2004)CrossRefGoogle Scholar
  33. 33.
    Mahan, A.L., Ressler, K.J.: Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci. 35, 24–35 (2012)CrossRefGoogle Scholar
  34. 34.
    Grillon, C., Morgan, C.A.: Fear-potentiated startle conditioning to explicit and contextual cues in Gulf War veterans with posttraumatic stress disorder. J. Abnorm. Psychol. 108, 134–142 (1999)CrossRefGoogle Scholar
  35. 35.
    Jackson, E.D., Payne, J.D., Nadel, L., Jacobs, W.J.: Stress differentially modulates fear conditioning in healthy men and women. Biol. Psychiat. 59, 516–522 (2006)CrossRefGoogle Scholar
  36. 36.
    Pugh, C., Tremblay, D., Fleshner, M., Rudy, J.: A selective role for corticosterone in con textual-fear conditioning. Behav. Neurosci. 111, 503–511 (1997)CrossRefGoogle Scholar
  37. 37.
    Cordero, M., Venero, C., Kruyt, N., Sandi, C.: Prior exposure to a single stress session facilitates subsequent contextual fear conditioning in rats: evidence for a role of corticosterone. Horm. Behav. 44, 338–345 (2003)CrossRefGoogle Scholar
  38. 38.
    Obut, T.A., Ovsyukova, M.V., Cherkasova, O.P.: Stress-limiting effect of dehydroepiandrosterone sulfate and its mechanism. Bull. Exp. Biol. Med. 135, 231–233 (2003)CrossRefGoogle Scholar
  39. 39.
    Obut, T.A., Ovsyukova, M.V., Cherkasova, O.P.: Prolonged decrease in stress reactivity caused by dehydroepiandrosterone sulfate. Bull. Exp. Biol. Med. 141, 571–573 (2006)CrossRefGoogle Scholar
  40. 40.
    Maayan, R., Touati-Werner, D., Ram, E., Strous, R., Keren, O., Weizman, A.: The protective effect of frontal cortex dehydroepiandrosterone in anxiety and depressive models in mice. Pharmacol. Biochem. Behav. 85, 415–421 (2006)CrossRefGoogle Scholar
  41. 41.
    Alvarez, R.P., Biggs, A., Chen, G., Pine, D.S., Grillon, C.: Contextual fear conditioning in humans: cortical-hippocampal and amygdala contributions. J. Neurosci. 28, 6211–6219 (2008)CrossRefGoogle Scholar
  42. 42.
    Morgan, C.A., Wang, S., Mason, J., Southwick, S.M., Fox, P., Hazlett, G., Charney, D.S., Greenfield, G.: Hormone profiles in humans experiencing military survival training. Biol. Psychiat. 47, 891–901 (2000)CrossRefGoogle Scholar
  43. 43.
    Bovenberg, S.A., van Uum, S.H., Hermus, A.R.: Dehydroepiandrosterone administration in humans: evidence based? Neth. J. Med. 63, 300–304 (2005)Google Scholar
  44. 44.
    Wolf, O.T., Kudielka, B.M., Hellhammer, D.H., Hellhammer, J., Kirschbaum, C.: Opposing effects of DHEA replacement in elderly subjects on declarative memory and attention after exposure to a laboratory stressor. Psychoneuroendocrinology 23, 617–629 (1998)CrossRefGoogle Scholar
  45. 45.
    Straub, R.H., Konecna, L., Hrach, S., Rothe, G., Kreutz, M., Scholmerich, J., Falk, W., Lang, B.: Serum dehydroepiandrosterone (DHEA) and DHEAS sulfate are negatively correlated with serum interleukin-6 (IL-6), and DHEA inhibits IL-6 secretion from mononuclear cells in man in vitro: possible link between endocrinosenescence and immunosenescence. J. Endocrinol. Metab. 83, 2012–2017 (1998)CrossRefGoogle Scholar
  46. 46.
    Cardounel, A., Regelson, W., Kalimi, M.: Dehydroepiandrosterone protects hippocampal neurons against neurotoxin-induced cell death: mechanism of action. Exp. Biol. Med. 222, 145–149 (1999)CrossRefGoogle Scholar
  47. 47.
    Morgan, C.A., Southwick, S., Hazlett, G., Rasmusson, A., Hoyt, G., Zimolo, Z., Charney, D.: Relationships among plasma dehydroepiandrosterone sulfate and cortisol levels, symptoms of dissociation, and objective performance in humans exposed to acute stress. Arch. Gen. Psychiat. 61, 819–825 (2004)CrossRefGoogle Scholar
  48. 48.
    Morgan, C.A., Rasmusson, A., Pietrzak, R.H., Coric, V., Southwick, S.M.: Relationships among plasma dehydroepiandrosterone sulfate, cortisol, symptoms of dissociation, and objective performance in humans exposed to underwater navigation stress. Biol. Psychiat. 66, 334–340 (2009)CrossRefGoogle Scholar
  49. 49.
    Cohen, S.: Aftereffects of stress on human performance and social behavior: a review of research and theory. Psychol. Bull. 88, 82–108 (1980)CrossRefGoogle Scholar
  50. 50.
    Ellington, C.M., Wright, S.J., Burrell, L.M., Matthews, M.D.: The effects of DHEA on resilience to PTSD. Research report PL488E6. United States Military Academy, West Point (2011)Google Scholar
  51. 51.
    Watson, P., Litz, B., Southwick, S., Ritchie, E.C.: Preparation for deployment: improving resilience. In: Ritchie, E.C. (eds.). Combating and Operational Behavioral Health. Borden Institute, Fort Detrick (2011)Google Scholar
  52. 52.
    Zhang, X., Dong, Y.L., Yang, N., Liu, Y.Y., Gao, R.F., Zuo, P.P.: Effects of Ning Shen Ling granule and dehydroepiandrosterone on cognitive function in mice undergoing chronic mild stress. Chin. J. Integr. Med. 13, 46–49 (2007)CrossRefGoogle Scholar
  53. 53.
    Bonnet, S., Dumas-de-La-Roque, E., Bequeret, H., Marthan, R., Fayon, M., Dos Santos, P., Savineau, J.P., Baulieu, E.E.: Dehydroepiandrosterone (DHEA) prevents and reverses chronic hypoxic pulmonary hypertension. Proc. Natl. Acad. Sci. USA 100, 9488–9493 (2003)CrossRefGoogle Scholar
  54. 54.
    Sripada, R.K., Marx, C.E., King, A.P., Rajaram, N., Garfinkel, S.N., Abelson, J.L., Liberzon, I.: DHEA enhances emotion regulation neurocircuits and modulates memory for emotional stimuli. Neuropsychopharmacology 38, 1798–1807 (2013)CrossRefGoogle Scholar
  55. 55.
    Friess, E., Trachsel, L., Guldner, J., Schier, T., Steiger, A., Holsboer, F.: DHEA administration increases rapid eye movement sleep and EEG power in the sigma frequency range. Am. J. Physiol. Endocrinol. Metab. 268, E107–E113 (1995)CrossRefGoogle Scholar
  56. 56.
    Khorram, O., Vu, L., Yen, S.S.C.: Activation of immune function in dehydroepiandrosterone (DHEA) in age-advanced men. J. Gerontol. Ser. A Biol. Med. Sci. 52, M1–M7 (1997)Google Scholar
  57. 57.
    Kroboth, P.D., Amico, J.A., Stone, R.A., Folan, M., Frye, R.F., Kroboth, F.J., Bigos, K.L., Fabian, T.J., Linares, A.M., Pollock, B.G., Hakala, C.: Influence of DHEA administration on 24-hour cortisol concentrations. J. Clin. Psychopharmacol. 23, 96–99 (2003)CrossRefGoogle Scholar
  58. 58.
    Stangl, B., Hirshman, E., Verbalis, J.: Administration of dehydroepiandrosterone (DHEA) enhances visual-spatial performance in post-menopausal women. Behav. Neurosci. 125, 742–752 (2011)CrossRefGoogle Scholar
  59. 59.
    Wolf, O.T., Koster, B., Kirschbaum, C., Pietrowsky, R., Kern, W., Hellhammer, D.H., Born, J., Fehm, H.L.: A single administration of dehydroepiandrosterone does not enhance memory performance in young healthy adults, but immediately reduces cortisol levels. Biol. Psychiat. 42, 845–848 (1997)CrossRefGoogle Scholar
  60. 60.
    Taylor, M.K., Padilla, G.A., Stanfill, K.E., Markham, A.E., Khosravi, J.Y., Ward, M.D., Koehler, M.M.: Effects of dehydroepiandrosterone supplementation during stressful military training: a randomized, controlled, double-blind field study. Stress 15, 85–96 (2012)CrossRefGoogle Scholar
  61. 61.
    Morgan, B.J., Bibb, S.C.: Assessment of military population-based psychological resilience programs. Mil. Med. 176, 976–985 (2011)CrossRefGoogle Scholar
  62. 62.
    Junqueira de Menezes, K., Peixto, C., Nardi, A.E., Carta, M.G., Machado, S., Veras, A.B.: Dehydroepiandrosterone, its sulfate and cognitive functions. Clin. Pract. Epidemiol. Mental Health 12, 24–37 (2016)Google Scholar
  63. 63.
    Alhaj, H.A., Massey, A.E., McAllister-Williams, R.H.: Effects of DHEA administration on episodic memory, cortisol, and mood in healthy young men: a double-blind placebo-controlled study. Psychopharmacology 188, 541–551 (2006)CrossRefGoogle Scholar
  64. 64.
    Janelle, C.M., Hatfield, B.D.: Visual attention and brain processes that underlie expert performance: implications for sport and military psychology. Mil. Psychol. 20, S39–S69 (2008)CrossRefGoogle Scholar
  65. 65.
    Crowder, J.A., Friess, S.: Warrior resilience training through cognitive self-regulation. In: Proceedings on the International Conference on Artificial Intelligence (ICAI). The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing, Athens (2012)Google Scholar
  66. 66.
    Russo, S.J., Murrough, J.W., Han, M., Charney, D.S., Nestler, E.J.: Neurobiology of resilience. Nat. Neurosci. 15, 1475–1484 (2012)CrossRefGoogle Scholar
  67. 67.
    Kirschbaum, C., Pirke, K.M., Hellhammer, D.H.: The ‘Trier Social Stress Test’ – a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28, 76–81 (1993)CrossRefGoogle Scholar
  68. 68.
    Schwabe, L., Haddad, L., Schachinger, H.: HPA axis activation by a socially evaluated cold-pressor test. Psychoneuroendocrinology 33, 890–895 (2008)CrossRefGoogle Scholar
  69. 69.
    Lejuez, C.W., Kahler, C.W., Brown, R.A.: A modified computer version of the paced auditory serial addition task (PASAT) as a laboratory-based stressor. Behav. Therapist 26, 290–293 (2003)Google Scholar
  70. 70.
    Ham, R.M., Mowery, D.C.: Improving the effectiveness of public-private R&D collaboration: case studies at a US weapons laboratory. Res. Policy 26, 661–675 (1998)CrossRefGoogle Scholar
  71. 71.
    Entwistle, T., Martin, S.: From competition to collaboration in public service delivery: a new agenda for research. Public Adm. 83, 233–242 (2005)CrossRefGoogle Scholar
  72. 72.
    Hood, L., Balling, R., Auffray, C.: Revolutionizing medicine in the 21st century through systems approaches. Biotechnol. J. 7, 992–1001 (2012)CrossRefGoogle Scholar
  73. 73.
    Engel, G.L.: The need for a new medical model: a challenge for biomedicine. Science 196, 129–136 (1977)CrossRefGoogle Scholar
  74. 74.
    Crawford, C., Wallerstedt, D.B., Khorsan, R., Clausen, S.S., Jonas, W.B., Walter, J.A.G.: A systematic review of biopsychosocial training programs for the self-management of emotional stress: potential applications for the military. Evid. Based Complement. Altern. Med. 2013, 747694 (2013)Google Scholar
  75. 75.
    Smeets, T., Dziobek, I., Wolf, O.T.: Social cognition under stress: differential effects of stress-induced cortisol elevations in healthy young men and women. Horm. Behav. 55, 507–513 (2009)CrossRefGoogle Scholar
  76. 76.
    Andrews, G., Tennant, C., Hewson, D.M., Vaillant, G.E.: Life event stress, social support, coping style, and risk of psychological impairment. J. Nerv. Ment. Dis. 166, 307–316 (1978)CrossRefGoogle Scholar
  77. 77.
    Office of the Under Secretary of Defense: The Department of Defense Plan to Achieve the Vision of the DoD Task Force on Mental Health. Defense Health Board, Falls Church Defense Health Board (2007)Google Scholar
  78. 78.
    Guenthner, D.H.: Emergency and crisis management: critical incident stress management for first responders and business organisations. J. Bus. Continuity Emerg. Plann. 5, 298–315 (2012)Google Scholar
  79. 79.
    Nash, W.P., Vasterling, J., Ewing-Cobbs, L., Horn, S., Gaskin, T., Golden, J., Riley, W.T., Bowles, S.V., Favret, J., Lester, P., Koffman, R., Farnsworth, L.C., Baker, D.G.: Consensus recommendations for common data elements for operational stress research and surveillance: report of a federal interagency working group. Arch. Phys. Med. Rehabil. 91, 1673–1683 (2010)CrossRefGoogle Scholar
  80. 80.
    Vogt, D., Samper, R., King, D., King, L., Martin, J.: Deployment stressors and posttraumatic stress symptomology: comparing active duty and national guard/reserve personnel from Gulf War I. J. Trauma. Stress 21, 66–74 (2008)CrossRefGoogle Scholar
  81. 81.
    Brandes, D., Ben-Schachar, G., Gilboa, A., Bonne, O., Freedman, S., Shalev, A.: PTSD symptoms and cognitive performance in recent trauma survivors. Psychiatry Res. 110, 231–238 (2002)CrossRefGoogle Scholar
  82. 82.
    Clark, C., McFarlane, A., Morris, P., Weber, D., Sonkkilla, C., Shaw, M., Marcina, J., Tochon-Danguy, H.J., Egan, G.F.: Cerebral function in posttraumatic stress disorder during verbal working memory updating: a positron emission tomography study. Biol. Psychiat. 53, 474–481 (2003)CrossRefGoogle Scholar
  83. 83.
    Qin, S., Hermans, E., van Marle, H., Luo, J., Fernandez, G.: Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol. Psychiat. 66, 25–32 (2009)CrossRefGoogle Scholar
  84. 84.
    Issakidis, C., Sanderson, K., Corry, J., Andrews, G., Lapsley, H.: Modelling the population cost-effectiveness of current and evidence-based optimal treatment for anxiety disorders. Psychol. Med. 34, 19–35 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature (outside the USA) 2019

Authors and Affiliations

  1. 1.DCS CorpAlexandriaUSA
  2. 2.U.S. Army Research Laboratory, HRED-ATSD, Army Medical Department Field Element, Fort Sam HoustonSan AntonioUSA

Personalised recommendations