Skip to main content

Evaluation of the Hemodynamic Effects of AC Magnetic Field Exposure by Measurement of an FMD and a Microscope

  • Conference paper
  • First Online:
Advances in Human Factors and Ergonomics in Healthcare and Medical Devices (AHFE 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 779))

Included in the following conference series:

Abstract

This study focuses on the acute influence of an AC electromagnetic field (ELF-EMF) exposure (50 Hz, Bmax 180 mT) on flow-mediated dilation (FMD) and peripheral capillary flow velocity in healthy human subjects. In a randomized, double blind and crossover design, the sham control (CTL) and the EMF exposures were carried out. For FMD study, exposure of the left upper arm to EMF was performed for 30 min in a supine position. In the case of the measurement of microcirculation, exposure of the left forearm to EMF was conducted for 15 min in a sitting position. The FMD values were significantly increased from the baseline value in the presence of EMF exposure. The values of the microcirculation were significantly increased by the EMF exposure. These results imply that the EMF-enhanced vasodilation and microcirculation might help eliminate the metabolic waste products and endogenous pain producing substances inducing muscle stiffness and pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKay, J.C., Prato, F.S., Thomas, A.W.: A literature review: the effects of magnetic field exposure on blood flow and blood vessels in the microvasculature. Bioelectromagnetics 28, 81–98 (2007)

    Article  Google Scholar 

  2. Ohkubo, C., Okano, H., Masuda, H., Ushiyama, A.: EMF effects on microcirculatory system. Environmentalist 27, 395–402 (2007)

    Article  Google Scholar 

  3. McNamee, D.A., Corbacio, M., Weller, J.K., Brown, S., Prato, F.S., Thomas, A.W., Legros, A.G.: The cardiovascular response to an acute 1800-μT, 60-Hz magnetic field exposure in humans. Int. Arch. Occup. Environ. Health 83, 441–454 (2010)

    Article  Google Scholar 

  4. McNamee, D.A., Corbacio, M., Weller, J.K., Brown, S., Stodilka, R.Z., Prato, F.S., Bureau, Y., Thomas, A.W., Legros, A.G.: The response of the human circulatory system to an acute 200-μT, 60-Hz magnetic field exposure. Int. Arch. Occup. Environ. Health 84, 267–277 (2011)

    Article  Google Scholar 

  5. Ueno, S., Okano, H.: Static, low frequency and pulsed magnetic fields in biological systems. In: Lin, J.C. (ed.) Electromagnetic Fields in Biological Systems, pp. 115–196. CRC Press, Boca Raton (2011)

    Google Scholar 

  6. Mattsson, M.O., Simko, M.: Grouping of experimental conditions as an approach to evaluate effects of extremely low-frequency magnetic fields on oxidative response in In Vitro studies. Front. Public Health. 2, Article 132 (2014)

    Google Scholar 

  7. Ohkubo, C., Okano, H.: Magnetic field influences on the microcirculation. In: Markov, M.S. (ed.) Electromagnetic Fields in Biology and Medicine, pp. 103–128. CRC Press, Boca Raton (2015)

    Chapter  Google Scholar 

  8. Pilla, A.A., Muehsam, D.J., Markov, M.S., Sisken, B.F.: EMF signals and ion/ligand binding kinetics: prediction of bioeffective waveform parameters. Bioelectrochem. Bioenerg. 48, 27–34 (1999)

    Article  Google Scholar 

  9. Pilla, A.A.: Weak time-varying and static magnetic fields: from mechanisms to therapeutic applications. In: Stavroulakis, P. (ed.) Biological Effects of Electromagnetic Fields, pp. 34–75. Springer, New York (2003)

    Google Scholar 

  10. Pilla, A.A.: Mechanisms and therapeutic applications of time-varying and static magnetic fields. In: Barnes, F., Greenebaum, B. (eds.) Handbook of Biological Effects of Electromagnetic Fields, 3rd edn, pp. 351–411. CRC Press, Boca Raton (2007)

    Google Scholar 

  11. Begue-Simon, A.M., Drolet, R.A.: Clinical assessment of the RHUMART system based on the use of pulsed electromagnetic fields with low frequency. Int. J. Rehabil. Res. 16, 323–337 (1993)

    Article  Google Scholar 

  12. Okano, H., Fujimura, A., Ishiwatari, H., Watanuki, K.: The physiological influence of alternating current electromagnetic field exposure on human subjects. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2442–2447 (2017). ISBN 9781538616451

    Google Scholar 

  13. Kajikawa, M., Maruhashi, T., Iwamoto, Y., Iwamoto, A., Matsumoto, T., Hidaka, T., Kihara, Y., Chayama, K., Nakashima, A., Goto, C., Noma, K., Higashi, Y.: Borderline Ankle-Brachial Index value of 0.91–0.99 is associated with endothelial dysfunction. Circ. J. 78, 1740–1745 (2014)

    Article  Google Scholar 

  14. Stoner, L., Sabatier, M.J.: Use of ultrasound for non-invasive assessment of flow-mediated dilation. J. Atheroscler. Thromb. 19, 407–421 (2012)

    Article  Google Scholar 

  15. Bleeker, M.W., De Groot, P.C., Poelkens, F., Rongen, G.A., Smits, P., Hopman, M.T.: Vascular adaptation to 4 wk of deconditioning by unilateral lower limb suspension. Am. J. Physiol. Heart Circ. Physiol. 288, H1747–H1755 (2005)

    Article  Google Scholar 

  16. Brookes, Z.L., Kaufman, S.: Effects of atrial natriuretic peptide on the extrasplenic microvasculature and lymphatics in the rat in vivo. J. Physiol. 565, 269–277 (2005)

    Article  Google Scholar 

  17. Brookes, Z.L., Stedman, E.N., Guerrini, R., Lawton, B.K., Calo, G., Lambert, D.G.: Proinflammatory and vasodilator effects of nociceptin/orphanin FQ in the rat mesenteric microcirculation are mediated by histamine. Am. J. Physiol. Heart Circ. Physiol. 293, H2977–H2985 (2007)

    Article  Google Scholar 

  18. Nakagami, G., Sanada, H., Matsui, N., Kitagawa, A., Yokogawa, H., Sekiya, N., Ichioka, S., Sugama, J., Shibata, M.: Effect of vibration on skin blood flow in an in vivo microcirculatory model. Biosci. Trends. 1, 161–166 (2007)

    Google Scholar 

  19. Mihara, K., Shindo, H., Ohtani, M., Nagasaki, K., Nakashima, R., Katoh, N., Kishimoto, S.: Early depth assessment of local burns by videomicroscopy: 24 h after injury is a critical time point. Burns. 37, 986–993 (2011)

    Article  Google Scholar 

  20. Fox, J.S., Whitehead, E.M., Shanks, R.G.: Cardiovascular effects of cromakalim (BRL 34915) in healthy volunteers. Br. J. Clin. Pharmacol. 32, 45–49 (1991)

    Article  Google Scholar 

  21. Loo, C.K., Sachdev, P.S., Haindl, W., Wen, W., Mitchell, P.B., Croker, V.M., Malhi, G.S.: High (15 Hz) and Low (1 Hz) frequency transcranial magnetic stimulation have different acute effects on regional cerebral blood flow in depressed patients. Psychol. Med. 33, 997–1006 (2003)

    Article  Google Scholar 

  22. Speer, A.M., Willis, M.W., Herscovitch, P., Daube-Witherspoon, M., Shelton, J.R., Benson, B.E., Post, R.M., Wassermann, E.M.: Intensity-dependent regional cerebral blood flow during 1-Hz Repetitive Transcranial Magnetic Stimulation (rTMS) in healthy volunteers studied with H 152 O positron emission tomography: II. Effects of prefrontal cortex rTMS. Biol. Psychiatry 54, 826–832 (2003)

    Article  Google Scholar 

  23. Mesquita, R.C., Faseyitan, O.K., Turkeltaub, P.E., Buckley, E.M., Thomas, A., Kim, M.N., Durduran, T., Greenberg, J.H., Detre, J.A., Yodh, A.G., Hamilton, R.H.: Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex. J. Biomed. Opt. 18, 067006 (2013)

    Article  Google Scholar 

  24. Thomson, R.H., Cleve, T.J., Bailey, N.W., Rogasch, N.C., Maller, J.J., Daskalakis, Z.J., Fitzgerald, P.B.: Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation. Brain Stimul. 6, 576–581 (2013)

    Article  Google Scholar 

  25. Cao, T.T., Thomson, R.H., Bailey, N.W., Rogasch, N.C., Segrave, R.A., Maller, J.J., Daskalakis, Z.J., Fitzgerald, P.B.: A near infra-red study of blood oxygenation changes resulting from high and low frequency repetitive transcranial magnetic stimulation. Brain Stimul. 6, 922–924 (2013)

    Article  Google Scholar 

  26. Rollnik, J.D., Düsterhöft, A., Däuper, J., Kossev, A., Weissenborn, K., Dengler, R.: Decrease of middle cerebral artery blood flow velocity after low-frequency repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Clin. Neurophysiol. 113, 951–955 (2002)

    Article  Google Scholar 

  27. Aoyama, Y., Hanaoka, N., Kameyama, M., Suda, M., Sato, T., Song, M., Fukuda, M., Mikuni, M.: Stimulus intensity dependence of cerebral blood volume changes in left frontal lobe by low-frequency rTMS to right frontal lobe: a near-infrared spectroscopy study. Neurosci. Res. 63, 47–51 (2009)

    Article  Google Scholar 

  28. Vernieri, F., Altamura, C., Palazzo, P., Altavilla, R., Fabrizio, E., Fini, R., Melgari, J.M., Paolucci, M., Pasqualetti, P., Maggio, P.: 1-Hz repetitive transcranial magnetic stimulation increases cerebral vasomotor reactivity: a possible autonomic nervous system modulation. Brain Stimul. 7, 281–286 (2014)

    Article  Google Scholar 

  29. Gustrau, F., Bahr, A., Rittwenger, M., Goltz, S., Eggert, S.: Simulation of induced current densities in the human body at industrial induction heating frequencies. IEEE Trans. Electromagn. Compat. 41, 480–486 (1999)

    Article  Google Scholar 

  30. Li, Y., Hand, J.W., Wills, T., Hajnal, J.V.: Numerically-simulated induced electric field and current density within a human model located close to a Z-gradient coil. J. Magn. Reson. Imaging 26, 1286–1295 (2007)

    Article  Google Scholar 

  31. Wagner, T., Eden, U., Fregni, F., Valero-Cabre, A., Ramos-Estebanez, C., Pronio-Stelluto, V., Grodzinsky, A., Zahn, M., Pascual-Leone, A.: Transcranial magnetic stimulation and brain atrophy: a computer-based human brain model study. Exp. Brain Res. 186, 539–550 (2008)

    Article  Google Scholar 

  32. Kellogg Jr., D.L., Zhao, J.L., Coey, U., Green, J.V.: Acetylcholine-induced vasodilation is mediated by nitric oxide and prostaglandins in human skin. J. Appl. Physiol. 1985(98), 629–632 (2005)

    Article  Google Scholar 

  33. Robertson, J.A., Thomas, A.W., Bureau, Y., Prato, F.S.: The influence of extremely low frequency magnetic fields on cytoprotection and repair. Bioelectromagnetics 28, 16–30 (2007)

    Article  Google Scholar 

  34. Ravera, S., Bianco, B., Cugnoli, C., Panfoli, I., Calzia, D., Morelli, A., Pepe, I.M.: Sinusoidal ELF magnetic fields affect acetylcholinesterase activity in cerebellum synaptosomal membranes. Bioelectromagnetics 31, 270–276 (2010)

    Article  Google Scholar 

  35. Patruno, A., Amerio, P., Pesce, M., Vianale, G., Di Luzio, S., Tulli, A., Franceschelli, S., Grilli, A., Muraro, R., Reale, M.: Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing. Br. J. Dermatol. 162, 258–266 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Okano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kondo, T., Okano, H., Ishiwatari, H., Watanuki, K. (2019). Evaluation of the Hemodynamic Effects of AC Magnetic Field Exposure by Measurement of an FMD and a Microscope. In: Lightner, N. (eds) Advances in Human Factors and Ergonomics in Healthcare and Medical Devices. AHFE 2018. Advances in Intelligent Systems and Computing, vol 779. Springer, Cham. https://doi.org/10.1007/978-3-319-94373-2_8

Download citation

Publish with us

Policies and ethics