Evaluation of the Hemodynamic Effects of AC Magnetic Field Exposure by Measurement of an FMD and a Microscope

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 779)


This study focuses on the acute influence of an AC electromagnetic field (ELF-EMF) exposure (50 Hz, Bmax 180 mT) on flow-mediated dilation (FMD) and peripheral capillary flow velocity in healthy human subjects. In a randomized, double blind and crossover design, the sham control (CTL) and the EMF exposures were carried out. For FMD study, exposure of the left upper arm to EMF was performed for 30 min in a supine position. In the case of the measurement of microcirculation, exposure of the left forearm to EMF was conducted for 15 min in a sitting position. The FMD values were significantly increased from the baseline value in the presence of EMF exposure. The values of the microcirculation were significantly increased by the EMF exposure. These results imply that the EMF-enhanced vasodilation and microcirculation might help eliminate the metabolic waste products and endogenous pain producing substances inducing muscle stiffness and pain.


Electromagnetic field Flow-Mediated Dilatation (FMD) Microcirculation 


  1. 1.
    McKay, J.C., Prato, F.S., Thomas, A.W.: A literature review: the effects of magnetic field exposure on blood flow and blood vessels in the microvasculature. Bioelectromagnetics 28, 81–98 (2007)CrossRefGoogle Scholar
  2. 2.
    Ohkubo, C., Okano, H., Masuda, H., Ushiyama, A.: EMF effects on microcirculatory system. Environmentalist 27, 395–402 (2007)CrossRefGoogle Scholar
  3. 3.
    McNamee, D.A., Corbacio, M., Weller, J.K., Brown, S., Prato, F.S., Thomas, A.W., Legros, A.G.: The cardiovascular response to an acute 1800-μT, 60-Hz magnetic field exposure in humans. Int. Arch. Occup. Environ. Health 83, 441–454 (2010)CrossRefGoogle Scholar
  4. 4.
    McNamee, D.A., Corbacio, M., Weller, J.K., Brown, S., Stodilka, R.Z., Prato, F.S., Bureau, Y., Thomas, A.W., Legros, A.G.: The response of the human circulatory system to an acute 200-μT, 60-Hz magnetic field exposure. Int. Arch. Occup. Environ. Health 84, 267–277 (2011)CrossRefGoogle Scholar
  5. 5.
    Ueno, S., Okano, H.: Static, low frequency and pulsed magnetic fields in biological systems. In: Lin, J.C. (ed.) Electromagnetic Fields in Biological Systems, pp. 115–196. CRC Press, Boca Raton (2011)Google Scholar
  6. 6.
    Mattsson, M.O., Simko, M.: Grouping of experimental conditions as an approach to evaluate effects of extremely low-frequency magnetic fields on oxidative response in In Vitro studies. Front. Public Health. 2, Article 132 (2014)Google Scholar
  7. 7.
    Ohkubo, C., Okano, H.: Magnetic field influences on the microcirculation. In: Markov, M.S. (ed.) Electromagnetic Fields in Biology and Medicine, pp. 103–128. CRC Press, Boca Raton (2015)CrossRefGoogle Scholar
  8. 8.
    Pilla, A.A., Muehsam, D.J., Markov, M.S., Sisken, B.F.: EMF signals and ion/ligand binding kinetics: prediction of bioeffective waveform parameters. Bioelectrochem. Bioenerg. 48, 27–34 (1999)CrossRefGoogle Scholar
  9. 9.
    Pilla, A.A.: Weak time-varying and static magnetic fields: from mechanisms to therapeutic applications. In: Stavroulakis, P. (ed.) Biological Effects of Electromagnetic Fields, pp. 34–75. Springer, New York (2003)Google Scholar
  10. 10.
    Pilla, A.A.: Mechanisms and therapeutic applications of time-varying and static magnetic fields. In: Barnes, F., Greenebaum, B. (eds.) Handbook of Biological Effects of Electromagnetic Fields, 3rd edn, pp. 351–411. CRC Press, Boca Raton (2007)Google Scholar
  11. 11.
    Begue-Simon, A.M., Drolet, R.A.: Clinical assessment of the RHUMART system based on the use of pulsed electromagnetic fields with low frequency. Int. J. Rehabil. Res. 16, 323–337 (1993)CrossRefGoogle Scholar
  12. 12.
    Okano, H., Fujimura, A., Ishiwatari, H., Watanuki, K.: The physiological influence of alternating current electromagnetic field exposure on human subjects. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2442–2447 (2017). ISBN 9781538616451Google Scholar
  13. 13.
    Kajikawa, M., Maruhashi, T., Iwamoto, Y., Iwamoto, A., Matsumoto, T., Hidaka, T., Kihara, Y., Chayama, K., Nakashima, A., Goto, C., Noma, K., Higashi, Y.: Borderline Ankle-Brachial Index value of 0.91–0.99 is associated with endothelial dysfunction. Circ. J. 78, 1740–1745 (2014)CrossRefGoogle Scholar
  14. 14.
    Stoner, L., Sabatier, M.J.: Use of ultrasound for non-invasive assessment of flow-mediated dilation. J. Atheroscler. Thromb. 19, 407–421 (2012)CrossRefGoogle Scholar
  15. 15.
    Bleeker, M.W., De Groot, P.C., Poelkens, F., Rongen, G.A., Smits, P., Hopman, M.T.: Vascular adaptation to 4 wk of deconditioning by unilateral lower limb suspension. Am. J. Physiol. Heart Circ. Physiol. 288, H1747–H1755 (2005)CrossRefGoogle Scholar
  16. 16.
    Brookes, Z.L., Kaufman, S.: Effects of atrial natriuretic peptide on the extrasplenic microvasculature and lymphatics in the rat in vivo. J. Physiol. 565, 269–277 (2005)CrossRefGoogle Scholar
  17. 17.
    Brookes, Z.L., Stedman, E.N., Guerrini, R., Lawton, B.K., Calo, G., Lambert, D.G.: Proinflammatory and vasodilator effects of nociceptin/orphanin FQ in the rat mesenteric microcirculation are mediated by histamine. Am. J. Physiol. Heart Circ. Physiol. 293, H2977–H2985 (2007)CrossRefGoogle Scholar
  18. 18.
    Nakagami, G., Sanada, H., Matsui, N., Kitagawa, A., Yokogawa, H., Sekiya, N., Ichioka, S., Sugama, J., Shibata, M.: Effect of vibration on skin blood flow in an in vivo microcirculatory model. Biosci. Trends. 1, 161–166 (2007)Google Scholar
  19. 19.
    Mihara, K., Shindo, H., Ohtani, M., Nagasaki, K., Nakashima, R., Katoh, N., Kishimoto, S.: Early depth assessment of local burns by videomicroscopy: 24 h after injury is a critical time point. Burns. 37, 986–993 (2011)CrossRefGoogle Scholar
  20. 20.
    Fox, J.S., Whitehead, E.M., Shanks, R.G.: Cardiovascular effects of cromakalim (BRL 34915) in healthy volunteers. Br. J. Clin. Pharmacol. 32, 45–49 (1991)CrossRefGoogle Scholar
  21. 21.
    Loo, C.K., Sachdev, P.S., Haindl, W., Wen, W., Mitchell, P.B., Croker, V.M., Malhi, G.S.: High (15 Hz) and Low (1 Hz) frequency transcranial magnetic stimulation have different acute effects on regional cerebral blood flow in depressed patients. Psychol. Med. 33, 997–1006 (2003)CrossRefGoogle Scholar
  22. 22.
    Speer, A.M., Willis, M.W., Herscovitch, P., Daube-Witherspoon, M., Shelton, J.R., Benson, B.E., Post, R.M., Wassermann, E.M.: Intensity-dependent regional cerebral blood flow during 1-Hz Repetitive Transcranial Magnetic Stimulation (rTMS) in healthy volunteers studied with H215O positron emission tomography: II. Effects of prefrontal cortex rTMS. Biol. Psychiatry 54, 826–832 (2003)CrossRefGoogle Scholar
  23. 23.
    Mesquita, R.C., Faseyitan, O.K., Turkeltaub, P.E., Buckley, E.M., Thomas, A., Kim, M.N., Durduran, T., Greenberg, J.H., Detre, J.A., Yodh, A.G., Hamilton, R.H.: Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex. J. Biomed. Opt. 18, 067006 (2013)CrossRefGoogle Scholar
  24. 24.
    Thomson, R.H., Cleve, T.J., Bailey, N.W., Rogasch, N.C., Maller, J.J., Daskalakis, Z.J., Fitzgerald, P.B.: Blood oxygenation changes modulated by coil orientation during prefrontal transcranial magnetic stimulation. Brain Stimul. 6, 576–581 (2013)CrossRefGoogle Scholar
  25. 25.
    Cao, T.T., Thomson, R.H., Bailey, N.W., Rogasch, N.C., Segrave, R.A., Maller, J.J., Daskalakis, Z.J., Fitzgerald, P.B.: A near infra-red study of blood oxygenation changes resulting from high and low frequency repetitive transcranial magnetic stimulation. Brain Stimul. 6, 922–924 (2013)CrossRefGoogle Scholar
  26. 26.
    Rollnik, J.D., Düsterhöft, A., Däuper, J., Kossev, A., Weissenborn, K., Dengler, R.: Decrease of middle cerebral artery blood flow velocity after low-frequency repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Clin. Neurophysiol. 113, 951–955 (2002)CrossRefGoogle Scholar
  27. 27.
    Aoyama, Y., Hanaoka, N., Kameyama, M., Suda, M., Sato, T., Song, M., Fukuda, M., Mikuni, M.: Stimulus intensity dependence of cerebral blood volume changes in left frontal lobe by low-frequency rTMS to right frontal lobe: a near-infrared spectroscopy study. Neurosci. Res. 63, 47–51 (2009)CrossRefGoogle Scholar
  28. 28.
    Vernieri, F., Altamura, C., Palazzo, P., Altavilla, R., Fabrizio, E., Fini, R., Melgari, J.M., Paolucci, M., Pasqualetti, P., Maggio, P.: 1-Hz repetitive transcranial magnetic stimulation increases cerebral vasomotor reactivity: a possible autonomic nervous system modulation. Brain Stimul. 7, 281–286 (2014)CrossRefGoogle Scholar
  29. 29.
    Gustrau, F., Bahr, A., Rittwenger, M., Goltz, S., Eggert, S.: Simulation of induced current densities in the human body at industrial induction heating frequencies. IEEE Trans. Electromagn. Compat. 41, 480–486 (1999)CrossRefGoogle Scholar
  30. 30.
    Li, Y., Hand, J.W., Wills, T., Hajnal, J.V.: Numerically-simulated induced electric field and current density within a human model located close to a Z-gradient coil. J. Magn. Reson. Imaging 26, 1286–1295 (2007)CrossRefGoogle Scholar
  31. 31.
    Wagner, T., Eden, U., Fregni, F., Valero-Cabre, A., Ramos-Estebanez, C., Pronio-Stelluto, V., Grodzinsky, A., Zahn, M., Pascual-Leone, A.: Transcranial magnetic stimulation and brain atrophy: a computer-based human brain model study. Exp. Brain Res. 186, 539–550 (2008)CrossRefGoogle Scholar
  32. 32.
    Kellogg Jr., D.L., Zhao, J.L., Coey, U., Green, J.V.: Acetylcholine-induced vasodilation is mediated by nitric oxide and prostaglandins in human skin. J. Appl. Physiol. 1985(98), 629–632 (2005)CrossRefGoogle Scholar
  33. 33.
    Robertson, J.A., Thomas, A.W., Bureau, Y., Prato, F.S.: The influence of extremely low frequency magnetic fields on cytoprotection and repair. Bioelectromagnetics 28, 16–30 (2007)CrossRefGoogle Scholar
  34. 34.
    Ravera, S., Bianco, B., Cugnoli, C., Panfoli, I., Calzia, D., Morelli, A., Pepe, I.M.: Sinusoidal ELF magnetic fields affect acetylcholinesterase activity in cerebellum synaptosomal membranes. Bioelectromagnetics 31, 270–276 (2010)CrossRefGoogle Scholar
  35. 35.
    Patruno, A., Amerio, P., Pesce, M., Vianale, G., Di Luzio, S., Tulli, A., Franceschelli, S., Grilli, A., Muraro, R., Reale, M.: Extremely low frequency electromagnetic fields modulate expression of inducible nitric oxide synthase, endothelial nitric oxide synthase and cyclooxygenase-2 in the human keratinocyte cell line HaCat: potential therapeutic effects in wound healing. Br. J. Dermatol. 162, 258–266 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
  2. 2.Advanced Institute of Innovative TechnologySaitama UniversitySaitamaJapan
  3. 3.Soken Medical Co., Ltd.TokyoJapan
  4. 4.Brain and Body System Science InstituteSaitama UniversitySaitamaJapan

Personalised recommendations