Skip to main content

The Epidemiology of Rare Hereditary Metabolic Liver Diseases

  • Chapter
  • First Online:
Clinical Epidemiology of Chronic Liver Diseases

Abstract

A rare disease is defined by the European Health Commission as a disorder occurring in less than 5 per 10,000 individuals in the population whereas the United States definition sets a numerical maximum of fewer than 200,000 affected individuals in the country [1, 2]. A disease is defined as ultra-rare if less than 1 person per 50,000 people is affected [2]. The medical and socioeconomic impact of rare diseases is quite significant as there may be as many as 30 million people who live with a rare disease in the US and another 3.5 million in the UK [3, 4]. There are over 100 individual liver diseases, and it is estimated that more than 29 million people in the European Union and more than 30 million Americans suffer from liver disease [5, 6]. This chapter discusses the epidemiology of four rare metabolic liver disorders encountered by gastroenterologists and hepatologists: Wilson disease, lysosomal acid lipase deficiency, α1-antitrypsin deficiency and HFE-related hereditary hemochromatosis. The OMIM database codes (online Mendelian inheritance in man) have been included for each disease as these have been used extensively in the literature especially in relation to genotype-phenotype characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim WR, Brown RS Jr, Terrault NA, El-Serag H. Burden of liver disease in the United States: summary of a workshop. Hepatology. 2002;36(1):227–42.

    Article  PubMed  Google Scholar 

  2. Directorate-General ECHCP. Useful information on rare diseases from an EU perspective. 2004. http://ec.europa.eu/health/ph_information/documents/ev20040705_rd05_en.pdf.

  3. National Institutes of Health. National Institutes of Health website. Office of Rare Disease Research. http://rarediseases.info.nih.gov/AboutUs.aspx. Accessed 12 Dec 2015.

  4. website RDU. Rare disease UK website. http://www.raredisease.org.uk. Accessed 12 Dec 2015.

  5. Lowdown TL. American Liver Foundation. The Liver Lowdown—liver disease: the big picture. 2013. http://www.liverfoundation.org/education/liverlowdown/ll1013/bigpicture. Accessed 21 Mar 2017.

  6. EASL. HEPAMAP. A roadmap for hepatology research in Europe: an overview for policy makers. 2013. http://www.easl.eu/medias/EASLimg/News/3f9dd90221ef292_file.pdf.

  7. Robertson WM. Wilson’s disease. Arch Neurol. 2000;57(2):276–7.

    Article  CAS  PubMed  Google Scholar 

  8. Compston A. Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver, by S. A. Kinnier Wilson, (From the National Hospital, and the Laboratory of the National Hospital, Queen Square, London) Brain 1912: 34; 295–509. Brain. 2009;132(Pt 8):1997–2001.

    Article  PubMed  Google Scholar 

  9. Bearn AG, Kunkel HG. Abnormalities of copper metabolism in Wilson’s disease and their relationship to the aminoaciduria. J Clin Invest. 1954;33(3):400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cumings JN. The copper and iron content of brain and liver in the normal and in hepato-lenticular degeneration. Brain. 1948;71(Pt 4):410–5.

    Article  CAS  PubMed  Google Scholar 

  11. Frydman M, Bonne-Tamir B, Farrer LA, et al. Assignment of the gene for Wilson disease to chromosome 13: linkage to the esterase D locus. Proc Natl Acad Sci U S A. 1985;82(6):1819–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet. 1993;3(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  13. Chelly J, Tumer Z, Tonnesen T, et al. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet. 1993;3(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  14. Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 1993;5(4):327–37.

    Article  CAS  PubMed  Google Scholar 

  15. Mercer JF, Livingston J, Hall B, et al. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet. 1993;3(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  16. Petrukhin K, Fischer SG, Pirastu M, et al. Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nat Genet. 1993;5(4):338–43.

    Article  CAS  PubMed  Google Scholar 

  17. Tanzi RE, Petrukhin K, Chernov I, et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet. 1993;5(4):344–50.

    Article  CAS  PubMed  Google Scholar 

  18. Yamaguchi Y, Heiny ME, Gitlin JD. Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Commun. 1993;197(1):271–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kenney SM, Cox DW. Sequence variation database for the Wilson disease copper transporter, ATP7B. Hum Mutat. 2007;28(12):1171–7.

    Article  CAS  PubMed  Google Scholar 

  20. Petrukhin K, Lutsenko S, Chernov I, Ross BM, Kaplan JH, Gilliam TC. Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: genomic organization, alternative splicing, and structure/function predictions. Hum Mol Genet. 1994;3(9):1647–56.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Zhou H, Guo H, Bai Y. Genetic and clinical analysis in a cohort of patients with Wilson’s disease in southwestern China. Arch Med Res. 2015;46(2):164–9.

    Article  CAS  PubMed  Google Scholar 

  22. Park HD, Ki CS, Lee SY, Kim JW. Carrier frequency of the R778L, A874V, and N1270S mutations in the ATP7B gene in a Korean population. Clin Genet. 2009;75(4):405–7.

    Article  CAS  PubMed  Google Scholar 

  23. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML. Wilson’s disease. Lancet. 2007;369(9559):397–408.

    Article  CAS  PubMed  Google Scholar 

  24. Gomes A, Dedoussis GV. Geographic distribution of ATP7B mutations in Wilson disease. Ann Hum Biol. 2016;43(1):1–8.

    Article  PubMed  Google Scholar 

  25. Scheinberg IH, Sternlieb I. Wilson’s disease. In: Smith Jr LH, editor. Major problems in internal medicine. Philadelphia, PA: WB Saunders; 1984.

    Google Scholar 

  26. Kim GH, Yang JY, Park JY, Lee JJ, Kim JH, Yoo HW. Estimation of Wilson’s disease incidence and carrier frequency in the Korean population by screening ATP7B major mutations in newborn filter papers using the SYBR green intercalator method based on the amplification refractory mutation system. Genet Test. 2008;12(3):395–9.

    Article  CAS  PubMed  Google Scholar 

  27. Reilly M, Daly L, Hutchinson M. An epidemiological study of Wilson’s disease in the Republic of Ireland. J Neurol Neurosurg Psychiatry. 1993;56(3):298–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coffey AJ, Durkie M, Hague S, et al. A genetic study of Wilson’s disease in the United Kingdom. Brain. 2013;136(Pt 5):1476–87.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Olivarez L, Caggana M, Pass KA, Ferguson P, Brewer GJ. Estimate of the frequency of Wilson’s disease in the US Caucasian population: a mutation analysis approach. Ann Hum Genet. 2001;65(Pt 5):459–63.

    Article  CAS  PubMed  Google Scholar 

  30. Dedoussis GV, Genschel J, Sialvera TE, et al. Wilson disease: high prevalence in a mountainous area of Crete. Ann Hum Genet. 2005;69(Pt 3):268–74.

    Article  CAS  PubMed  Google Scholar 

  31. Ohura T, Abukawa D, Shiraishi H, et al. Pilot study of screening for Wilson disease using dried blood spots obtained from children seen at outpatient clinics. J Inherit Metab Dis. 1999;22(1):74–80.

    Article  CAS  PubMed  Google Scholar 

  32. Mak CM, Lam CW, Tam S, et al. Mutational analysis of 65 Wilson disease patients in Hong Kong Chinese: identification of 17 novel mutations and its genetic heterogeneity. J Hum Genet. 2008;53(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  33. Loudianos G, Dessi V, Lovicu M, et al. Molecular characterization of Wilson disease in the Sardinian population—evidence of a founder effect. Hum Mutat. 1999;14(4):294–303.

    Article  CAS  PubMed  Google Scholar 

  34. Park RH, McCabe P, Fell GS, Russell RI. Wilson’s disease in Scotland. Gut. 1991;32(12):1541–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olsson C, Waldenstrom E, Westermark K, Landegre U, Syvanen AC. Determination of the frequencies of ten allelic variants of the Wilson disease gene (ATP7B), in pooled DNA samples. Eur J Hum Genet. 2000;8(12):933–8.

    Article  CAS  PubMed  Google Scholar 

  36. O’Brien M, Reilly M, Sweeney B, Walsh C, Hutchinson M. Epidemiology of Wilson’s disease in Ireland. Mov Disord. 2014;29(12):1567–8.

    Article  PubMed  Google Scholar 

  37. Lau JY, Lai CL, Wu PC, Pan HY, Lin HJ, Todd D. Wilson’s disease: 35 years’ experience. Q J Med. 1990;75(278):597–605.

    CAS  PubMed  Google Scholar 

  38. Emre S, Atillasoy EO, Ozdemir S, et al. Orthotopic liver transplantation for Wilson’s disease: a single-center experience. Transplantation. 2001;72(7):1232–6.

    Article  CAS  PubMed  Google Scholar 

  39. Beinhardt S, Leiss W, Stattermayer AF, et al. Long-term outcomes of patients with Wilson disease in a large Austrian cohort. Clin Gastroenterol Hepatol. 2014;12(4):683–9.

    Article  PubMed  Google Scholar 

  40. Litwin T, Gromadzka G, Czlonkowska A. Gender differences in Wilson’s disease. J Neurol Sci. 2012;312(1–2):31–5.

    Article  CAS  PubMed  Google Scholar 

  41. Schilsky ML. Wilson disease: Clinical manifestations, diagnosis, and natural history: UpToDate; 2015.

    Google Scholar 

  42. Korman JD, Volenberg I, Balko J, et al. Screening for Wilson disease in acute liver failure: a comparison of currently available diagnostic tests. Hepatology. 2008;48(4):1167–74.

    Article  CAS  PubMed  Google Scholar 

  43. Polson J, Lee WM. American Association for the Study of Liver D. AASLD position paper: the management of acute liver failure. Hepatology. 2005;41(5):1179–97.

    Article  PubMed  Google Scholar 

  44. Saito T. Presenting symptoms and natural history of Wilson disease. Eur J Pediatr. 1987;146(3):261–5.

    Article  CAS  PubMed  Google Scholar 

  45. Walshe JM. Wilson’s disease presenting with features of hepatic dysfunction: a clinical analysis of eighty-seven patients. Q J Med. 1989;70(263):253–63.

    CAS  PubMed  Google Scholar 

  46. Ala A, Borjigin J, Rochwarger A, Schilsky M. Wilson disease in septuagenarian siblings: Raising the bar for diagnosis. Hepatology. 2005;41(3):668–70.

    Article  PubMed  Google Scholar 

  47. Ferenci P, Czlonkowska A, Merle U, et al. Late-onset Wilson’s disease. Gastroenterology. 2007;132(4):1294–8.

    Article  CAS  PubMed  Google Scholar 

  48. European Association for Study of Liver. EASL clinical practice guidelines: Wilson’s disease. J Hepatol. 2012;56(3):671–85.

    Article  Google Scholar 

  49. 8th International Conference on Wilson Disease and Menkes Disease. Leipzig, Germany, April 16–18, 2001. Abstracts. Z Gastroenterol. 2001;39(3):245–60.

    Google Scholar 

  50. Roberts EA, Schilsky ML, American Association for Study of Liver Diseases. Diagnosis and treatment of Wilson disease: an update. Hepatology. 2008;47(6):2089–111.

    Article  CAS  PubMed  Google Scholar 

  51. Brewer GJ, Hedera P, Kluin KJ, et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: III. Initial therapy in a total of 55 neurologically affected patients and follow-up with zinc therapy. Arch Neurol. 2003;60(3):379–85.

    Article  PubMed  Google Scholar 

  52. Weiss KH, Askari FK, Ferenci P, et al. WTX101 in patients newly diagnosed with Wilson disease: final results of a global, prospective phase 2 trial [abstract & oral presentation]. EASL Meeting, Amsterdam, 2017.

    Article  Google Scholar 

  53. Weiss KH, Askari FK, Czlonkowska A, et al. Bis-choline tetrathiomolybdate in patients with Wilson’s disease: an open-label, multicentre, phase 2 study. Lancet Gastroenterol Hepatol. 2017;2(12):869–76.

    Article  PubMed  Google Scholar 

  54. Brewer GJ, Askari F, Dick RB, et al. Treatment of Wilson’s disease with tetrathiomolybdate: V. Control of free copper by tetrathiomolybdate and a comparison with trientine. Transl Res. 2009;154(2):70–7.

    Article  CAS  PubMed  Google Scholar 

  55. Brewer GJ, Askari F, Lorincz MT, et al. Treatment of Wilson disease with ammonium tetrathiomolybdate: IV. Comparison of tetrathiomolybdate and trientine in a double-blind study of treatment of the neurologic presentation of Wilson disease. Arch Neurol. 2006;63(4):521–7.

    Article  PubMed  Google Scholar 

  56. DuBois RS, Rodgerson DO, Martineau G, et al. Orthotopic liver transplantation for Wilson’s disease. Lancet. 1971;1(7698):505–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dhawan A, Taylor RM, Cheeseman P, De Silva P, Katsiyiannakis L, Mieli-Vergani G. Wilson’s disease in children: 37-year experience and revised King’s score for liver transplantation. Liver Transpl. 2005;11(4):441–8.

    Article  PubMed  Google Scholar 

  58. Weiss KH, Schafer M, Gotthardt DN, et al. Outcome and development of symptoms after orthotopic liver transplantation for Wilson disease. Clin Transpl. 2013;27(6):914–22.

    Article  Google Scholar 

  59. Schilsky ML. Wilson disease: treatment and prognosis: UpToDate; 2015.

    Google Scholar 

  60. Arnon R, Annunziato R, Schilsky M, et al. Liver transplantation for children with Wilson disease: comparison of outcomes between children and adults. Clin Transpl. 2011;25(1):E52–60.

    Article  Google Scholar 

  61. Schilsky ML, Scheinberg IH, Sternlieb I. Liver transplantation for Wilson’s disease: indications and outcome. Hepatology. 1994;19(3):583–7.

    Article  CAS  PubMed  Google Scholar 

  62. Wolman M, Sterk VV, Gatt S, Frenkel M. Primary familial xanthomatosis with involvement and calcification of the adrenals. Report of two more cases in siblings of a previously described infant. Pediatrics. 1961;28:742–57.

    CAS  PubMed  Google Scholar 

  63. Kyriakides EC, Paul B, Balint JA. Lipid accumulation and acid lipase deficiency in fibroblasts from a family with Wolman’s disease, and their apparent correction in vitro. J Lab Clin Med. 1972;80(6):810–6.

    CAS  PubMed  Google Scholar 

  64. Aslanidis C, Klima H, Lackner KJ, Schmitz G. Genomic organization of the human lysosomal acid lipase gene (LIPA). Genomics. 1994;20(2):329–31.

    Article  CAS  PubMed  Google Scholar 

  65. Sando GN, Rosenbaum LM. Human lysosomal acid lipase/cholesteryl ester hydrolase. Purification and properties of the form secreted by fibroblasts in microcarrier culture. J Biol Chem. 1985;260(28):15186–93.

    CAS  PubMed  Google Scholar 

  66. Reiner Z, Guardamagna O, Nair D, et al. Lysosomal acid lipase deficiency—an under-recognized cause of dyslipidaemia and liver dysfunction. Atherosclerosis. 2014;235(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  67. Bernstein DL, Hulkova H, Bialer MG, Desnick RJ. Cholesteryl ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease. J Hepatol. 2013;58(6):1230–43.

    Article  CAS  PubMed  Google Scholar 

  68. Fouchier SW, Defesche JC. Lysosomal acid lipase A and the hypercholesterolaemic phenotype. Curr Opin Lipidol. 2013;24(4):332–8.

    Article  CAS  PubMed  Google Scholar 

  69. Grabowski GA, Charnas L, Du H. Lysosomal acid lipase deficiencies: the Wolman disease/cholesteryl ester storage disease spectrum. In: Valle DS, ALB BV, Kinzler KW, Antonarakis SE, Ballabio A, editors. Metabolic and molecular bases of inherited disease. 8th ed. New York, NY: McGraw-Hill; 2012.

    Google Scholar 

  70. Seedorf U, Wiebusch H, Muntoni S, et al. A novel variant of lysosomal acid lipase (Leu336-->Pro) associated with acid lipase deficiency and cholesterol ester storage disease. Arterioscler Thromb Vasc Biol. 1995;15(6):773–8.

    Article  CAS  PubMed  Google Scholar 

  71. Anderson RA, Bryson GM, Parks JS. Lysosomal acid lipase mutations that determine phenotype in Wolman and cholesterol ester storage disease. Mol Genet Metab. 1999;68(3):333–45.

    Article  CAS  PubMed  Google Scholar 

  72. Beaudet AL, Ferry GD, Nichols BL Jr, Rosenberg HS. Cholesterol ester storage disease: clinical, biochemical, and pathological studies. J Pediatr. 1977;90(6):910–4.

    Article  CAS  PubMed  Google Scholar 

  73. Besley GT, Broadhead DM, Lawlor E, et al. Cholesterol ester storage disease in an adult presenting with sea-blue histiocytosis. Clin Genet. 1984;26(3):195–203.

    Article  CAS  PubMed  Google Scholar 

  74. Burke JA, Schubert WK. Deficient activity of acid lipase in cholesterol-ester storage disease. J Lab Clin Med. 1971;78(6):988–9.

    CAS  PubMed  Google Scholar 

  75. Crocker AC, Vawter GF, Neuhauser EB, Rosowsky A. Wolman’s disease: three new patients with a recently described lipidosis. Pediatrics. 1965;35:627–40.

    CAS  PubMed  Google Scholar 

  76. D’Agostino D, Bay L, Gallo G, Chamoles N. Cholesterol ester storage disease: clinical, biochemical, and pathological studies of four new cases. J Pediatr Gastroenterol Nutr. 1988;7(3):446–50.

    Article  PubMed  Google Scholar 

  77. Dalgic B, Sari S, Gunduz M, et al. Cholesteryl ester storage disease in a young child presenting as isolated hepatomegaly treated with simvastatin. Turk J Pediatr. 2006;48(2):148–51.

    PubMed  Google Scholar 

  78. Di Bisceglie AM, Ishak KG, Rabin L, Hoeg JM. Cholesteryl ester storage disease: hepatopathology and effects of therapy with lovastatin. Hepatology. 1990;11(5):764–72.

    Article  PubMed  Google Scholar 

  79. Dincsoy HP, Rolfes DB, McGraw CA, Schubert WK. Cholesterol ester storage disease and mesenteric lipodystrophy. Am J Clin Pathol. 1984;81(2):263–9.

    Article  CAS  PubMed  Google Scholar 

  80. Edelstein RA, Filling-Katz MR, Pentchev P, et al. Cholesteryl ester storage disease: a patient with massive splenomegaly and splenic abscess. Am J Gastroenterol. 1988;83(6):687–92.

    CAS  PubMed  Google Scholar 

  81. Elleder M, Chlumska A, Ledvinova J, Poupetova H. Testis—a novel storage site in human cholesteryl ester storage disease. Autopsy report of an adult case with a long-standing subclinical course complicated by accelerated atherosclerosis and liver carcinoma. Virchows Arch. 2000;436(1):82–7.

    Article  CAS  PubMed  Google Scholar 

  82. Fasano T, Pisciotta L, Bocchi L, et al. Lysosomal lipase deficiency: molecular characterization of eleven patients with Wolman or cholesteryl ester storage disease. Mol Genet Metab. 2012;105(3):450–6.

    Article  CAS  PubMed  Google Scholar 

  83. Hill SC, Hoeg JM, Dwyer AJ, Vucich JJ, Doppman JL. CT findings in acid lipase deficiency: Wolman disease and cholesteryl ester storage disease. J Comput Assist Tomogr. 1983;7(5):815–8.

    Article  CAS  PubMed  Google Scholar 

  84. Kunnert B, Pohlandt K, Ruschke I, Keller E. [Cholesterol ester storage disease and sea-blue histiocytes]. Zentralb Allg Pathol. 1987;133(6):517–25.

    Google Scholar 

  85. Marshall WC, Ockenden BG, Fosbrooke AS, Cumings JN. Wolman’s disease. A rare lipidosis with adrenal calcification. Arch Dis Child. 1969;44(235):331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tylki-Szymanska A, Maciejko D, Wozniewicz B, Muszynska B. Two cases of cholesteryl ester storage disease (CESD) acid lipase deficiency. Hepatogastroenterology. 1987;34(3):98–9.

    CAS  PubMed  Google Scholar 

  87. Young EP, Patrick AD. Deficiency of acid esterase activity in Wolman’s disease. Arch Dis Child. 1970;45(243):664–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang B, Porto AF. Cholesteryl ester storage disease: protean presentations of lysosomal acid lipase deficiency. J Pediatr Gastroenterol Nutr. 2013;56(6):682–5.

    Article  CAS  PubMed  Google Scholar 

  89. Kostner GM, Hadorn B, Roscher A, Zechner R. Plasma lipids and lipoproteins of a patient with cholesteryl ester storage disease. J Inherit Metab Dis. 1985;8(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  90. Ameis D, Brockmann G, Knoblich R, et al. A 5′ splice-region mutation and a dinucleotide deletion in the lysosomal acid lipase gene in two patients with cholesteryl ester storage disease. J Lipid Res. 1995;36(2):241–50.

    CAS  PubMed  Google Scholar 

  91. Redonnet-Vernhet I, Chatelut M, Basile JP, Salvayre R, Levade T. Cholesteryl ester storage disease: relationship between molecular defects and in situ activity of lysosomal acid lipase. Biochem Mol Med. 1997;62(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  92. Redonnet-Vernhet I, Chatelut M, Salvayre R, Levade T. A novel lysosomal acid lipase gene mutation in a patient with cholesteryl ester storage disease. Hum Mutat. 1998;11(4):335–6.

    CAS  PubMed  Google Scholar 

  93. Gasche C, Aslanidis C, Kain R, et al. A novel variant of lysosomal acid lipase in cholesteryl ester storage disease associated with mild phenotype and improvement on lovastatin. J Hepatol. 1997;27(4):744–50.

    Article  CAS  PubMed  Google Scholar 

  94. Klima H, Ullrich K, Aslanidis C, Fehringer P, Lackner KJ, Schmitz G. A splice junction mutation causes deletion of a 72-base exon from the mRNA for lysosomal acid lipase in a patient with cholesteryl ester storage disease. J Clin Invest. 1993;92(6):2713–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pagani F, Garcia R, Pariyarath R, et al. Expression of lysosomal acid lipase mutants detected in three patients with cholesteryl ester storage disease. Hum Mol Genet. 1996;5(10):1611–7.

    Article  CAS  PubMed  Google Scholar 

  96. Muntoni S, Wiebusch H, Funke H, Ros E, Seedorf U, Assmann G. Homozygosity for a splice junction mutation in exon 8 of the gene encoding lysosomal acid lipase in a Spanish kindred with cholesterol ester storage disease (CESD). Hum Genet. 1995;95(5):491–4.

    Article  CAS  PubMed  Google Scholar 

  97. Valayannopoulos V, Mengel E, Brassier A, Grabowski G. Lysosomal acid lipase deficiency: expanding differential diagnosis. Mol Genet Metab. 2017;120(1–2):62–6.

    Article  CAS  PubMed  Google Scholar 

  98. Muntoni S, Wiebusch H, Jansen-Rust M, et al. Prevalence of cholesteryl ester storage disease. Arterioscler Thromb Vasc Biol. 2007;27(8):1866–8.

    Article  CAS  PubMed  Google Scholar 

  99. Scott SA, Liu B, Nazarenko I, et al. Frequency of the cholesteryl ester storage disease common LIPA E8SJM mutation (c.894G>A) in various racial and ethnic groups. Hepatology. 2013;58(3):958–65.

    Article  CAS  PubMed  Google Scholar 

  100. Meikle PJ, Hopwood JJ, Clague AE, Carey WF. Prevalence of lysosomal storage disorders. JAMA. 1999;281(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  101. Valles-Ayoub Y, Esfandiarifard S, No D, et al. Wolman disease (LIPA p.G87V) genotype frequency in people of Iranian-Jewish ancestry. Genet Test Mol Biomarkers. 2011;15(6):395–8.

    Article  CAS  PubMed  Google Scholar 

  102. Balwani M, Breen C, Enns GM, et al. Clinical effect and safety profile of recombinant human lysosomal acid lipase in patients with cholesteryl ester storage disease. Hepatology. 2013;58(3):950–7.

    Article  CAS  PubMed  Google Scholar 

  103. Burton BK, Balwani M, Feillet F, et al. A phase 3 trial of sebelipase alfa in lysosomal acid lipase deficiency. N Engl J Med. 2015;373(11):1010–20.

    Article  CAS  PubMed  Google Scholar 

  104. Valayannopoulos V, Malinova V, Honzik T, et al. Sebelipase alfa over 52 weeks reduces serum transaminases, liver volume and improves serum lipids in patients with lysosomal acid lipase deficiency. J Hepatol. 2014;61(5):1135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Du H, Cameron TL, Garger SJ, et al. Wolman disease/cholesteryl ester storage disease: efficacy of plant-produced human lysosomal acid lipase in mice. J Lipid Res. 2008;49(8):1646–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jones SA, Valayannopoulos V, Schneider E, et al. Rapid progression and mortality of lysosomal acid lipase deficiency presenting in infants. Genet Med. 2016;18(5):452–8.

    Article  PubMed  Google Scholar 

  107. Burton BK, Deegan PB, Enns GM, et al. Clinical features of lysosomal acid lipase deficiency. J Pediatr Gastroenterol Nutr. 2015;61(6):619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jones SA, Brassier A, Hughes J, Plantaz D, Vara R, Breen C, Gargus JJ, Valayannopoulos V. Effect of sebelipase alfa on survival and liver function in infants with rapidly progressive lysosomal acid lipase deficiency: 2-year follow-up data. Mol Genet Metab. 2016;117(2):S63.

    Article  Google Scholar 

  109. Pericleous M, Kelly C, Wang T, Livingstone C, Ala A. Wolman’s disease and cholesteryl ester storage disorder: the phenotypic spectrum of lysosomal acid lipase deficiency. Lancet Gastroenterol Hepatol. 2017;2:670–9.

    Article  PubMed  Google Scholar 

  110. Laurell CB, Eriksson S. The electrophoretic α;1-globulin pattern of serum in α;1-antitrypsin deficiency. Scand J Clin Lab Invest. 1963;15(2):132–40.

    Article  CAS  Google Scholar 

  111. Sharp HL, Bridges RA, Krivit W, Freier EF. Cirrhosis associated with alpha-1-antitrypsin deficiency: a previously unrecognized inherited disorder. J Lab Clin Med. 1969;73(6):934–9.

    CAS  PubMed  Google Scholar 

  112. Teckman JH, Mangalat N. Alpha-1 antitrypsin and liver disease: mechanisms of injury and novel interventions. Expert Rev Gastroenterol Hepatol. 2015;9(2):261–8.

    Article  CAS  PubMed  Google Scholar 

  113. Janus ED, Phillips NT, Carrell RW. Smoking, lung function, and alpha 1-antitrypsin deficiency. Lancet. 1985;1(8421):152–4.

    Article  CAS  PubMed  Google Scholar 

  114. Mayer AS, Stoller JK, Bucher Bartelson B, James Ruttenber A, Sandhaus RA, Newman LS. Occupational exposure risks in individuals with PI*Z alpha(1)-antitrypsin deficiency. Am J Respir Crit Care Med. 2000;162(2 Pt 1):553–8.

    Article  CAS  PubMed  Google Scholar 

  115. Piitulainen E, Carlson J, Ohlsson K, Sveger T. Alpha1-antitrypsin deficiency in 26-year-old subjects: lung, liver, and protease/protease inhibitor studies. Chest. 2005;128(4):2076–81.

    Article  CAS  PubMed  Google Scholar 

  116. Crowther DC, Belorgey D, Miranda E, Kinghorn KJ, Sharp LK, Lomas DA. Practical genetics: alpha-1-antitrypsin deficiency and the serpinopathies. Eur J Hum Genet. 2004;12(3):167–72.

    Article  CAS  PubMed  Google Scholar 

  117. Fairbanks KD, Tavill AS. Liver disease in alpha 1-antitrypsin deficiency: a review. Am J Gastroenterol. 2008;103(8):2136–41; quiz 2142.

    Article  CAS  PubMed  Google Scholar 

  118. Marcus NY, Brunt EM, Blomenkamp K, et al. Characteristics of hepatocellular carcinoma in a murine model of alpha-1-antitrypsin deficiency. Hepatol Res. 2010;40(6):641–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rudnick DA, Liao Y, An JK, Muglia LJ, Perlmutter DH, Teckman JH. Analyses of hepatocellular proliferation in a mouse model of alpha-1-antitrypsin deficiency. Hepatology. 2004;39(4):1048–55.

    Article  CAS  PubMed  Google Scholar 

  120. Janciauskiene S, Wallmark A, Piitulainen E, Kohnlein T, Welte T, Sveger T. Performance of enhanced liver fibrosis plasma markers in asymptomatic individuals with ZZ alpha1-antitrypsin deficiency. Eur J Gastroenterol Hepatol. 2011;23(8):716–20.

    Article  CAS  PubMed  Google Scholar 

  121. Blanco I, Bueno P, Diego I, et al. Alpha-1 antitrypsin Pi*Z gene frequency and Pi*ZZ genotype numbers worldwide: an update. Int J Chron Obstruct Pulmon Dis. 2017;12:561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. de Serres FJ, Blanco I, Fernandez-Bustillo E. PI S and PI Z alpha-1 antitrypsin deficiency worldwide. A review of existing genetic epidemiological data. Monaldi Arch Chest Dis. 2007;67(4):184–208.

    CAS  PubMed  Google Scholar 

  123. de Serres FJ, Blanco I, Fernandez-Bustillo E. Estimates of PI*S and PI*Z Alpha-1 antitrypsin deficiency alleles prevalence in the Caribbean and North, Central and South America. Monaldi Arch Chest Dis. 2009;71(3):96–105.

    CAS  PubMed  Google Scholar 

  124. Sveger T. Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med. 1976;294(24):1316–21.

    Article  CAS  PubMed  Google Scholar 

  125. O’Brien ML, Buist NR, Murphey WH. Neonatal screening for alpha1-antitrypsin deficiency. J Pediatr. 1978;92(6):1006–10.

    Article  PubMed  Google Scholar 

  126. Silverman EK, Miletich JP, Pierce JA, et al. Alpha-1-antitrypsin deficiency. High prevalence in the St. Louis area determined by direct population screening. Am Rev Respir Dis. 1989;140(4):961–6.

    Article  CAS  PubMed  Google Scholar 

  127. Stoller JK, Aboussouan LS. A review of alpha1-antitrypsin deficiency. Am J Respir Crit Care Med. 2012;185(3):246–59.

    Article  CAS  PubMed  Google Scholar 

  128. Blanco I, de Serres FJ, Fernandez-Bustillo E, Lara B, Miravitlles M. Estimated numbers and prevalence of PI*S and PI*Z alleles of alpha1-antitrypsin deficiency in European countries. Eur Respir J. 2006;27(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  129. Fahndrich S, Herr C, Greulich T, et al. Sex differences in alpha-1-antitrypsin deficiency lung disease-analysis from the German registry. COPD. 2015;12(Suppl 1):58–62.

    Article  PubMed  Google Scholar 

  130. Pardinas-Gutierrez MA, Mirsaeidi M, Sandhaus RA, Campos M. Gender differences in Alpha-1 antritrypsin deficiency [abstract A.43]. Am J Respir Crit Care Med. 2016;193:A1571.

    Google Scholar 

  131. McElvaney NG, Burdon J, Holmes M, et al. Long-term efficacy and safety of alpha1 proteinase inhibitor treatment for emphysema caused by severe alpha1 antitrypsin deficiency: an open-label extension trial (RAPID-OLE). Lancet Respir Med. 2017;5(1):51–60.

    Article  CAS  PubMed  Google Scholar 

  132. Chapman KR, Stockley RA, Dawkins C, Wilkes MM, Navickis RJ. Augmentation therapy for alpha1 antitrypsin deficiency: a meta-analysis. COPD. 2009;6(3):177–84.

    Article  PubMed  Google Scholar 

  133. Kemmer N, Kaiser T, Zacharias V, Neff GW. Alpha-1-antitrypsin deficiency: outcomes after liver transplantation. Transplant Proc. 2008;40(5):1492–4.

    Article  CAS  PubMed  Google Scholar 

  134. Silverman GA, Pak SC, Perlmutter DH. Disorders of protein misfolding: alpha-1-antitrypsin deficiency as prototype. J Pediatr. 2013;163(2):320–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Powell LW, Seckington RC, Deugnier Y. Haemochromatosis. Lancet. 2016;388(10045):706–16.

    Article  CAS  PubMed  Google Scholar 

  136. Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13(4):399–408.

    Article  CAS  PubMed  Google Scholar 

  137. Simon M, Bourel M, Fauchet R, Genetet B. Association of HLA-A3 and HLA-B14 antigens with idiopathic haemochromatosis. Gut. 1976;17(5):332–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. European Association for the Study of the Liver. EASL clinical practice guidelines for HFE hemochromatosis. J Hepatol. 2010;53(1):3–22.

    Article  Google Scholar 

  139. Schrier SL, Bacon BR. Clinical manifestations and diagnosis of hereditary hemochromatosis. UpToDate; 2016. https://www.uptodate.com/contents/clinical-manifestations-and-diagnosis-of-hereditary-hemochromatosis?source=search_result&search=hereditary%20hemochromatosis&selectedTitle=1~96. Accessed 2 May 2017.

  140. Steinberg KK, Cogswell ME, Chang JC, et al. Prevalence of C282Y and H63D mutations in the hemochromatosis (HFE) gene in the United States. JAMA. 2001;285(17):2216–22.

    Article  CAS  PubMed  Google Scholar 

  141. Adams PC, Reboussin DM, Barton JC, et al. Hemochromatosis and iron-overload screening in a racially diverse population. N Engl J Med. 2005;352(17):1769–78.

    Article  CAS  PubMed  Google Scholar 

  142. Asberg A, Hveem K, Thorstensen K, et al. Screening for hemochromatosis: high prevalence and low morbidity in an unselected population of 65,238 persons. Scand J Gastroenterol. 2001;36(10):1108–15.

    Article  CAS  PubMed  Google Scholar 

  143. Bacon BR. Diagnosis and management of hemochromatosis. Gastroenterology. 1997;113(3):995–9.

    Article  CAS  PubMed  Google Scholar 

  144. Beutler E, Gelbart T, West C, et al. Mutation analysis in hereditary hemochromatosis. Blood Cells Mol Dis. 1996;22(2):187–94; discussion 194a–b.

    Article  CAS  PubMed  Google Scholar 

  145. Jouanolle AM, Gandon G, Jezequel P, et al. Haemochromatosis and HLA-H. Nat Genet. 1996;14(3):251–2.

    Article  CAS  PubMed  Google Scholar 

  146. Jazwinska EC, Cullen LM, Busfield F, et al. Haemochromatosis and HLA-H. Nat Genet. 1996;14(3):249–51.

    Article  CAS  PubMed  Google Scholar 

  147. Carella M, D’Ambrosio L, Totaro A, et al. Mutation analysis of the HLA-H gene in Italian hemochromatosis patients. Am J Hum Genet. 1997;60(4):828–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Beutler E, Felitti VJ, Koziol JA, Ho NJ, Gelbart T. Penetrance of 845G-->A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet. 2002;359(9302):211–8.

    Article  PubMed  Google Scholar 

  149. Olynyk JK, Cullen DJ, Aquilia S, Rossi E, Summerville L, Powell LW. A population-based study of the clinical expression of the hemochromatosis gene. N Engl J Med. 1999;341(10):718–24.

    Article  CAS  PubMed  Google Scholar 

  150. Aguilar-Martinez P, Bismuth M, Blanc F, et al. The Southern French registry of genetic hemochromatosis: a tool for determining clinical prevalence of the disorder and genotype penetrance. Haematologica. 2010;95(4):551–6.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Walsh A, Dixon JL, Ramm GA, et al. The clinical relevance of compound heterozygosity for the C282Y and H63D substitutions in hemochromatosis. Clin Gastroenterol Hepatol. 2006;4(11):1403–10.

    Article  CAS  PubMed  Google Scholar 

  152. Allen KJ, Gurrin LC, Constantine CC, et al. Iron-overload-related disease in HFE hereditary hemochromatosis. N Engl J Med. 2008;358(3):221–30.

    Article  CAS  PubMed  Google Scholar 

  153. Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS, American Association for the Study of Liver Diseases. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology. 2011;54(1):328–43.

    Article  PubMed  Google Scholar 

  154. Rombout-Sestrienkova E, Nieman FH, Essers BA, et al. Erythrocytapheresis versus phlebotomy in the initial treatment of HFE hemochromatosis patients: results from a randomized trial. Transfusion. 2012;52(3):470–7.

    Article  CAS  PubMed  Google Scholar 

  155. Rahko PS, Salerni R, Uretsky BF. Successful reversal by chelation therapy of congestive cardiomyopathy due to iron overload. J Am Coll Cardiol. 1986;8(2):436–40.

    Article  CAS  PubMed  Google Scholar 

  156. Nielsen P, Fischer R, Buggisch P, Janka-Schaub G. Effective treatment of hereditary haemochromatosis with desferrioxamine in selected cases. Br J Haematol. 2003;123(5):952–3.

    Article  PubMed  Google Scholar 

  157. Phatak P, Brissot P, Wurster M, et al. A phase 1/2, dose-escalation trial of deferasirox for the treatment of iron overload in HFE-related hereditary hemochromatosis. Hepatology. 2010;52(5):1671–779.

    Article  CAS  PubMed  Google Scholar 

  158. Cancado R, Melo MR, de Moraes Bastos R, et al. Deferasirox in patients with iron overload secondary to hereditary hemochromatosis: results of a 1-yr Phase 2 study. Eur J Haematol. 2015;95(6):545–50.

    Article  CAS  PubMed  Google Scholar 

  159. Yu L, Ioannou GN. Survival of liver transplant recipients with hemochromatosis in the United States. Gastroenterology. 2007;133(2):489–95.

    Article  PubMed  Google Scholar 

  160. Jones SA, Plantaz D, Vara R, et al. Effect of sebelipase alfa on survival and liver function in infants with rapidly progressive lysosomal acid lipase deficiency. Mol Genet Metab. 2015;114(2):S59.

    Google Scholar 

  161. US National Institutes of Health. ClinicalTrials.gov identifier NCT02112994. 2016.

  162. US National Institutes of Health. ClinicalTrials.gov identifier NCT02193867. 2016. https://clinicaltrials.gov/ct2/results?term=NCT02193867&Search=Search. Accessed 18 Dec 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Schilsky .

Editor information

Editors and Affiliations

Summary Table of Landmark Literature

Summary Table of Landmark Literature

Wilson disease

Study title and authors

Study design

Summary results

Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Samuel Alexander Kinnier Wilson, Brain 1912: 34; 295–509

Case series

13 patients with progressive lenticular degeneration with associated liver cirrhosis

La dégénérescence hépato-lenticulaire (Maladie de Wilson—Pseudo-sclérose). Hall HC, Masson, Paris, 1921

Scheinberg IH, Gitlin D. Deficiency of ceruloplasmin in patients with hepatolenticular degeneration (Wilson’s disease). Science 1952, 116:484–5

Biochemical abnormalities in Wilson’s disease. Bearn AG and Kunkel HG, J Clin Invest, 1952, 31:616

Case Control study

Pattern of inheritance described as autosomal recessive

Caeruloplasmin deficiency as a phenotypic marker that can be used for disease screening

Assignment of the gene for Wilson disease to chromosome 13: linkage to the esterase D locus. Frydman M et al., Proc Natl Acad Sci U S A. 1985;82(6):1819–21

Linkage analysis

Localization of disease locus to chromosome 13

Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Vulpe C et al., Nat Genet. 1993;3(1):7–13

Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Chelly J et al., Nat Genet. 1993;3(1):14–9

Gene isolation and sequencing

The gene for Menkes disease encodes a copper-transporting P-type ATPase

The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Bull PC et al., Nat Genet. 1993;5(4):327–37

Gene isolation and sequencing

The gene for Wilson disease encodes a copper-transporting P-type ATPase

Isolation of a partial candidate gene for Menkes disease by positional cloning. Mercer JF et al., Nat Genet. 1993;3(1):20–5

Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Petrukhin K et al., Nat Genet. 1993;5(4):338–43

The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Tanzi RE et al., Nat Genet. 1993;5(4):344–50

Gene isolation, sequencing, linkage disequilibrium and haplotype analysis

ATP7B gene is identified as the gene for Wilson disease. Specific mutations begin to be recognised

Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Yamaguchi Y et al., Biochem Biophys Res Commun 1993;197:271–7

Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase: genomic organization, alternative splicing, and structure/function predictions. Petrukhin K et al., Hum Mol Genet. 1994;3(9):1647–56

Screening of cDNA clones, genomic organization, alternative splicing

Identification of disease-specific mutations and ATP7B polymorphisms and prediction of structure/function features of WD protein

  1. Note: These studies were collectively limited by the small number of patients included due to the rarity of the condition

Α1-Antitrypsin deficiency (A1AD)

Study title and authors

Study design/method

Summary results

The electrophoretic alpha-1-globulin pattern of serum in alpha-1-antitrypsin deficiency. Laurell C-B et al., Scand J Clin Lab Invest 1963, 15:132–140

Serum protein electrophoresis

Absence of the α1-globulin peak in many patients with COPD noticed

Cirrhosis associated with alpha-1-antitrypsin deficiency: a previously unrecognized inherited disorder. Sharp HL et al., J Lab Clin Med 1969, 73:934–939

Observational study

A1AD is associated with liver disease and cirrhosis

Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. Tomas Sveger, N Engl J Med 1976; 294:1316–1321

Prospective study

Liver disease has been associated with the PiZ and PiSZ phenotypes. Approximately 8% of patients developed clinically significant liver disease

α1-Antitrypsin deficiency in 26-year-old subjects. Piitulainen E et al., Chest 2005, 128:2076–2081

Case-control study

Interplay of exogenous and endogenous factors will determine phenotype and outcomes

Performance of enhanced liver fibrosis plasma markers in asymptomatic individuals with ZZ a1-antitrypsin deficiency. Janciauskiene S et al., Eur J Gastroenterol Hepatol 2011, 23:716–720

Case-control study

The enhanced liver fibrosis plasma markers are useful in identifying PiZZ young adults who are at risk of developing significant liver disease

Characteristics of hepatocellular carcinoma in a murine model of alpha-1-antitrypsin deficiency. Marcus NY et al., Hepatol Res. 2010, 40:641–653

Analyses of hepatocellular proliferation in a mouse model of alpha-1-antitrypsin deficiency. Rudnick DA et al., Hepatology. 2004, 39:1048–1055

Animal studies

Association of the homozygous PiZZ phenotype with HCC

  1. Note: These studies were collectively limited by the small number of patients included due to the rarity of the condition
  2. Abbreviations: COPD chronic obstructive pulmonary disease, ELF enhanced liver fibrosis, HCC hepatocellular carcinoma

Hereditary haemochromatosis

Study title and authors

Study design/method

Summary results

Association of HLA-A3 and HLA-B14 antigens with idiopathic haemochromatosis. Simon M et al., Gut 1976, 17:332–334

Case series with determination of histocompatibility antigens

Idiopathic haemochromatosis is a genetic condition and the responsible gene may be localized to the region of the histocompatibility complex

A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Feder JN et al. Nat Genet 1996;13:399–408

Disequilibrium and full haplotype analysis

Identification of gene for most common form of hereditary hemochromatosis. Close association of HLA-H (renamed later as HFE) to the locus of HLA-A3 on chromosome 6 and identification of pathogenic mutations of this gene and corresponding change in HFE protein that potentially leads to disease

Hemochromatosis and iron-overload screening in a racially diverse population. Adams PC et al., N Engl J Med 2005;352:1769–1778

Iron-overload-related disease in HFE hereditary hemochromatosis. Allen KJ et al., N Engl J Med 2008, 358:221–230

Screening for hemochromatosis: high prevalence and low morbidity in an unselected population of 65,238 persons. Asberg A et al., Scand J Gastroenterol 2001, 36:1108–1115

Penetrance of 845G–>A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Beutler E et al., Lancet 2002, 359:211–218

Population studies with a pooled cohort of 235,663 people

The prevalence of C282Y homozygosity in the general population is 1:146–333

European association for the study of the liver. EASL clinical practice guidelines for HFE hemochromatosis. Journal of Hepatology 2010, 53:3–22

Meta-analysis of 2802 patients with phenotypic HH from 32 studies

80.6% of patients are C282Y/C282Y homozygotes and 5.3% compound heterozygotes (C282Y/H63D)

  1. Abbreviations: HH hereditary haemochromatosis

Lysosomal acid lipase deficiency

Study title and authors

Study design/method

Summary results/milestone

Primary familial xanthomatosis with involvement and calcification of the adrenals. Report of two more cases in siblings of a previously described infant. Wolman, M. et al., Pediatrics, 1961. 28: p. 742–57

Observational study

Moshe Wolman describes the first case series of three siblings with Wolman disease

Lipid accumulation and acid lipase deficiency in fibroblasts from a family with Wolman’s disease, and their apparent correction in vitro. Kyriakides EC et al., J Lab Clin Med, 1972. 80(6): p. 810–6

Case control study measuring acid lipase activity of cultured fibroblasts

Acid lipase deficiency is demonstrated in fibroblasts

Genomic organization of the human lysosomal acid lipase gene (LIPA). Aslanidis, C et al., Genomics, 1994. 20(2): p. 329–31

Gene isolation, sequencing and linkage

The lipase gene(LIPA) is assigned to locus 10q23.2q23.3

Lysosomal acid lipase/cholesteryl ester hydrolase. Purification and properties of the form secreted by fibroblasts in microcarrier culture. Sando GM et al. J Biol Chem, 1985. 260(28): p. 15186–93

Enzyme purification, structural analysis and ascertainment of catalytic properties of the human enzyme

Human LAL is purified in small amounts

Wolman disease/cholesteryl ester storage disease: efficacy of plant-produced human lysosomal acid lipase in mice. Du H et al., J Lipid Res, 2008. 49(8): p. 1646–57

Animal study

Enzyme replacement therapy effective in the murine model

Clinical effect and safety profile of recombinant human lysosomal acid lipase in patients with cholesteryl ester storage disease. Balwani M et al., Hepatology, 2013. 58(3): p. 950–7

Sebelipase alfa over 52 weeks reduces serum transaminases, liver volume and improves serum lipids in patients with lysosomal acid lipase deficiency. Valayannopoulos V et al., J Hepatol, 2014. 61(5): p. 1135–42

Phase I–II interventional trial

Enzyme replacement therapy is tried successfully on humans

A phase 3 trial of sebelipase alfa in lysosomal acid lipase deficiency. Burton BK et al., N Engl J Med, 2015. 373(11): p. 1010–20

Phase III interventional trial

Enzyme replacement therapy has been shown to successfully normalise ALT and AST levels, improve LDL and HDL, reduce hepatic steatosis and reduce spleen volume

  1. Abbreviations: ALT alanine aminotransferase, AST aspartate aminotransferase, LDL low-density lipoprotein, HDL high-density lipoprotein

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pericleous, M., Kelly, C., Ala, A., Schilsky, M.L. (2019). The Epidemiology of Rare Hereditary Metabolic Liver Diseases. In: Wong, R., Gish, R. (eds) Clinical Epidemiology of Chronic Liver Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-94355-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94355-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94354-1

  • Online ISBN: 978-3-319-94355-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics