Advertisement

Human-Inspired Balance Control of a Humanoid on a Rotating Board

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 784)

Abstract

We present a stability analysis of the upright stance of a model of a humanoid robot balancing on a rotating board and driven by a human-inspired control strategy. The humanoid-board system is modeled as a triple inverted pendulum actuated by torques at the board’s hinge, ankle joint, and hip joint. The ankle and hip torques consider proprioceptive and vestibular angular information and are affected by time delays. The stability regions in different parameter’ spaces are bounded by pitchfork and Hopf’s bifurcations. It is shown that increasing time delays do not affect the pitchfork but they shrink the Hopf bifurcations. Moreover, the human-inspired control strategy is able to control the upright stance of a humanoid robot in the presence of time delays. However, more theoretical and experimental studies are necessary to validate the present results.

Keywords

Humanoid robot Stability analysis Upright stance Delay differential equation DDE-BIFTOOL 

References

  1. 1.
    Moran, M.E.: The da Vinci Robot. J. Endourol. 20, 986–990 (2006)CrossRefGoogle Scholar
  2. 2.
    Fujiwara, K., Kanehiro, F., Kajita, S., Kaneko, K., Yokoi, K., Hirukawa, H.: UKEMI: falling motion control to minimize damage to biped humanoid robot. In: International Conference on Intelligent Robots and System. IEEE (2002)Google Scholar
  3. 3.
    Tahboub, K.A.: Biologically-inspired humanoid postural control. J. Physiol. Paris, 103, 195–210 (2009)CrossRefGoogle Scholar
  4. 4.
    Peterka, R.J.: Comparison of human and humanoid robot control of upright stance. J. Physiol. Paris, 103, 149–158 (2009)CrossRefGoogle Scholar
  5. 5.
    Hyon, S., Cheng, G.: Passivity-based full-body force control for humanoids and application to dynamic balancing and locomotion. In: International Conference on Intelligent Robots and System. IEEE (2006)Google Scholar
  6. 6.
    Vukobratovic, M., Borovac, B.: Zero-moment point -thirty five years of its life. Int. J. Humanoid Robot. 1, 157–173 (2004)CrossRefGoogle Scholar
  7. 7.
    Tamegaya, K., Kanamiya, Y., Nagao, M., Sato, D.: Inertia-coupling based balance control of a humanoid robot on unstable ground. In: International Conference on Humanoid Robots. IEEE (2008)Google Scholar
  8. 8.
    Li, Y., Levine, W.S.: An optimal control model for human postural regulation. In: American Control Conference. IEEE (2009)Google Scholar
  9. 9.
    Li, Y., Levine, W.S.: An optimal model predictive control model for human postural regulation.In: Mediterranean Conference on Control and Automation. IEEE (2009)Google Scholar
  10. 10.
    Li, Y., Levine, W.S.: Models for human postural regulation that include realistic delays and partial observations. In: Conference on Decision and Control. IEEE (2009)Google Scholar
  11. 11.
    Aftab, Z., Robert, T., Wieber, P.-B.: Ankle, hip and stepping strategies for humanoid balance recovery with a single model predictive control scheme. In: IEEE International Conference on Humanoid Robots. IEEE (2012)Google Scholar
  12. 12.
    Castano, J.A., Zhou, C., Li, Z., Tsagarakis, N.: Robust model predictive control for humanoids standing balancing. International Conference on Advanced Robotics and Mechatronics. IEEE (2016)Google Scholar
  13. 13.
    Bilgin, N., Ozgoren, M.K.: A balance keeping control for humanoid robots by using model predictive control. In: International Carpathian Control Conference. IEEE (2016)Google Scholar
  14. 14.
    Mergner, T., Schweigart, G., Fennell, L.: Vestibular humanoid postural control. J. Physiol. Paris, 103, 178–194 (2009)CrossRefGoogle Scholar
  15. 15.
    Jeka, J.J., Schöner, G., Dijkstra, T., Ribeiro, P., Lackner, J.R.: Coupling of fingertip somatosensory information to head and body sway. Exp. Brain Res. 113, 475–483 (1997)CrossRefGoogle Scholar
  16. 16.
    Mergner, T.: A neurological view on reactive human stance control. Ann. Rev. Control, 34, 177–198 (2010)CrossRefGoogle Scholar
  17. 17.
    Ishida, A., Imai, S., Fukuoka, Y.: Analysis of the posture control system under fixed and sway-referenced support conditions. IEEE Trans. Biomed. Eng. Inst. Electr. Electron. Eng. 44, 331–336 (1997)Google Scholar
  18. 18.
    Stepan, G.: Delay effects in the human sensory system during balancing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 1195–1212 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Atay, F.M.: Balancing the inverted pendulum using position feedback. Appl. Math. Lett. 12, 51–56 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Peterka, R.J.: Sensorimotor integration in human postural control. J. Neurophysiol. 88, 1097–1118 (2002)CrossRefGoogle Scholar
  21. 21.
    Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations. J. Comput. Appl. Math. 265–275 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sieber, J., Engelborghs, K., Luzyanina, T., Samaey, G., Roose, D.: DDE-BIFTOOL v.3.0 Manual: bifurcation analysis of delay differential equations [Internet] (2016). http://arxiv.org/abs/1406.7144
  23. 23.
    Cruise, D.R., Chagdes, J.R., Liddy, J.J., Rietdyk, S., Haddad, J.M., Zelaznik, H.N., et al.: An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability. J. Biomech. 60, 48–56 (2017)CrossRefGoogle Scholar
  24. 24.
    Chagdes, J.R., Haddad, J.M., Rietdyk S, Zelaznik HN, Raman A.: Understanding the role of time-delay on maintaining upright stance on rotational balance boards. International Design Engineering Technical Conference. ASME (2015)Google Scholar
  25. 25.
    Chagdes J.R., Rietdyk, S., Jeffrey, M.H., Howard, N.Z., Raman, A.: Dynamic stability of a human standing on a balance board. J. Biomech. 46, 2593–2602 (2013)CrossRefGoogle Scholar
  26. 26.
    Chagdes, J.R, Rietdyk, S., Haddad, J.M., Zelaznik, H.N, Cinelli, M.E., Denomme, L.T., et al.: Limit cycle oscillations in standing human posture. J. Biomech. 49, 1170–1179 (2016)CrossRefGoogle Scholar
  27. 27.
    Cruise, D.R., Chagdes, J.R., Raman, A.: Dynamics of upright posture on an active balance board with tunable time-delay and stiffness. In: International Design Engineering Technical Conference. ASME (2016)Google Scholar
  28. 28.
    Asmar, D.C., Jalgha, B., Fakih, A.: Humanoid fall avoidance using a mixture of strategies. Int. J. Humanoid Robot. 9 (2012). https://doi.org/10.1142/S0219843612500028
  29. 29.
    Jalgha, B., Asmar, D., Elhajj, I.: A hybrid ankle/hip preemptive falling scheme for humanoid robots. International Conference on Robotics and Automation. IEEE (2011)Google Scholar
  30. 30.
    Sieber, J., Krauskopf, B.: Complex balancing motions of an inverted pendulum subject to delayed feedback control. Phys. D Nonlinear Phenom. 197, 332–345 (2004)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Dercole, F., Rinaldi, S.: Dynamical systems and their bifurcations. In: Advanced Methods of Biomedical Signal Processing, pp. 291–325 (2011)CrossRefGoogle Scholar
  32. 32.
    Roose, D., Szalai, R.: Continuation and bifurcation analysis of delay differential equations. In: Numerical Continuation Methods for Dynamical Systems. Springer, Dordrecht (2007)Google Scholar
  33. 33.
    Li, X., Ruan, S., Wei, J.: Stability and bifurcation in delay-differential equations with two delays. J. Math. Anal. Appl. 236, 254–280 (1999)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Engelborghs, K.: DDE-BIFTOOL: a Matlab package for bifurcation analysis of delay differential equations (2000)Google Scholar
  35. 35.
    Luzyanina, T., Engelborghs, K., Lust, K., Roose, D.: Computation, continuation and bifurcation analysis of periodic solutions of delay differential equations. Int. J. Bifurc. Chaos Appl. Sci. Eng. 7, 2547–2560 (1997)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Peterka, R.J.: Postural control model interpretation of stabilogram diffusion analysis. Biol. Cybern. 82, 335–343 (2000)CrossRefGoogle Scholar
  37. 37.
    Suzuki, Y., Morimoto, H., Kiyono, K., Morasso, P.G., Nomura, T.: Dynamic determinants of the uncontrolled manifold during human quiet stance. Front. Hum. Neurosci. 10, 618 (2016)Google Scholar
  38. 38.
    Suzuki, Y., Nomura, T., Morasso, P.: Stability of a double inverted pendulum model during human quiet stance with continuous delay feedback control. International Conference of the Engineering in Medicine and Biology Society. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTexas Tech UniversityLubbockUSA

Personalised recommendations