Skip to main content

Methodology of Criterial Evaluation of Consequences of the Industrial Revolution of the 21st Century

  • Chapter
  • First Online:

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 169))

Abstract

The purpose of this chapter is to develop the methodology of criterial evaluation of consequences of the Industrial Revolution of the 21st century. At that, the authors use the traditional methodology of evaluating the effectiveness of socio-economic phenomena and processes, modifying it with application of general scientific methods of research: induction, deduction, analysis, synthesis, and formalization, As a result, the authors offer criteria for determining evaluation of consequences of the Industrial Revolution of the 21st century and methodological recommendations for their practical application. Due to systematization and classification of these criteria, the authors’ formula has been developed for evaluating the effectiveness of the Industrial Revolution of the 21st century in the sphere of Industry 4.0. The advantages of the offered methodology of criterial evaluation of consequences of the Industrial Revolution of the 21st century is consideration of not only main and target indicators of formation and development of Industry 4.0 in modern economic systems but also additional indicators. The offered recommendations for bringing the indicators to general measuring units with the help of special coefficients allow conducting complete and complex evaluation of consequences of the Fourth Industrial Revolution. The advantage of the offered methodology is high level of its detalization. The explained logic of treatment of the results of criterial evaluation of consequences of the Industrial Revolution of the 21st century with the help of this methodology envisages not only traditional accounting of the value of resulting indicator—coefficient of effectiveness of the Industrial Revolution of the 21st century in the sphere of Industry 4.0 but also considering other estimate criteria. Their model combinations allow determining the implemented scenarios of formation and development of Industry 4.0 in the conditions of knowledge economy’s formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bauernhansl, T., Schatz, A., & Jäger, J. (2014). Complexity management—industry 4.0 and the consequences: New challenges for sociotechnical production systems | [Komplexität bewirtschaften –Industrie 4.0 und die Folgen: Neue Herausforderungen für sozio-technische Produktionssysteme]. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 109(5), 347–350.

    Article  Google Scholar 

  • Bisang, R., Campi, M., & Anlló, G. (2015). Argentine agriculture: Technological revolution, agro-industrial transformation and territorial impacts | [L’agriculture argentine: Révolution technologique, transformation agro-industrielle et impacts territoriaux]. Geographie Economie Societe, 17(4), 409–432.

    Google Scholar 

  • Bogoviz, A. V., Lobova, S. V., Ragulina, Y. V., Luchitskaya, L. B., & Shutova, T. V. (2017). Boosting innovative activity in companies: Problems and potential. Journal of Applied Economic Sciences, 12(6), 1690–1701.

    Google Scholar 

  • Bogoviz, A. V., Ragulina, Y. V., Morozova, I. A., & Litvinova, T. N. (2018). Experience of modern Russia in managing economic growth. Studies in Systems, Decision and Control, 135, 147–154.

    Article  Google Scholar 

  • Bosso, C. J. (2012). Policy consequences of the “Next the Industrial Revolution”. Governing Uncertainty: Environmental Regulation in the Age of Nanotechnology (pp. 1–11.). Abingdon (UK): Taylor and Francis.

    Google Scholar 

  • De Aguirre, I. F. (2017). Social consequences of technological development. beyond industry 4.0 | [Consecuencias sociales del desarrollo tecnológico. Más allá de la industria 4.0]. Dyna (Spain), 92(5), pp. 481–482.

    Google Scholar 

  • Demel, J., Bockelmann, C., &  Dekorsy, A. (2017). Evaluation of a software defined GFDM implementation for industry 4.0 applications. In Proceedings of the IEEE International Conference on Industrial Technology, 7915548, pp. 1283–1288.

    Google Scholar 

  • Demeter, G. (2010). The early effects of the industrial revolution on the Balkan Peninsula and the economic crisis in 1846–1847 (based on the commercial registers of Salonica). Bulgarian Historical Review, 38(1–2), 151–171.

    MathSciNet  Google Scholar 

  • Li, G., Hou, Y., & Wu, A. (2017). Fourth the industrial revolution: Technological drivers, impacts and coping methods. Chinese Geographical Science, 27(4), 626–637.

    Article  Google Scholar 

  • Mueller-Hummel, P., & Langhorst, T. (2016, October). Impact of the fourth the industrial revolution to complex aerospace “cFRP/Ti drilling applications” in conjunction with advanced cutting tool design and electric ADU’S. SAE Technical Papers, 2(1), pp. 48–54.

    Google Scholar 

  • Murofushi, R. H., & Tavares, J. J. P. Z. S. (2017). Towards fourth the industrial revolution impact: Smart product based on RFID technology. In IEEE Instrumentation and Measurement Magazine, 20(2), 7919135, pp. 51–55.

    Google Scholar 

  • Perini, S., Arena, D., Kiritsis, D., & Taisch, M. (2017). An ontology-based model for training evaluation and skill classification in an industry 4.0 environment. IFIP Advances in Information and Communication Technology, 513, 314–321.

    Article  Google Scholar 

  • Popkova, E. G., Bogoviz, A. V., Ragulina, Y. V., & Alekseev, A. N. (2018). Perspective model of activation of economic growth in modern Russia. Studies in Systems, Decision and Control, 135, 171–17.

    Google Scholar 

  • Saniee, I., Kamat, S., Prakash, S., & Weldon, M. (2017). Will productivity growth return in the new digital era? An analysis of the potential impact on productivity of the fourth the Industrial Revolution. Bell Labs Technical Journal, 2(1), 135–142.

    Google Scholar 

  • Šenberger, T., & Hořická, J. (2013). Structure impact on architectural form of multi-storey factory buildings of the industrial revolution. Structures and architecture: concepts, applications and challenges. In Proceedings of the 2nd International Conference on Structures and Architecture, ICSA 2013, pp. 1923–193.

    Chapter  Google Scholar 

  • Sukhodolov, A. P., Popkova, E. G., & Kuzlaeva, I. M. (2018). Methodological aspects of study of internet economy. Studies in Computational Intelligence, 714, 53–61.

    Google Scholar 

  • Tao, Q., Kang, J., Sun, W., Li, Z., & Huo, X. (2016). Digital evaluation of sitting posture comfort in human-vehicle system under industry 4.0 framework. Chinese Journal of Mechanical Engineering (English Edition), 29(6), 1096–1103.

    Article  Google Scholar 

  • Veselovsky, M. Y., Izmailova, M. A., Bogoviz, A. V., Ragulina, Y. V., & Lobova, S. V. (2017). Fostering the engagement of corporate establishments in the innovation-driven development of Russia’s regions. Journal of Applied Economic Sciences, 12(4), 945–959.

    Google Scholar 

  • Zug, S., Wilske, S., Steup, C., & Lüder, A. (2015). Online evaluation of manipulation tasks for mobile robots in Industry 4.0 scenarios. In IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, 2015-October, 7301455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia V. Ragulina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ragulina, Y.V., Alekseev, A.N., Strizhkina, I.V., Tumanov, A.I. (2019). Methodology of Criterial Evaluation of Consequences of the Industrial Revolution of the 21st Century. In: Popkova, E., Ragulina, Y., Bogoviz, A. (eds) Industry 4.0: Industrial Revolution of the 21st Century. Studies in Systems, Decision and Control, vol 169. Springer, Cham. https://doi.org/10.1007/978-3-319-94310-7_24

Download citation

Publish with us

Policies and ethics