Skip to main content

Paleopedology as a Tool for Reconstructing Paleoenvironments and Paleoecology

  • Chapter
  • First Online:

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

Soils form as a product of physical, chemical, and biological activity at the outermost veneer of Earth’s surface. Once buried and incorporated into the sedimentary record, these soils, now paleosols, preserve archives of ancient climates, ecosystems, and sedimentary systems. Paleopedology , the study of paleosols, includes qualitative interpretation of physical characteristics and quantitative analysis of geochemical and mineralogical assays. In this chapter, the paleosol macroscopic, micromorphological, mineralogical, and geochemical indicators of paleoecology are discussed with emphasis on basic analytical and interpretative techniques. These data can reveal a breadth of site-specific interpretations of vegetation, sedimentary processes, climatic variables, and durations of landscape stability. The well-known soil-forming factors are presented as a theoretical framework for understanding landscape-scale soil evolution through time. Vertical and lateral patterns of stacked paleosols that appear in the rock record are discussed in order to address practical approaches to identifying and describing paleosols in the field. This chapter emphasizes a robust multi-proxy approach to paleopedology that combines soil stratigraphy, morphology, mineralogy, biology, and chemistry to provide an in-depth understanding of paleoecology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amundson, R., Richter, D. D., Humphreys, G. S., Jobbagy, E. G., & Gaillardet, J. (2007). Coupling between biota and Earth materials in the critical zone. Elements, 3, 327–332.

    Article  Google Scholar 

  • An, Z. S., & Porter, S. C. (1997). Millennial-scale climatic oscillations during the last interglaciation in central China. Geology, 25, 603–606.

    Article  Google Scholar 

  • Anderson, S. P., Dietrich, W. E., & Brimhall, G. H. (2002). Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment. Geological Society of America Bulletin, 114, 1143–1158.

    Google Scholar 

  • Ashley, G. M. (2007). Orbital rhythms, monsoons, and playa lake response, Olduvai Basin, equatorial East Africa (ca. 1.85–1.74 Ma). Geology, 35, 1091–1094.

    Article  Google Scholar 

  • Ashley, G. M., & Driese, S. G. (2000). Paleopedology and paleohydrology of a volcaniclastic paleosol interval: implications for Early Pleistocene stratigraphy and paleoclimate record: Olduvai Gorge, Tanzania. Journal of Sedimentary Research, 70, 1065–1080.

    Article  Google Scholar 

  • Ashley, G. M., Barboni, D., Domínguez-Rodrigo, M., Bunn, H. T., Mabulla, A. Z. P., Diez-Martin, F., et al. (2010). Paleoenvironmental and paleoecological reconstruction of a freshwater oasis in savannah grassland at FLK North, Olduvai Gorge, Tanzania. Quaternary Research, 74, 333–343.

    Article  Google Scholar 

  • Ashley, G. M., Deocampo, D. M., Kahmann-Robinson, J. A., & Driese, S. G. (2013). Groundwater-fed wetland sediments and paleosols: it’s all about water table. In S. G. Driese & L. C. Nordt (Eds.), New frontiers in paleopedology and terrestrial paleoclimatology (SEPM Special Publication No. 104) (pp. 47–62). Tulsa: SEPM.

    Google Scholar 

  • Ashley, G. M., Beverly, E. J., Sikes, N. E., & Driese, S. G. (2014). Paleosol diversity in the Olduvai Basin, Tanzania: effects of geomorphology, parent material, depositional environment, and groundwater on soil development. Quaternary International, 322, 66–77.

    Article  Google Scholar 

  • Aslan, A., & Autin, W. J. (1998). Holocene flood-plain soil formation in the southern lower Mississippi Valley: implications for interpreting alluvial paleosols. Geological Society of America Bulletin, 110, 433–449.

    Article  Google Scholar 

  • Atchley, S. C., Nordt, L. C., Dworkin, S. I., Ramezani, J., Parker, W. G., Ash, S. R., et al. (2013). A linkage among Pangean tectonism, cyclic alluviation, climate change, and biologic turnover in the Late Triassic: the record from the Chinle Formation, Southwestern United States. Journal of Sedimentary Research, 83, 1147–1161.

    Article  Google Scholar 

  • Atchley, S., Nordt, L., & Dworkin, S. I. (2004). Eustatic controls on alluvial sequence stratigraphy: a possible example from the Cretaceous-Tertiary transition of the Tornillo Basin, Big Bend National Park, West Texas, U.S.A. Journal of Sedimentary Research, 74, 391–404.

    Article  Google Scholar 

  • Aziz, H. A., Hilgen, F. J., van Luijk, G. M., Sluijs, A., Kraus, M. J., Pares, J. M., et al. (2008). Astronomical climate control on paleosol stacking patterns in the upper Paleocene-lower Eocene Willwood Formation, Bighorn Basin, Wyoming. Geology, 36, 531–534.

    Article  Google Scholar 

  • Bae, C. J. (2013). Archaic Homo sapiens. Nature Education Knowledge, 4, 4.

    Google Scholar 

  • Barboni, D., Ashley, G. M., Domínguez-Rodrigo, M., Bunn, H. T., Mabulla, A., & Baquedano, E. (2010). Phytoliths infer dense and heterogeneous paleovegetation at FLK North and surrounding localities during upper Bed I time, Olduvai Gorge, Tanzania. Quaternary Research, 74, 344–354.

    Article  Google Scholar 

  • Barnaby, R. J., & Rimstidt, J. D. (1989). Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites. Geological Society of America Bulletin, 101, 795–804.

    Article  Google Scholar 

  • Berke, M. A. (2017). Reconstructing Terrestrial Paleoenvironments Using Sedimentary Organic Biomarkers. In D. A. Croft, S. W. Simpson, & D. F. Su (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 121–149). Cham: Springer.

    Google Scholar 

  • Berke, M. A. (2018). Reconstructing terrestrial paleoenvironments using sedimentary organic biomarkers. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 121–149). Cham: Springer.

    Google Scholar 

  • Beverly, E. J., Ashley, G. M., & Driese, S. G. (2014). Reconstruction of a Pleistocene paleocatena using micromorphology and geochemistry of lake margin paleo-Vertisols, Olduvai Gorge, Tanzania. Quaternary International, 322–323, 78–94.

    Article  Google Scholar 

  • Beverly, E. J., Driese, S. G., Peppe, D. J., Arellano, L. N., Blegen, N., Faith, J. T., et al. (2015a). Reconstruction of a semi-arid Late Pleistocene paleocatena from the Lake Victoria region, Kenya. Quaternary Research, 84, 368–381.

    Article  Google Scholar 

  • Beverly, E. J., Driese, S. G., Peppe, D. J., Johnson, C. R., Michel, L. A., Faith, J. T., et al. (2015b). Recurrent spring-fed rivers in a Middle to Late Pleistocene semi-arid grassland: implications for environments of early humans in the Lake Victoria Basin, Kenya. Sedimentology, 62, 1611–1635.

    Article  Google Scholar 

  • Bestland, E. A., & Retallack, G. J. (1993). Volcanically influenced calcareous paleosols from the Kiahera Formation, Rusinga Island, Kenya. Journal of the Geological Society of London, 148, 1067–1078.

    Google Scholar 

  • Bestland, E. A., Retallack, G. J., & Swisher III, C. C. (1997). Stepwise climate change recorded in Eocene-Oligocene paleosol sequences from central Oregon, The Journal of Geology, 105, 153–172.

    Google Scholar 

  • Birkeland, P. W. (1999). Soils and geomorphology. Oxford: Oxford University Press.

    Google Scholar 

  • Blake, G. R., & Hartge, K. H. (1986). Bulk Density. In A. Klute (Ed.), Methods of soil analysis: Part I. physical and mineralogical methods (pp. 363–375). Madison: Soil Science Society of America Inc.

    Google Scholar 

  • Blokhuis, W. A., Kooistra, M. J., & Wilding, L. P. (1990). Micromorphology of cracking clayey soils (Vertisols). In L. A. Douglas (Ed.), Soil micromorphology: a basic and applied science, Developments in Soil Science, 19, 123–148.

    Google Scholar 

  • Bown, T. M., & Kraus, M. J. (1987). Integration of channel and floodplain suites in aggrading fluvial systems, I. Developmental sequence and lateral relations of lower Eocene alluvial paleosols, Willwood Formation, Bighorn Basin, Wyoming. Journal of Sedimentary Petrology, 57, 587–601.

    Google Scholar 

  • Brady, N. C., & Weil, R. R. (2008). The nature and properties of soil (14th ed).

    Google Scholar 

  • Brantley, S. L., Goldhaber, M. B., & Ragnarsdottir, K. V. (2007). Crossing disciplines and scales to understand the Critical Zone. Elements, 3, 307–314.

    Google Scholar 

  • Brimhall, G. H., & Dietrich, W. E. (1987). Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochimica et Cosmochimica Acta, 51, 567–587.

    Article  Google Scholar 

  • Brimhall, G. H., Chadwick, O. A., Lewis, C. J., Compston, W., Williams, I. S., Danti, K. J., et al. (1991a). Deformational mass in invasive processes transport and soil evolution. Science, 255, 695–702.

    Article  Google Scholar 

  • Brimhall, G. H., Lewis, C. J., Ford, C., Bratt, J., Taylor, G., & Warin, O. (1991b). Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in laterization. Geoderma, 51, 51–91.

    Article  Google Scholar 

  • Bradley, R. S. (1999). Paleoclimatology: Reconstructing climates of the quaternary. San Diego: Academic Press.

    Google Scholar 

  • Brewer, R. (1976). Fabric and mineral analysis of soils. New York: Robert E. Krieger Publishing Company.

    Google Scholar 

  • Bronger, A., & Heinkele, T. (1989). Micromorphology and genesis of paleosols in the Luochuan loess section, China: pedostratigraphic and environmental implications. Geoderma, 45, 123–143.

    Google Scholar 

  • Bullock, P., FeDoroff, N., Jungerius, A., Stoops, G., Tursina, T., & Babel, U. (1985). Handbook for soil thin section description. Wolverhampton: Waine Research Publications.

    Google Scholar 

  • Campisano, C. J., & Feibel, C. S. (2008). Depositional environments and stratigraphic summary of the Pliocene Hadar Formation at Hadar, Afar Depression, Ethiopia. In J. Quade & J. G. Wynn (Eds.), The geology of early humans in the Horn of Africa. Geological Society of America Special Paper, 446, 179–201.

    Google Scholar 

  • Cerling, T. E. (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229–240.

    Google Scholar 

  • Cerling, T. E. (2014). Stable isotope evidence for hominin environments in Africa. In T. E. Cerling (Ed.), Treatise on geochemistry, Vol. 14: Archaeology and anthropology (pp. 157–67). Oxford: Pergamon.

    Google Scholar 

  • Cerling, T., & Quade, J. (1993). Stable carbon and oxygen isotopes in soil carbonates. Geophysical Monograph Series 78.

    Google Scholar 

  • Cerling, T. E., & Hay, R. L. (1986). An isotopic study of paleosol carbonates from Olduvai Gorge. Quaternary Research, 25, 63–78.

    Article  Google Scholar 

  • Cerling, T. E., Bowman, J. R., & O’Neil, J. R. (1988). An isotopic study of a fluvial-lacustrine sequence: the Plio-Pleistocene Koobi fora sequence, East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 63, 335–356.

    Article  Google Scholar 

  • Cerling, T. E., Harris, J. M., & Passey, B. H. (2003). Diets of East African bovidae based on stable isotope analysis. Journal of Mammalogy, 84, 456–470.

    Article  Google Scholar 

  • Cerling, T. E., Levin, N. E., Quade, J., Wynn, J. G., Fox, D. L., Kingston, J. D., et al. (2010). Comment on the paleoenvironment of Ardipithecus ramidus. Science, 328, 1105.

    Article  Google Scholar 

  • Cerling, T. E., Wynn, J. G., Andanje, Sa, Bird, M. I., Korir, D. K., Levin, N. E., et al. (2011). Woody cover and hominin environments in the past 6 million years. Nature, 476, 51–56.

    Article  Google Scholar 

  • Chadwick, O. A., & Chorover, J. (2001). The chemistry of pedogenic thresholds. Geoderma, 100, 231–353.

    Article  Google Scholar 

  • Chadwick, O. A., Brimhall, G. H., & Hendricks, D. M. (1991). From a black to a gray box—a mass balance interpretation of pedogenesis. Geomorphology, 3, 369–390.

    Article  Google Scholar 

  • Chen, S. T., Smith, S. Y., Sheldon, N. D., & Strömberg, C. (2015). Regional-scale variability in the spread of grasslands in the late Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 437, 42–52.

    Article  Google Scholar 

  • Cleveland, D. M., Atchley, S. C., & Nordt, L. C. (2007). Continental sequence stratigraphy of the Upper Triassic (Norian Rhaetian) Chinle strata, northern New Mexico, U.S.A.: allocyclic and autocyclic origins of paleosol-bearing alluvial successions. Journal of Sedimentary Research, 77, 909–924.

    Article  Google Scholar 

  • Cleveland, D. M., Nordt, L. C., Dworkin, S. I., & Atchley, S. C. (2008). Pedogenic carbonate isotopes as evidence for extreme climatic events preceding the Triassic-Jurassic boundary: implications for the biotic crisis? Geological Society of America Bulletin, 120, 1408–1415.

    Article  Google Scholar 

  • Clyde, W. C., Gingerich, P. D., Wing, S. L., Rohl, U., Westerhold, T., Bowen, G., et al. (2013). Bighorn Basin Coring Project (BBCP): a continental perspective on early Paleogene hyperthermals. Scientific Drilling, 21–31.

    Google Scholar 

  • Cotton, J. M., & Sheldon, N. D. (2012). High-resolution isotopic record of C4 photosynthesis in a Miocene grassland. Palaeogeography, Palaeoclimatology, Palaeoecology, 337–338, 88–98.

    Google Scholar 

  • Cremeens, D. L., Hart, J. P., & Darmody, R. G. (1998). Complex pedostratigraphy of a terrace fragipan at the Memorial Park site, central Pennsylvania. Geoarchaeology, 13, 339–359.

    Article  Google Scholar 

  • Driese, S., & Foreman, J. L. (1992). Paleopedology and paleoclimatic implications of Late Ordovician vertic paleosols, Juniata Formation, southern Appalachians. Journal of Sedimentology Research, 62, 71–83.

    Google Scholar 

  • Driese, S. G., & Mora, C. I. (1993). Physio-chemical environment of pedogenic carbonate formation in Devonian vertic paleosols, central Appalachians, USA. Sedimentology, 40, 199–216.

    Article  Google Scholar 

  • Driese, S. G., Mora, C. I., Cotter, E., & Foreman, J. L. (1992). Paleopedology and stable isotope chemistry of Late Silurian vertic Paleosols, Bloomsburg formation, central Pennsylvania. Journal of Sedimentary Research, 62(5), 825–841.

    Google Scholar 

  • Driese, S. G., Mora, C. I., Stiles, C. A., Joeckel, R. M., & Nordt, L. C. (2000). Mass-balance reconstruction of a modern Vertisol: implications for interpreting the geochemistry and burial alteration of paleo-Vertisols. Geoderma, 95, 179–204.

    Article  Google Scholar 

  • Driese, S. G., Li, Z.-H., & Horn, S. P. (2005). Late Pleistocene and Holocene climate and geomorphic histories as interpreted from a 23,000 14C yr B.P. paleosol and floodplain soils, southeastern West Virginia, USA. Quaternary Research, 63, 136–149.

    Article  Google Scholar 

  • Driese, S. G., Peppe, D. J., Beverly, E. J., DiPietro, L. M., Arellano, L. N., & Lehmann, T. (2016). Paleosols and paleoenvironments of the early Miocene deposits near Karungu, Lake Victoria, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology, 443, 167–182.

    Article  Google Scholar 

  • Driese, S. G., & Ober, E. G. (2005). Paleopedologic and paleohydrologic records of precipitation seasonality from early Pennsylvanian “underclay” Paleosols, USA. Journal of Sedimentary Research, 75, 997–1010.

    Article  Google Scholar 

  • Driese, S. G., Medaris Jr, L. G., Ren, M., Runkel, A. C., & Langford, R. P. (2007). Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials. The Journal of Geology, 115(4), 387–406.

    Google Scholar 

  • Driese, S. G., Jirsa, M. A., Ren, M., Brantley, S. L., Sheldon, N. D., Parker, D., et al. (2011). Neoarchean paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Research, 189, 1–17.

    Article  Google Scholar 

  • Driese, S. G., & Ashley, G. M. (2016). Paleoenvironmental reconstruction of a paleosol catena, the Zinj archeological level, Olduvai Gorge, Tanzania. Quaternary Research, 85, 133–146.

    Google Scholar 

  • Dworkin, S. I., Nordt, L., & Atchley, S. (2005). Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate. Earth and Planetary Science Letters, 237, 56–68.

    Article  Google Scholar 

  • Eidt, R. C. (1985). Theoretical and practical considerations in the analysis of anthrosols. In G. Rapp & J. A. Gifford (Eds.), Archaeological geology (pp. 155–190). New Haven: Yale University Press.

    Google Scholar 

  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.

    Article  Google Scholar 

  • Fedoroff, N., & Goldberg, P. (1982). Comparative micromorphology of two late Pleistocene paleosols (in the Paris Basin). Catena, 9, 227–251.

    Article  Google Scholar 

  • Fitzpatrick, E. A. (1984). Micromorphology of soils. London and New York: Chapman and Hall.

    Book  Google Scholar 

  • Fitzpatrick, E. A. (1993). Soil microscopy and micromorphology. New York: Wiley.

    Google Scholar 

  • Ferring, C. R. (1992). Alluvial pedology and geoarchaeological research. In V. T. Holliday (Ed.), Soils in archaeology (pp. 1–40). Washington D. C., Smithsonian Institution Press.

    Google Scholar 

  • Follmer, L. R. (1998). Preface. In L. R. Follmer, D. L. Johnson, & J. A. Catt (Eds), Revisitation of concepts in paleopedology: Transactions of the Second International Symposium on Paleopedology. Quaternary International (vol. 51/52, pp. 1–3).

    Google Scholar 

  • Gallagher, T. M., & Sheldon, N. D. (2013). A new paleothermometer for forest paleosols and its implications for Cenozoic climate. Geology, 41, 647–650.

    Article  Google Scholar 

  • Gallagher, T. M., & Sheldon, N. D. (2016). Combining soil water balance and clumped isotopes to understand the nature and timing of pedogenic carbonate formation. Chemical Geology 435, 79–91.

    Google Scholar 

  • Garrett, N. D., Fox, D. L., McNulty, K. P., Tryon, C. A., Faith, J. T., Peppe, D. J., et al. (2015). Stable isotope paleoecology of Late Pleistocene middle stone age humans from the equatorial East Africa, Lake Victoria basin, Kenya. Journal of Human Evolution, 82, 1–14.

    Article  Google Scholar 

  • Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E., et al. (2006). 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70, 1439–1456.

    Article  Google Scholar 

  • Gile, L. H. (1979). Holocene soils in eolian sediments of Baily County, Texas. Soil Science Society of America Journal, 43, 994–1003.

    Article  Google Scholar 

  • Gile, L. H., Peterson, F. F., & Grossman, R. B. (1966). Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Science, 101.

    Google Scholar 

  • Gulbranson, E. L., Montanez, I. P., & Tabor, N. J. (2011). A proxy for humidity and floral province from paleosols. Journal of Geology, 119, 559–573.

    Article  Google Scholar 

  • Guthrie, R. L., & Witty, J. E. (1982). New designations for soil horizons and layers and the new Soil Survey Manual. Soil Science Society of America Journal, 46(2), 443–444.

    Google Scholar 

  • Han, J. T., Fyfe, W. S., & Longstaffe, F. J. (1998). Climatic implications of the S5 paleosol complex on the southernmost Chinese Loess Plateau. Quaternary Research, 50, 21–33.

    Article  Google Scholar 

  • Harnois, L. (1988). The CIW index: a new chemical index of weathering. Sedimentary Geology, 55, 319–322.

    Article  Google Scholar 

  • Harris, W., & White, N. (2008). X-ray diffraction techniques for soil mineral identification. Methods of soil analysis part 5—Mineralogical methods. Madison: Soil Science Society of America.

    Google Scholar 

  • Hasiotis, S. T. (2007). Continental ichnology: fundamental processes and controls on trace-fossil distribution. In W. Miller III (Ed.), Trace fossils—Concepts, problems, prospects (pp. 268–284). Elsevier Press.

    Google Scholar 

  • Hasiotis, S. T., Platt, B. F., Hembree, D.I., & Everhart, M. (2007a). The trace-fossil record of vertebrates. In W. Miller III (Ed.), Trace fossils—Concepts, problems, prospects (pp. 196–218). Elsevier Press.

    Google Scholar 

  • Hasiotis, S. T., Kraus, M. J., & Demko, T. M. (2007b). Climate controls on continental trace fossils. In W. Miller III (Ed.), Trace fossils—Concepts, problems, prospects (pp. 172–195). Elsevier Press.

    Google Scholar 

  • Hasiotis, S. T., & Honey, J. G. (2000). Paleohydrologic and stratigraphic significant of crayfish burrows in continental deposits: examples from several Paleocene Laramide basins in the Rocky Mountains. Journal of Sedimentary Research, 70, 127–139.

    Article  Google Scholar 

  • Hembree, D. I., Platt, B. F. & Smith, J. J. (Eds.) (2014). Experimental approaches to understanding fossil organisms: Lessons from the Living. Netherlands: Springer.

    Google Scholar 

  • Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Perez-Huerta, A., & Yancey, T. E. (2014). Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochimica et Cosmochimica Acta, 139, 362–382.

    Article  Google Scholar 

  • Holliday, V. T. (2004). Soils in archaeological research. Oxford: Oxford University Press.

    Google Scholar 

  • Holliday, V. T. (2006). A history of soil geomorphology in the United States. In B. P. Warkentin (Ed.), Footprints in the soil: People and ideas in soil history (pp. 187–254). Amsterdam: Elsevier.

    Google Scholar 

  • Holliday, V. T., & Gartner, W. G. (2007). Soil phosphorus and archaeology: a review and comparison of methods. Journal of Archaeological Science, 34, 301–333.

    Article  Google Scholar 

  • Holloway, R. L., Broadfield, D. C., & Yuan, M. S. (2004). The human fossil record Vol. 3. Wiley.

    Google Scholar 

  • Hover, V. C., & Ashley, G. M. (2003). Geochemical signatures of paleodepositional and diagenetic environments: a STEM/AEM study of authigenic clay minerals from an arid rift basin, Olduvai Gorge, Tanzania. Clays and Clay Minerals, 51, 231–251.

    Article  Google Scholar 

  • Huggett, R. J. (1998). Soil chronosequences, soil development, and soil evolution: a critical review. Catena, 32, 155–172.

    Article  Google Scholar 

  • Hyland, E. G., Sheldon, N. D., Van der Voo, R., Badgley, C., & Abrajevitch, A. (2015). A new paleoprecipitation proxy based on soil magnetic properties: implications for expanding paleoclimate reconstructions. Geological Society of America Bulletin.

    Google Scholar 

  • Jenny, H. (1941). Factors of soil formation: a system of quantitative pedology. McGraw-Hill book company, Inc.

    Google Scholar 

  • Jenny, H. (1980). The soil resource. Origin and behavior. Berlin: Springer.

    Book  Google Scholar 

  • Kemp, R. A. (1999). Micromorphology of loess-paleosol sequences: a record of paleoenvironmental change. Catena, 35, 179–196.

    Article  Google Scholar 

  • Kraus, M. J. (1987). Integration of channel and floodplain suites in aggrading fluvial systems, II. Vertical relations of alluvial paleosols. Journal of Sedimentary Petrology, 57(4), 602–612.

    Google Scholar 

  • Kraus, M. J. (1997). Lower Eocene alluvial paleosols: pedogenic development, stratigraphic relationships, and paleosol/landscape associations. Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 387–406.

    Article  Google Scholar 

  • Kraus, M. J. (1999). Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Review, 47, 41–70.

    Article  Google Scholar 

  • Kraus, M. J., & Brown, T. M. (1988). Pedofacies analysis; a new approach to reconstructing ancient fluvial sequences. In J. Reinhard & W. R. Sigleo (Eds.), Paleosols and weathering through geologic time: Principles and applications (Geological Society of America Special Paper 216) (pp. 143–152). Denver: Geological Society of America.

    Google Scholar 

  • Kraus, M. J., & Hasiotis, S. T. (2006). Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research, 76, 633–646.

    Article  Google Scholar 

  • Kubiena, W. (1970). Micromorphology of polygenetic soils and paleosoils in polar regions. Annales de Edafologia y Abrobiologia, 845–856.

    Google Scholar 

  • Leighton, M. M. (1937). The significance of profiles of weathering in stratigraphic archaeology. In G. G. MacCurdy (Ed.), Early Man (pp. 163–172). New York: Lippincott.

    Google Scholar 

  • Leopold, M., Völkel, J., Dethier, D., Huber, J., & Steffens, M. (2011). Characteristics of a paleosol and its implication for the Critical Zone development, Rocky Mountain Front Range of Colorado, USA. Applied Geochemistry, 26, S72–S75.

    Article  Google Scholar 

  • Lepre, C. J., Quinn, R. L., Joordens, J. C. a, Swisher, C. C., & Feibel, C. S. (2007). Plio-Pleistocene facies environments from the KBS Member, Koobi Fora Formation: implications for climate controls on the development of lake-margin hominin habitats in the northeast Turkana Basin (northwest Kenya). Journal of Human Evolution, 53, 504–514.

    Google Scholar 

  • Levin, N. E. (2015). Environment and climate of early human evolution. Annual Review of Earth and Planetary Sciences, 43, 405–429.

    Article  Google Scholar 

  • Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., & Ehleringer, J. R. (2006). A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences, USA, 103, 11201–11205.

    Article  Google Scholar 

  • Levin, N. E., Quade, J., Simpson, S. W., Semaw, S., & Rogers, M. J. (2004). Isotopic evidence for Plio-Pleistocene environmental change at Gona, Ethiopia. Earth and Planetary Science Letters, 219, 93–110.

    Article  Google Scholar 

  • Levin, N., Brown, F. H., Behrensmeyer, A. K., Bobe, R., & Cerling, T. E. (2011). Paleosol carbonates from the Omo Group: isotopic records of local and regional environmental change in East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 307, 75–89.

    Article  Google Scholar 

  • Lüdecke, T., Schrenk, F., Thiemeyer, H., Kullmer, O., Bromage, T. G., Sandrock, O., et al. (2016). Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Malawi). Journal of Human Evolution, 90, 163–175.

    Google Scholar 

  • Ludvigson, G. A., Gonzalez, L. A., Fowle, D. A., Roberts, J. A., Driese, S. G., Villarreal, M. A., et al. (2013). Paleoclimatic applications and modern process studies of pedogenic siderite. In S. G. Driese & L. C. Nordt (Eds.), New frontiers in paleopedology and terrestrial paleoclimatology (SEPM Special Publication No. 104) (pp. 47–62). Tulsa: SEPM.

    Google Scholar 

  • Ludvigson, G. A., Gonzalez, L. A., Metzger, R. A., Witzke, B. J., Brenner, R. L., Murillo, A. P., et al. (1998). Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology. Geology, 26, 1039–1042.

    Article  Google Scholar 

  • Lüdecke, T., Schrenk, F., Thiemeyer, H., Kullmer, O., Bromage, T. G., Sandrock, O., et al. (2016b). Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Malawi). Journal of Human Evolution, 90, 163–175.

    Article  Google Scholar 

  • Lukens, W. E., Driese, S. G., Peppe, D. J., & Loudermilk, M. (2017a). Sedimentology, stratigraphy, and paleoclimate at the late Miocene Coffee Ranch fossil site in the Texas Panhandle. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 361–376.

    Google Scholar 

  • Lukens, W. E., Lehmann, T., Peppe, D. J., Fox, D. L., Driese, S. G., & McNulty, K. P. (2017b). The early Miocene Critical Zone at Karungu, Western Kenya: an equatorial, open habitat with few primate remains. Frontiers in Earth Science, 5, 87.

    Google Scholar 

  • Lukens, W. E., Nordt, L. C., Stinchcomb, G. E., Driese, S. G., & Tubbs, J. D. (2018). Reconstructing pH of Paleosols Using Geochemical Proxies. The Journal of Geology, 126(4), 427–449.

    Google Scholar 

  • Mack, G. H., James, W. C., & Monger, H. C. (1993). Classification of paleosols. Geological Society of America Bulletin, 105, 129–136.

    Article  Google Scholar 

  • Machette, M. N. (1985). Calcic soils of the southwestern United States. In Geological Society of America Special Paper 203 (pp. 1–21).

    Google Scholar 

  • Machel, H. G., Mason, R. A., Mariano, A. N., & Mucci, A. (1991). Causes and emission of luminescence in calcite and dolomite. In C. E. Barker and O. C. Kopp (Eds.), Luminescence microscopy and spectroscopy: Quantitative and qualitative applications (SC25) (pp. 9–25). Tulsa: SEPM.

    Google Scholar 

  • Magill, C. R., Ashley, G. M., & Freeman, K. H. (2013a). Ecosystem variability and early human habitats in eastern Africa. Proceedings of the National Academy of Sciences, USA, 110, 1167–1174.

    Google Scholar 

  • Magill, C. R., Ashley, G. M., & Freeman, K. H. (2013b). Water, plants, and early human habitats in eastern Africa. Proceedings of the National Academy of Sciences, USA, 110, 1175–1180.

    Google Scholar 

  • Maher, B. A. (1998). Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 137, 25–54.

    Article  Google Scholar 

  • Maher, B. A., & Thompson, R. (1995). Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quaternary Research, 44, 383–391.

    Article  Google Scholar 

  • Marin-Spiotta, E., Chaopricha, N. T., Plante, A. F., Diefendorf, A. F., Mueller, C. W., Grandy, A. S., et al. (2014). Long-term stabilization of deep soil carbon by fire and burial during early Holocene climate change. Nature Geosci, 7, 428–432.

    Article  Google Scholar 

  • Maxbauer, D. P., Feinberg, J. M., & Fox, D. L. (2016a). Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: a review of magnetic methods and challenges. Earth-Science Review, 155, 28–48.

    Article  Google Scholar 

  • Maxbauer, D. P., Feinberg, J. M., Fox, D. L., & Clyde, W. C. (2016b). Magnetic minerals as recorders of weathering, diagenesis, and paleoclimate: a core-outcrop comparison of Paleocene-Eocene paleosols in the Bighorn Basin, WY, USA. Earth and Planetary Science Letters, 452, 15–26.

    Article  Google Scholar 

  • Maynard, J. B. (1992). Chemistry of modern soils as a guide to interpreting Precambrian paleosols. Journal of Geology, 100, 279–289.

    Google Scholar 

  • Medaris Jr, L. G., Driese, S. G., & Stinchcomb, G. E. (2017). The Paleoproterozoic Baraboo paleosol revisited: quantifying mass fluxes of weathering and metasomatism, chemical climofunctions, and atmospheric pCO2 in a chemically heterogeneous protolith. Precambrian Research, 301, 179–194.

    Google Scholar 

  • Mentzer, S. M. (2014). Microarchaeological approaches to the identification and interpretation of combustion features in prehistoric archaeological sites. Journal of Archaeoogical Method and Theory, 21, 616–668.

    Article  Google Scholar 

  • Michel, L. A., Driese, S. G., Nordt, L. C., Breecker, D. O., Labotka, D. M., & Dworkin, S. I. (2013). Stable-Isotope geochemistry of Vertisols formed on marine limestone and implications for deep-time paleoenvironmental reconstructions. Journal of Sedimentary Research, 83, 300–308.

    Article  Google Scholar 

  • Michel, L. A., Peppe, D. J., Lutz, Ja, Driese, S. G., Dunsworth, H. M., Harcourt-Smith, W. E. H., et al. (2014). Remnants of an ancient forest provide ecological context for Early Miocene fossil apes. Nature Communications, 5, 1–9.

    Article  Google Scholar 

  • Mintz, J. S., Driese, S. G., Breecker, D. O., & Ludvigson, G. A. (2011). Influence of changing hydrology on pedogenic calcite precipitation in Vertisols, Dance Bayou, Brazoria County, Texas, U.S.A.: implications for estimating paleoatmospheric pCO2. Journal of Sedimentary Research, 81, 394–400.

    Article  Google Scholar 

  • Moore, D. M., & Reynolds, R. C. (1997). X-Ray diffraction and the identification and analysis of clay minerals. New York: Oxford University Press.

    Google Scholar 

  • Mora, C. I., Driese, S. G., & Colarusso, L. A. (1996). Middle to Late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science, 271, 1105–1107.

    Article  Google Scholar 

  • Morrison, R. B. (1967). Principles of Quaternary soil stratigraphy. In R. B. Morrison & H. E. Wright (Eds.), Quaternary soils (pp. 1–69). Reno: University of Nevada Desert Research Institute, Center for Water Resources Research.

    Google Scholar 

  • Myers, T. S., Tabor, N. J., & Rosenau, N. A. (2014). Multiproxy approach reveals evidence of highly variable paleoprecipitation in the Upper Jurassic Morrison Formation (western United States). Geological Society of American Bulletin, 126, 1105–1116.

    Article  Google Scholar 

  • National Research Council. (2001). Basic research opportunities in Earth science. Washington, D. C.: National Academies Press.

    Google Scholar 

  • National Research Council. (2010). Understanding climate’s influence on human evolution. Washington, D. C.: National Academies Press.

    Google Scholar 

  • Nettleton, W. D., Olson, C. G., & Wysocki, D. A. (2000). Paleosol classification: problems and solutions. Catena, 41, 61–92.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Earth Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  Google Scholar 

  • Nordt, L. C. (2001). Stable C and O isotopes in soils: applications for archaeological research. In P. Goldberg, V. Holliday & R. Ferring (Eds.), Earth-sciences and archaeology (pp. 419–445).

    Google Scholar 

  • Nordt, L. C., & Driese, S. D. (2010a). New weathering index improves paleorainfall estimates from Vertisols. Geology, 38, 407–410.

    Article  Google Scholar 

  • Nordt, L. C., & Driese, S. G. (2010b). A modern soil characterization approach to reconstructing physical and chemical properties of paleo-Vertisols. American Journal of Science, 310, 37–64.

    Article  Google Scholar 

  • Nordt, L. C., & Driese, S. G. (2013). Application of the Critical Zone concept to the deep-time sedimentary record. The Sedimentary Record, 11, 4–9.

    Google Scholar 

  • Nordt, L. C., Dworkin, S. I., & Atchley, S. C. (2011). Ecosystem response to soil biogeochemical behavior during the Late Cretaceous and early Paleocene within the western interior of North America. Geological Society of America Bulletin, 123, 1745–1762.

    Article  Google Scholar 

  • Nordt, L. C., Hallmark, C. T., Driese, S. G., Dworkin, S. I., & Atchley, S. C. (2012). Biogeochemical characterization of a lithified paleosol: implications for the interpretation of ancient Critical Zones. Geochimica et Cosmochimica Acta, 87, 267–282.

    Article  Google Scholar 

  • Nordt, L. C., Hallmark, C. T., Driese, S. G., & Dworkin, S. I. (2013). Multianalytical pedosystem approach to characterizing and interpreting the fossil record of soils. In S. G. Driese & L. C. Nordt (Eds.), New frontiers in paleopedology and terrestrial paleoclimatology (SEPM Special Publication No. 104) (pp. 47–62, 89–108). Tulsa: SEPM.

    Google Scholar 

  • Nordt, L., Orosz, M., Driese, S., & Tubbs, J. (2006). Vertisol carbonate properties in relation to mean annual precipitation: implications for paleoprecipitation estimates. Journal of Geology, 114, 501–510.

    Article  Google Scholar 

  • Nordt, L. C., Wilding, L. P., Lynn, W. C., & Crawford, C. C. (2004). Vertisol genesis in a humid climate of the coastal plain of Texas, U.S.A. Geoderma, 122, 83–102.

    Article  Google Scholar 

  • Oerter, E. J., Sharp, W. D., Oster, J. L., Ebeling, A., Valley, J. W., Kozdon, R., et al. (2016). Pedothem carbonates reveal anomalous North American atmospheric circulation 70,000–55,000 years ago. Proceedings of the National Academy of Sciences, USA, 113, 919–924.

    Google Scholar 

  • Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., & Eiler, J. M. (2010). High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences, USA, 107, 11245–11249.

    Google Scholar 

  • Passey, B. H., Hu, H., Ji, H., Montanari, S., Li, S., Henkes, G. A., et al. (2014). Triple oxygen isotopes in biogenic and sedimentary carbonates. Geochimica et Cosmochimica Acta, 141, 1–25.

    Article  Google Scholar 

  • Pettijohn, F. J., Potter, P. E., & Siever, R. (1987). Sand and sandstone (2nd ed.). Springer-Verlag.

    Google Scholar 

  • Poppe, L. J., Paskevich, V. F., Hathaway, J. C., & Blackwood, D. S. (2001). A laboratory manual for X-ray powder diffraction. US Geological Survey Open-File Report, 1(041), 1–88.

    Google Scholar 

  • Prochnow, S. J., Nordt, L. C., Atchley, S. C., & Hudec, M. R. (2006). Multi-proxy paleosol evidence for Middle and Late Triassic climate trends in eastern Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 53–72.

    Article  Google Scholar 

  • Pimentel, N. L., Wright, V. P., & Azevedo, T. M. (1996). Distinguishing early groundwater alteration effects from pedogensis in ancient alluvial basins: examples form the Palaeogene of southern Portugal. Sedimentary Geology, 105, 1–10.

    Article  Google Scholar 

  • Qadir, M., & Schubert, S. (2002). Degradation processes and nutrient constraints in sodic soils. Land Degradation & Development, 13(4), 275–294.

    Article  Google Scholar 

  • Quade, J., Levin, N., Semaw, S., Stout, D., Renne, P., Rogers, M., et al. (2004). Paleoenvironments of the earliest stone toolmakers, Gona, Ethiopia. Geological Society of America Bulletin, 116, 1529.

    Article  Google Scholar 

  • Quade, J., Eiler, J., Daëron, M., Achyuthan, H. (2013). The clumped isotope geothermometer in soil and paleosol carbonate. Geochimica Cosmochimica Acta, 105, 92–107.

    Google Scholar 

  • Quinn, R. L., Lepre, C. J., Wright, J. D., & Feibel, C. S. (2007). Paleogeographic variations of pedogenic carbonate d13C values from Koobi Fora, Kenya: implications for floral compositions of Plio-Pleistocene hominin environments. Journal of Human Evolution, 53, 560–573.

    Article  Google Scholar 

  • Quinn, R. L., Lepre, C. J., Feibel, C. S., Wright, J. D., Mortlock, R. A., Harmand, S., et al. (2013). Pedogenic carbonate stable isotopic evidence for wooded habitat preference of early Pleistocene tool makers in the Turkana Basin. Journal of Human Evolution, 65, 65–78.

    Article  Google Scholar 

  • Rasmussen, C., & Tabor, N. J. (2007). Applying a quantitative pedogenic energy model across a range of environmental gradients. Soil Science Society of America Journal, 71(6), 1719–1729.

    Google Scholar 

  • Rasmussen, C., Southard, R. J., & Horwath, W. R. (2005). Modeling energy inputs to predict pedogenic environments using regional environmental databases. Soil Science Society of America Journal, 69(4), 1266–1274.

    Google Scholar 

  • Rawls, W. J. (1983). Estimating soil bulk density from particle size analyses and organic matter content. Soil Science, 135, 123–125.

    Article  Google Scholar 

  • Retallack, G. J. (1983). Late Eocene and Oligocene paleosols from Badlands National Park, South Dakota. Geological Society of America. Special Papers, 193, 82.

    Google Scholar 

  • Retallack, G. J. (1997). Early forest soils and their role in Devonian global change. Science, 276, 583–585.

    Article  Google Scholar 

  • Retallack, G. J., Wynn, J. G., Benefit, B. R., & Mccrossin, M. L. (2002). Paleosols and paleoenvironments of the middle Miocene, Maboko Formation, Kenya. Journal of Human Evolution, 42(6), 659–703.

    Article  Google Scholar 

  • Retallack, G. J. (1994). The environmental-factor approach to the interpretation of paleosols. In R. J. Luxmoore & J. M. Bartels (Eds.), Factors of soil formation: A fiftieth anniversary retrospective (pp. 31–64). Madison: Soil Science Society of America.

    Google Scholar 

  • Retallack, G. J. (2001). Soils of the past: An introduction to paleopedology (2nd ed.). Oxford: Blackwell Science Ltd.

    Book  Google Scholar 

  • Retallack, G. J. (2005). Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology, 33, 333–336.

    Article  Google Scholar 

  • Retallack, G. J., James, W. C., Mack, G. H., & Monger, H. C. (1993). Classification of paleosols: discussion and reply. Geological Society of America Bulletin, 105, 1635–1637.

    Article  Google Scholar 

  • Retallack, G. J., Orr, W. N., Prothero, D. R., Duncan, R. A., Kester, P. R., & Ambers, C. P. (2004). Eocene-Oligocene extinction and paleoclimatic change near Eugene. Oregon. Geological Society of America Bulletin, 116, 817.

    Article  Google Scholar 

  • Retallack, G. J., & Huang, C. (2010). Depth to gypsic horizon as a proxy for paleoprecipitation in paleosols of sedimentary environments. Geology, 38, 403–406.

    Article  Google Scholar 

  • Richter, D. deB, & Yaalon, D. H. (2012). “The changing model of soil” revisited. Soil Science Society of America Journal, 76, 766–778.

    Google Scholar 

  • Rosenau, N. A., Tabor, N. J., Elrick, S. D., & Nelson, W. J. (2013). Polygenetic history of paleosols in Middle-Upper Pennsylvanian cyclothems of the Illinois Basin, U.S.A.: Part I. Characterization of paleosol types and interpretations of pedogenic processes. Journal of Sedimentary Research, 83, 606–636.

    Article  Google Scholar 

  • Ruhe, R. V. (1965). Quaternary paleopedology. In H. E. Wright, & D. G. Frey (Eds.), The Quaternary of the United States (pp. 755–764). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Saxton, K. E., & Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70, 1569–1578.

    Article  Google Scholar 

  • Schaetzl, R. J., & Thompson, M. L. (2015). Soils: Cambridge University Press.

    Google Scholar 

  • Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., & Broderson, W. D. (2012). Field book for describing and sampling soils, version 3.0. Lincoln: Natural Resources Conservation Service, National Soil Survey Center.

    Google Scholar 

  • Schwertmann, U. (1993). Relations between iron oxides, soil color, and soil formation. In J. M. Bigham & E. J. Ciolkosz (Eds.), Soil color (Special Publication No. 31) (pp. 51–69). Madison: Soil Science Society of America.

    Google Scholar 

  • Sheldon, N. (2003). Pedogenesis and geochemical alteration of the Picture Group subgroup, Columbia River basalt, Oregon. Geological Society of America Bulletin, 115, 1377–1387.

    Article  Google Scholar 

  • Sheldon, N. D. (2005). Do red beds indicate paleoclimatic conditions?: a Permian case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 228, 305–319.

    Article  Google Scholar 

  • Sheldon, N. D. (2006). Precambrian paleosols and atmospheric CO2 levels. Precambrian Research, 147, 148–155.

    Article  Google Scholar 

  • Sheldon, N. D., & Retallack, G. J. (2001). Equation for compaction of paleosols due to burial. Geology, 29, 247–250.

    Article  Google Scholar 

  • Sheldon, N. D., & Retallack, G. J. (2004). Regional paleoprecipitation records from the late eocene and oligocene of North America. The Journal of Geology, 112, 487–494.

    Article  Google Scholar 

  • Sheldon, N. D., & Tabor, N. J. (2009). Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Review, 95, 1–52.

    Article  Google Scholar 

  • Sheldon, N. D., Retallack, G. J., & Tanaka, S. (2002). Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. Journal of Geology, 110, 687–696.

    Article  Google Scholar 

  • Sikes, N. E., Potts, R., & Behrensmeyer, A. K. (1999). Early Pleistocene habitat in member 1 Olorgesailie based on paleosol stable isotopes. Journal of Human Evolution, 37, 721–746.

    Article  Google Scholar 

  • Sikes, N. E., & Ashley, G. M. (2007). Stable isotopes of pedogenic carbonates as indicators of paleoecology in the Plio-Pleistocene (upper Bed I), western margin of the Olduvai Basin, Tanzania. Journal of Human Evolution, 53, 574–594.

    Article  Google Scholar 

  • Snell, K. E., Thrasher, B. L., Eiler, J. M., Koch, P. L., Sloan, L. C., & Tabor, N. J. (2013). Hot summers in the Bighorn Basin during the early Paleogene. Geology, 41, 55–58.

    Article  Google Scholar 

  • Soil Classification Working Group. (1998). The Canadian system of soil classification (3rd ed., Agriculture and Agri-Food Canada Publication 1646). Ottawa: NRC Research Press.

    Google Scholar 

  • Soil Survey Staff. (2006). Keys to soil taxonomy (10th ed.). Washington, D. C.: United States Department of Agriculture Natural Resources Conservation Service.

    Google Scholar 

  • Soil Survey Staff. (2014a). Illustrated guide to soil taxonomy (1.0 ed.). Lincoln: United States Department of Agriculture Natural Resources Conservation Service.

    Google Scholar 

  • Soil Survey Staff. (2014b). Kellogg soil survey laboratory methods manual, Version 5.0. (Soil Survey Investigations Report No. 42). Lincoln: United States Department of Agriculture Natural Resources Conservation Service.

    Google Scholar 

  • Stiles, C. A., Mora, C. I., & Driese, S. G. (2001). Pedogenic iron-manganese nodules in Vertisols: a new proxy for paleoprecipitation? Geology, 29, 943–946.

    Article  Google Scholar 

  • Stiles, C. A., Mora, C. I., & Driese, S. G. (2003a). Pedogenic processes and domain boundaries in a Vertisol climosequence: evidence from titanium and zirconium distribution and morphology. Geoderma, 116, 279–299.

    Article  Google Scholar 

  • Stiles, C. A., Mora, C. I., Driese, S. G., & Robinson, A. C. (2003b). Distinguishing climate and time in the soil record: mass-balance trends in Vertisols from the Texas coastal prairie. Geology, 31, 331–334.

    Article  Google Scholar 

  • Stinchcomb, G. E., Driese, S. G., Nordt, L. C., DiPietro, L., & Messner, T. C. (2014). Early Holocene soil cryoturbation in northeastern USA: implications for archaeological site formation. Quaternary International, 342, 186–198.

    Article  Google Scholar 

  • Stinchcomb, G. E., Nordt, L. C., Driese, S. G., Lukens, W. E., Williamson, F. C., & Tubbs, J. D. (2016). A data-driven spline model designed to predict paleoclimate using paleosol geochemistry. American Journal of Science, 316, 746–777.

    Article  Google Scholar 

  • Stoops, G. (2003). Guidelines for analysis and description of soil and regolith thin sections. Madison: Soil Science Society of America, Inc.

    Google Scholar 

  • Stoops, G., Marcelino, V., & Mees, F. (Eds.) (2010). Interpretation of micromorphological features of soils and regoliths, 1st ed. Netherlands: Elsevier.

    Google Scholar 

  • Tabor, N. J., & Montañez, I. P. (2002). Shifts in late Paleozoic atmospheric circulation over western equatorial Pangea: insights from pedogenic mineral δ18O compositions. Geology, 30, 1127–1130.

    Article  Google Scholar 

  • Tabor, N. J., & Myers, T. S. (2015). Paleosols as indicators of paleoenvironment and paleoclimate. Annual Review of Earth and Planetary Science, 43, 11.1–11.29.

    Google Scholar 

  • Tabor, N. J., Montañez, I. P., Steiner, M. B., & Schwindt, D. (2007). δ13C values of carbonate nodules across the Permian-Triassic boundary in the Karoo Supergroup (South Africa) reflect a stinking sulfurous swamp, not atmospheric CO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 370–381.

    Article  Google Scholar 

  • Terry, D. O. (2001). Paleopedology of the Chadron Formation of northwestern Nebraska: implications for paleoclimatic change in the North America midcontinent across the Eocene-Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 168, 1–38.

    Article  Google Scholar 

  • Torres, M. A., & Gaines, R. R. (2013). Paleoenvironmental and paleoclimatic interpretations of the late Paleocene Golder Formations, southern California, U.S.A., based on paleosol geochemistry. Journal of Sedimentary Research, 83, 591–605.

    Article  Google Scholar 

  • Trendell, A. M., Nordt, L. C., Atchley, S. C., LeBlanc, S. L., & Dworkin, S. I. (2013a). Determining floodplain plant distributions and populations using paleopedology and fossil root traces: upper Triassic Sonsela Member of the Chinle Formation at Petrified Forest National Park, Arizona. PALAIOS, 28, 471–490.

    Article  Google Scholar 

  • Trendell, A. M., Atchley, S. C., & Nordt, L. C. (2013b). Facies analysis of a probable large-fluvial-fan depositional system: the Upper Triassic Chinle Formation at Petrified Forest National Park, Arizona, U.S.A. Journal of Sedimentary Research, 83, 873–895.

    Article  Google Scholar 

  • Ufnar, D. F., Ludvigson, G. A., González, L. A., Brenner, R. L., & Witzke, B. J. (2004). High latitude meteoric δ18O compositions: paleosol siderite in the Middle Cretaceous Nanushuk Formation, North Slope. Alaska. Geological Society of America Bulletin, 116(3/4), 463–473.

    Article  Google Scholar 

  • Ufnar, D. (2007). Clay coatings from a modern soil chronosequence: a tool for estimating the relative age of well-drained paleosols. Geoderma, 141, 181–200.

    Article  Google Scholar 

  • Valentine, K. W. G., & Dalrymple, J. B. (1976). Quaternary buried paleosols: a critical review. Quaternary Research, 6, 209–222.

    Article  Google Scholar 

  • Vepraskas, M. J. (1992). Redoximorphic features for identifying aquic conditions. North Carolina State University Technical Bulletin 301. Raleigh: North Carolina Agricultural Research Service.

    Google Scholar 

  • Vepraskas, M. J. (2001). Morphological features of seasonally reduced soils. Wetland soils: Genesis, hydrology, landscapes, and classification (pp. 163–182). New York: Lewis Publishers.

    Google Scholar 

  • Vepraskas, M. J., & Faulkner, S. P. (2001). Redox chemistry of hydric soils. In J. L. Richardson & M. J. Vepraskas (Eds.), Wetland soils: Genesis, hydrology, landscapes, and classification (pp. 85–105). New York: Lewis Publishers.

    Google Scholar 

  • Waters, M. R. (1992). Principles of geoarchaeology: A North American perspective. Tucson: University of Arizona Press.

    Google Scholar 

  • Waters, M. R., Forman, S. L., Jennings, T. A., Nordt, L. C., Driese, S. G., Feinberg, J. M., et al. (2011). The Buttermilk Creek Complex and the origins of Clovis at the Debra L. Friedkin Site. Texas. Science, 331, 1599–1603.

    Google Scholar 

  • Weider, M., & Yaalon, D. H. (1982). Micromorphological fabrics and developmental stages of carbonate nodular forms related to soil characteristics. Geoderma, 28, 203–220.

    Google Scholar 

  • White, T. D., Asfaw, B., Beyene, Y., Haile-Selassie, Y., Lovejoy, C. O., Suwa, G., et al. (2009). Ardipithecus ramidus and the paleobiology of early hominids. Science, 326(64), 75–86.

    Google Scholar 

  • WoldeGabriel, G., Ambrose, S. H., Barboni, D., Bonnefille, R., Bremond, L., Currie, B., et al. (2009). The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. Science, 326, 65, 65e1–65e5.

    Google Scholar 

  • Wynn, J. G. (2000). Paleosols, stable carbon isotopes, and paleoenvironmental interpretation of Kanapoi, Northern Kenya. Journal of Human Evolution, 39, 411–432.

    Article  Google Scholar 

  • Wynn, J. G. (2004). Influence of Plio-Pleistocene aridification on human evolution: evidence from paleosols of the Turkana Basin, Kenya. American Journal of Physical Anthropoloy, 123, 106–118.

    Article  Google Scholar 

  • Wynn, J. G. (2007). Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology, 251, 437–448.

    Article  Google Scholar 

  • Wynn, J. G., & Feibel, C. S. (1995). Paleoclimatic implications of Vertisols within the Koobi Fora Formation, Turkana Basin, Northern Kenya. Journal of Undergraduate Research, 6, 34–42.

    Google Scholar 

  • Yaalon, D.H., International Society of Soil Science, International Union for Quaternary Research. (1971). Paleopedology: origin, nature, and dating of paleosols. Jerusalem: International Society of Soil Science.

    Google Scholar 

  • Zamanian, K., Pustovoytov, K., & Kuzyakov, Y. (2016). Pedogenic carbonates: forms and formation processes. Earth-Science Reviews, 157, 1–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily J. Beverly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beverly, E.J., Lukens, W.E., Stinchcomb, G.E. (2018). Paleopedology as a Tool for Reconstructing Paleoenvironments and Paleoecology. In: Croft, D., Su, D., Simpson, S. (eds) Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-94265-0_9

Download citation

Publish with us

Policies and ethics