Skip to main content

Isotope Ecology from Biominerals

  • Chapter
  • First Online:
Methods in Paleoecology

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

Stable isotopes of carbon and oxygen can be used to make inferences about ancient climates and habitats. Biological hard tissues, particularly the biominerals of bioapatite, calcite , and aragonite are excellent archives of these isotopes and can be used to explore environments of Earth’s deep past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell, P. I., & Hoelzmann, P. (2000). Holocene palaeoclimates in northwestern Sudan: stable isotope studies on molluscs. Global and Planetary Change, 26, 1–12.

    Article  Google Scholar 

  • Ambrose, S. H., & Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In J. Lambert & G. Grupe (Eds.), Prehistoric human bone, archaeology at the molecular level (pp. 1–31). Berlin: Springer.

    Google Scholar 

  • Andres, M. S., Sumner, D. Y., Reid, R. P., & Swart, P. K. (2006). Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology, 34, 973–976.

    Article  Google Scholar 

  • Andrews, J. E., Riding, R., & Dennis, P. F. (1997). The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates in Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 128, 171–189.

    Article  Google Scholar 

  • Aston, F. W. (1921). Isotopes and atomic weights. Nature, 107, 334–338.

    Article  Google Scholar 

  • Balakrishnan, M., Yapp, C. J., Theler, J. L., Carter, B. J., & Wyckoff, D. G. (2005). Environmental significance of 13C/12C and 18O/16O ratios of modern land-snail shells from the southern great plains of North America. Quaternary Research, 63, 15–30.

    Article  Google Scholar 

  • Balasse, M. (2002). Reconstructing dietary and environmental history form enamel isotopic analysis: time resolution of intra-tooth sequential sampling. International Journal of Osteoarcheology, 12, 155–165.

    Article  Google Scholar 

  • Bender, M. M. (1971). Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry, 10, 1239–1244.

    Article  Google Scholar 

  • Berke, M. A. (2018). Reconstructing terrestrial paleoenvironments using sedimentary organic biomarkers. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 121–149). Cham: Springer.

    Google Scholar 

  • Bershaw, J., Garzione, C. N., Higgins, P., MacFadden, B. J., Anaya, F., & Alvarenga, H. (2010). Spatial-temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth and Planetary Science Letters, 289, 530–538.

    Article  Google Scholar 

  • Blumenthal, S. A., Cerling, T. E., Chritz, K. L., Bromage, T. G., Kozdon, R., & Valley, J. W. (2014). Stable isotope time-series in mammalian teeth: in situ δ18O from the innermost enamel layer. Geochimica et Cosmochimica Acta, 124, 223–236.

    Google Scholar 

  • Blumenthal, S. A., Levin, N. E., Brown, F. H., Brugal, J.-P., Chritz, K. L., Harris, J. M., et al. (2017). Aridity and hominin environments. Proceedings of the National Academy of Sciences, USA, 114, 7331–7336.

    Article  Google Scholar 

  • Bowen, G. J., & Wilkinson, B. (2002). Spatial distribution of δ18O in meteoric precipitation. Geology, 30, 315–318.

    Article  Google Scholar 

  • Bryant, J. D., Koch, P. L., Froelich, P. N., Showers, W. J., & Genna, B. J. (1996a). Oxygen isotope partitioning between phosphate and carbonate in mammalian apatites. Geochimica et Cosmochimica Acta, 60, 5145–5148.

    Article  Google Scholar 

  • Bryant, J. D., Froelich, P. N., Showers, W. J., & Genna, B. J. (1996b). Biological and climatic signals in the oxygen isotopic composition of Eocene-Oligocene equid enamel phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 75–89.

    Article  Google Scholar 

  • Bryson, R. A., & DeWall, K. M. (2007). An introduction to the archaeoclimatology macrophysical climate model. In R. A. Bryson & K. M. DeWall (Eds.), A Paleoclimatology workbook: High resolution, site-specific macrophysical climate modeling (pp. 3–10). The Mammoth Site of Hot Springs, SD, Inc.

    Google Scholar 

  • Budzikiewicz, H., & Grigsby, R. D. (2006). Mass spectrometry and isotopes: a century of research and discussion. Mass Spectrometry Reviews, 25, 146–157.

    Article  Google Scholar 

  • Carroll, M., Romanek, C., & Paddock, L. (2006). The relationship between the hydrogen and oxygen isotopes of freshwater bivalve shells and their home streams. Chemical Geology, 234, 211–222.

    Article  Google Scholar 

  • Cerling, T. E. (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229–240.

    Article  Google Scholar 

  • Cerling, T. E., Quade, J., Wang, Y., & Bowman, J. R. (1989). Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature, 341, 138–139.

    Article  Google Scholar 

  • Cerling, T. E., & Harris, J. M. (1999). Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia, 120, 347–363.

    Article  Google Scholar 

  • Cerling, T. E., & Sharp, Z. D. (1996). Stable carbon and oxygen isotope analysis of fossil tooth enamel using laser ablation. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 173–186.

    Article  Google Scholar 

  • Chen, H., Winderlich, J., Gerbig, C., Rella, C. W., Crosson, E. R., Van Pelt, A. D., et al. (2010). High-accuracy continuous airborne measurements of greenhouse gasses (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique. Atmospheric Measurement Techniques, 3, 375–386.

    Article  Google Scholar 

  • Coplen, T. B. (1994). Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure and Applied Chemistry, 66, 273–276.

    Article  Google Scholar 

  • Coplen, T. B., Brand, W. A., Gehre, M., Gröning, M., Meijer, H. A. J., Toman, B., et al. (2006). New guidelines for δ13C measurements. Analytical Chemistry, 78, 2439–2441.

    Article  Google Scholar 

  • Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochemica et Cosmochimica Acta, 12, 133–149.

    Article  Google Scholar 

  • Craig, H., & Gordon, L. I. (1965). Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In E. Tongiogi (Ed.), Stable isotopes in oceanographic studies and paleotemperatures (pp. 9–130). Pisa: CNR-Laboratorio di Geologia Nucleare.

    Google Scholar 

  • Crosson, E. R. (2008). A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Applied Physics B, 92, 403–408.

    Article  Google Scholar 

  • Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16, 436–468.

    Article  Google Scholar 

  • Dempster, A. J. (1918). A new method of positive ray analysis. Physics Reviews (Series 6), 11, 316–325.

    Google Scholar 

  • DeNiro, M. J., & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 45, 341–351.

    Article  Google Scholar 

  • Dettman, D. L., Reische, A. K., & Lohmann, K. C. (1999). Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochimica et Cosmochimica Acta, 63, 1049–1057.

    Article  Google Scholar 

  • Dworkin, S. I., Nordt, L., & Atchley, S. (2005). Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate. Earth and Planetary Science Letters, 237, 56–68.

    Article  Google Scholar 

  • Eagle, R. A., Schauble, E. A., Tripati, A. K., Tutken, T., Hulbert, R. C., & Eiler, J. M. (2010). Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite. Proceedings of the National Academy of Sciences, USA, 107, 10377–10382.

    Article  Google Scholar 

  • Eagle, R. A., Tutken, T., Marton, T. S., Tripati, A. K., Fricke, H. C., Connely, M., et al. (2011). Dinosaur body temperatures determined from isotopic (13C-18O) ordering in fossil biominerals. Science, 333, 443–445.

    Article  Google Scholar 

  • Eberle, J. J., Fricke, H. C., Humphrey, J. D., Hackett, L., Newbrey, M. G., & Hutchison, J. H. (2010). Seasonal variability in Arctic temperatures during early Eocene time. Earth and Planetary Science Letters, 296, 481–486.

    Article  Google Scholar 

  • Eiler, J. M. (2007). “Clumped-isotope” geochemistry – the study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters, 262, 309–327.

    Article  Google Scholar 

  • Emiliani, C., & Edwards, G. (1953). Tertiary ocean bottom temperatures. Nature, 4359, 887–888.

    Article  Google Scholar 

  • Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Reviews of Plant Physiology and Plant Molecular Biology, 40, 503–537.

    Article  Google Scholar 

  • Feranec, R. S., & MacFadden, B. J. (2006). Isotopic discrimination of resource partitioning among ungulates in C3-dominated communities from the Miocene of Florida and California. Paleobiology, 32, 191–205.

    Article  Google Scholar 

  • Feranec, R. S., Hadly, E. A., & Paytan, A. (2009). Stable isotopes reveal seasonal competition for resources between late Pleistocene bison (Bison) and horse (Equus) from Rancho La Brea, southern California. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 153–160.

    Article  Google Scholar 

  • Fricke, H. C., & O’Neil, J. R. (1996). Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 91–99.

    Article  Google Scholar 

  • Garzione, C. N., Molnar, P., Libarkin, J. C., & MacFadden, B. J. (2006). Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth and Planetary Science Letters, 241, 543–556.

    Article  Google Scholar 

  • Geist, J., Auerswald, K., & Boom, A. (2005). Stable carbon isotopes in freshwater mussel shells: environmental record or marker for metabolic activity? Geochimica et Cosmochimica Acta, 69, 3545–3554.

    Article  Google Scholar 

  • Ghosh, P., Eiler, J., Campana, S. E., & Feeney, R. F. (2007). Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochimica et Cosmochimica Acta, 71, 2736–2744.

    Article  Google Scholar 

  • Ghosh, P., Garzione, C. N., & Eiler, J. M. (2006). Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 311, 511–515.

    Article  Google Scholar 

  • Gillikin, D. P., Lorrain, A., Meng, L., & Dehairs, F. (2007). A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta, 71, 2936–2946.

    Google Scholar 

  • Goodwin, D. H., Schone, B. R., & Dettman, D. L. (2003). Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. PALAIOS, 18, 110–125.

    Article  Google Scholar 

  • Grimes, S. T., Collinson, M. E., Hooker, J. J., & Mattey, D. P. (2008). Is small beautiful? A review of the advantages and limitations of using small mammal teeth and the direct laser fluorination analysis technique in the isotope reconstruction of past continental climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 39–50.

    Article  Google Scholar 

  • Higgins, P., & MacFadden, B. J. (2004). “Amount effect” recorded in oxygen isotopes of Late Glacial horse (Equus) and bison (Bison) teeth from the Sonoran and Chihuahuan deserts, southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 206, 337–353.

    Article  Google Scholar 

  • Higgins, P., & MacFadden, B. J. (2009). Seasonal and geographic climate variabilities during the Last Glacial Maximum in North America: applying isotopic analysis and macrophysical climate models. Palaeogeography, Palaeoclimatology, Palaeoecology, 283, 15–27.

    Article  Google Scholar 

  • Hoppe, K. A., Stover, S. M., Pascoe, J. R., & Amundson, R. (2004). Tooth enamel biomineralization in extant horses: implications for isotopic microsampling. Palaeogeography, Palaeoclimatology, Palaeoecology, 206, 355–365.

    Article  Google Scholar 

  • Hynek, S. A., Passey, B. H., Prado, J. L., Brown, F. H., Cerling, T. E., & Quade, J. (2012). Small mammal carbon isotope ecology across the Miocene-Pliocene boundary, northwestern Argentina. Earth and Planetary Science Letters, 321–322, 177–188.

    Article  Google Scholar 

  • Iacumin, P., Bocherens, H., Mariotti, A., & Longinelli, A. (1996). Oxygen isotope analyses of co-existing carbonate and phosphate in biogeneic apatite: a way to monitor diagenetic alteration of bone phosphate? Earth and Planetary Science Letters, 142, 1–6.

    Article  Google Scholar 

  • IAEA/WMO, (2001). Global Network of Isotopes in Precipitation. The GNIP Database.

    Google Scholar 

  • Ivany, L. C., Wilkinson, B. H., Lohmann, K. C., Johnson, E. R., McElroy, B. J., & Cohen, G. J. (2004). Intra-annual isotopic variation in Venericardia bivalves: implications for the early Eocene termperatue, seasonality, and salinity on the U.S. gulf coast. Journal of Sedimentary Research, 74, 7–19.

    Article  Google Scholar 

  • Jacques, L., Ogle, N., Moussa, I., Kalin, R., Vignaud, P., Brunet, M., et al. (2008). Implications of diagenesis for the isotopic analysis of Upper Miocene large mammalian herbivore tooth enamel from Chad. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 200–210.

    Google Scholar 

  • Jones, D. S., & Quitmyer, I. R. (1996). Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. PALAIOS, 11, 340–346.

    Article  Google Scholar 

  • Jones, R., & Burge, J. (1998). The successful application of radiological survey instruments to map bone locations and aid excavation at a Lower Cretaceous, Cedar Mountain Formation, dinosaur quarry. In S. G. Lucas, J. I. Kirkland & J. W. Estep (Eds.) Lower and middle cretaceous terrestrial ecosystems (pp. 310–329). New Mexico Museum of Natural History and Science Buletin No. 14.

    Google Scholar 

  • Keenan, S. W., & Engel, A. S. (2017). Early diagenesis and recrystallization of bone. Geochimica et Cosmochimica Acta, 96, 209–223.

    Article  Google Scholar 

  • Kimura, Y., Jacobs, L. L., Cerling, T. E., Uno, K. T., Ferguson, K. M., Flynn, L. J., et al. (2013). Fossil mice and rats show isotopic evidence of niche partitioning and change in dental ecomorphology related to dietary shift in late miocene of Pakistan. PLoS ONE, 8(8), e69308.

    Article  Google Scholar 

  • Kohn, M. J., Schoeninger, M. J., & Valley, J. W. (1998). Variability in oxygen isotope compositions of herbivore teeth: reflections of seasonality or developmental physiology? Chemical Geology, 152, 97–112.

    Article  Google Scholar 

  • Labs-Hochstein, J., & MacFadden, B. J. (2006). Quantification of diagenesis in Cenozoic sharks: elemental and mineralogical changes. Geochimica et Cosmochimica Acta, 70, 4921–4932.

    Google Scholar 

  • Leng, M. J., & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, 811–831.

    Article  Google Scholar 

  • Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., & Ehleringer, J. R. (2006). A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences, USA, 103, 11201–11205.

    Article  Google Scholar 

  • Lindars, E. S., Grimes, S. T., Mattey, D. P., Collinson, M. E., Hooker, J. J., & Jones, T. P. (2001). Phosphate δ18O determination of modern rodent teeth by direct laser fluorination: an appraisal of methodology and potential application to palaeoclimate reconstruction. Geochimica et Cosmochimica Acta, 65, 2535–2548.

    Article  Google Scholar 

  • MacFadden, B. J., & Higgins, P. (2004). Ancient ecology of 15-million-year-old browsing mammals within C3 plant communities from Panama. Oecologia, 140, 169–182.

    Article  Google Scholar 

  • MacFadden, B. J., Higgins, P., Clementz, M. T., & Jones, D. S. (2004). Diets, habitat preferences, and niche differentiation of Cenozoic sirenians from Florida: evidence from stable isotopes. Paleobiology, 20, 297–324.

    Article  Google Scholar 

  • Martin, C., Bentaleb, I., Kaandorp, R., Iacumin, P., & Chatri, K. (2008). Intra-tooth study of modern rhinoceros enamel δ18O: is the difference between phosphate and carbonate δ18O a sound diagenetic test? Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 183–189.

    Google Scholar 

  • McConnaughey, T. A., & Gillikin, D. P. (2008). Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters, 28, 287–299.

    Article  Google Scholar 

  • McCrea, J. M. (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics, 18, 849–857.

    Article  Google Scholar 

  • Mortimer, R. J. G., & Coleman, M. L. (1997). Microbial influence on the ocysgne isotopic composition of diagenetic siderite. Geochimica et Cosmochimica Acta, 61, 1705–1711.

    Article  Google Scholar 

  • O’Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20, 553–567.

    Article  Google Scholar 

  • Passey, B. H., & Cerling, T. E. (2002). Tooth enamel mineralization in ungulates: implications for recovering a primary isotopic time-series. Geochimica et Cosmochimica Acta, 66, 3225–3234.

    Article  Google Scholar 

  • Passey, B. H., Robinson, T. F., Ayliffe, L. K., Cerling, T. E., Sponheimer, M., Dearing, M. D., et al. (2005). Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Science, 32, 1459–1470.

    Article  Google Scholar 

  • Passey, B. H., & Cerling, T. E. (2006). In situ stable isotope analysis (δ13C, δ18O) of very small teeth using laser ablation GC/IRMS. Chemical Geology, 235, 238–249.

    Google Scholar 

  • Passey, B. H., Hu, H., Ji, H., Montanari, S., Li, S., Henkes, G. A., et al. (2014). Triple oxygen isotopes in biogenic and sedimentary carbonates. Geochimica et Cosmochimica Acta, 141, 1–25.

    Article  Google Scholar 

  • Pellegrini, M., & Snoeck, C. (2015). Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 2 – Impact on carbon and oxygen isotope compositions. Chemical Geology, 420, 88–96.

    Article  Google Scholar 

  • Petersen, P. E., & Lennon, M. A. (2004). Effective use of fluorides for the prevention of dental caries in the 21st century: the WHO approach. Community Dentistry and Oral Epidemiology, 32, 319–321.

    Article  Google Scholar 

  • Prendergast, A. L., Stevens, R. E., Barker, G., & O’Connell, T. C. (2015). Oxygen isotope signatures from land snail (Helix melanostoma) shells and body fluid: proxies for reconstructing Mediterranean and North African rainfall. Chemical Geology, 409, 87–98.

    Article  Google Scholar 

  • Romanek, C. S., Zhang, C. L., Li, Y., Horita, J., Vali, H., Cole, D. R., et al. (2003). Carbon and hydrogen isotope fractionations associated with dissimilatory iron-reducing bacteria. Chemical Geology, 195, 5–16.

    Article  Google Scholar 

  • Rozanski, K., Araguas-Araguas, L., & Gonfiantini, R. (1993). Isotopic Patterns in Modern Global Precipitation. In P. K. Swart, K. C. Lohmann, J. McKenzie & S. Savin (Eds.) Climate change in continental isotopic records (pp. 1–36). AGU Geophysical Monograph 78.

    Google Scholar 

  • Schidlowski, M. (2001). Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Research, 106, 117–134.

    Article  Google Scholar 

  • Sharp, Z. D., & Cerling, T. E. (1996). A laser GC-IRMS technique for in situ stable isotope analyses of carbonates and phosphates. Geochimica et Cosmochimica Acta, 60, 2909–2916.

    Google Scholar 

  • Smith, B. N., & Epstein, S. (1971). Two Categories of 13C/12C ratios for higher plants. Plant Physiology, 47, 380–384.

    Article  Google Scholar 

  • Snoeck, C., & Pellegrini, M. (2015). Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 1 – Impact on structure and chemical composition. Chemical Geology, 417, 394–403.

    Article  Google Scholar 

  • Sponheimer, M., & Lee-Thorp, J. A. (1999). Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archaeological Science, 26, 723–728.

    Article  Google Scholar 

  • Teeri, J. A., & Stowe, L. G. (1976). Climatic patterns and the distribution of C4 grasses in North America. Oecologia, 23, 1–12.

    Article  Google Scholar 

  • Thomson, J. J. (1897). Cathode rays. Philosophical Magazine (Series 5), 44, 293–316.

    Article  Google Scholar 

  • Thomson, J. J. (1911). Rays of positive electricity. Philosophical Magazine (Series 2), 21, 225–249.

    Article  Google Scholar 

  • Thomson, J. J. (1913). Rays of positive electricity. Proceedings of the Royal Society of London (Series A), 89, 1–20.

    Article  Google Scholar 

  • Tütken, T., Vennemann, T. W., & Pfretzschner, H.-U. (2008). Early diagenesis of bone and tooth apatite in fluvial and marine settings: constraints from combined oxygen isotope, nitrogen and REE analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 254–268.

    Article  Google Scholar 

  • van der Merwe, N. J., & Medina, E. (1991). The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science, 18, 249–259.

    Article  Google Scholar 

  • Von Grafenstein, U., Erlernkeuser, H., & Trimborn, P. (1999). Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 148, 133–152.

    Article  Google Scholar 

  • Wahl, E. H., Fidric, B., Rella, C. W., Koulikov, S., Kharlomov, B., Tan, S., et al. (2006). Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide. Isotopes in Environmental and Health Studies, 42, 21–35.

    Google Scholar 

  • Wien, W. (1898). Untersuchungen über die electrische Entladung in verdünnten Gasen. Annals of Physical Chemistry (neue Folge), 65, 440–452.

    Article  Google Scholar 

  • Yanes, Y., Izeta, A. D., Cattaneo, R., Costa, T., & Gordillo, S. (2014). Holocene (~4.5–1.7 cal. kyr BP) paleoenvironmental conditions in central Argentina inferred from entire-shell and intra-shell stable isotope composition of terrestrial gastropods. The Holocene, 24, 1193–1205.

    Article  Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.

    Article  Google Scholar 

  • Zazzo, A., Balasse, M., & Patterson, W. P. (2005). High-resolution δ13C intratooth profiles in bovine enamel: implications for mineralization pattern and isotopic attenuation. Geochimica et Cosmochimica Acta, 69, 3632–3642.

    Google Scholar 

  • Zhou, J., Poulsen, C. J., Pollard, D., & White, T. S. (2008). Simulation of modern and middle Cretaceous marine δ18O with an ocean-atmosphere general circulation model. Paleoceanography, 23, PA3223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pennilyn Higgins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Higgins, P. (2018). Isotope Ecology from Biominerals. In: Croft, D., Su, D., Simpson, S. (eds) Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-94265-0_7

Download citation

Publish with us

Policies and ethics