Skip to main content

Three-Dimensional Geometric Morphometrics in Paleoecology

  • Chapter
  • First Online:
Methods in Paleoecology

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

Quantification and analysis of shape is an important component of many paleoecological studies. Geometric morphometrics is a powerful shape analysis tool that allows its user to compare entire regions of morphology, visualize shape differences between groups, and create visualizations based on real data. This method is rapidly becoming the standard for data collection and analysis in many fields such as anthropology, biology, ecology, forensics, paleontology, and zoology. Here, the basic procedures of geometric morphometrics are reviewed and a case study on the ecomorphology of the cervid calcaneus is provided to illustrate how geometric morphometrics can be used in paleoecological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, D. C. (2011). Quantitative genetics and evolution of head shape in Plethodon salamanders. Evolutionary Biology, 38, 278–286.

    Article  Google Scholar 

  • Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Morphology, 71, 5–16.

    Google Scholar 

  • Adams, D. C., & Otárola-Castillo, E. (2013). Package ‘geomorph’: geometric morphometric analysis of 2d/3d landmark data. R package version 1.0.

    Google Scholar 

  • Adams, D. C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: geometric morphometrics in the 21st century. Hystrix: The Italian Journal of Mammology, 24, 7–14.

    Google Scholar 

  • Adams, D. C., & Collyer, M. L. (2015). Permutation tests for phylogenetic comparative analyses of high-dimensional shape data: what you shuffle matters. Evolution, 69, 823–829.

    Article  Google Scholar 

  • Aguilar-Medrano, R. (2017). Ecomorphology and evolution of the pharyngeal apparatus of benethic damselfish (Pomacentridae, subfamily Stegastinae). Marine Biology, 164, 21.

    Article  Google Scholar 

  • Arias-Martorell, J., Tallman, M., Potau, J. M., Bello-Hellegouarch, G., & Pérez- Pérez, A. (2015). Shape analysis of the proximal humerus in orthograde and semi-orthograde primates: correlates of suspensory behavior. American Journal of Primatology, 77, 1–19.

    Article  Google Scholar 

  • Arnold, C., Matthews, L. J., & Nunn, C. L. (2012). The 10k trees website: a new online resource for primate phylogeny. Evolutionary Anthropology, 19, 114–118.

    Article  Google Scholar 

  • Baab, K. L., McNulty, K. P., & Rohlf, F. J. (2012). The shape of human evolution: a geometric morphometrics perspective. Evolutionary Anthropology, 21, 151–165.

    Google Scholar 

  • Barr, W. A. (2014). Functional morphology of the bovid astragalus in relation to habitat: controlling phylogenetic signal in ecomorphology. Journal of Morphology, 275, 1201–1216.

    Google Scholar 

  • Barr, W. A. (2015). Paleoenvironments of the Shungura Formation (Plio-Pleistocene: Ethiopia) based on ecomorphology of the bovid astragalus. Journal of Human Evolution, 88, 97–107.

    Article  Google Scholar 

  • Barr, W. A. (2018). Ecomorphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 337–347). Cham: Springer.

    Google Scholar 

  • Bauer, C. C., & Harvati, K. (2015). A virtual reconstruction and comparative analysis of the KNM-ER 42700 cranium. Anthropologischer Anzeiger, 72, 129–140.

    Article  Google Scholar 

  • Blain, H.-A., Agustí, J., Lordkipanidze, D., Rook, L., & Delfino, M. (2014). Paleoclimatic and paleoenvironmental context of the Early Pleistocene hominins from Dmanisi (Georgia, Lesser Caucasus) inferred from the herpetofaunal assemblage. Quaternary Science Reviews, 105, 136–150.

    Article  Google Scholar 

  • Bo, W., Wang, Z., Xu, F., Fu, G., Sui, Y., Wu, W., et al. (2014). Shape mapping: Genetic mapping meets geometric morphometrics. Briefings in Bioinformatics, 15, 571–581.

    Article  Google Scholar 

  • Bookstein, F. L. (1978). The measurement of biological shape and shape change (Lecture Notes in Biomathematics, Vol. 24). New York: Springer-Verlag.

    Google Scholar 

  • Bookstein, F. L. (1989). Principal warps: thin-plate splines and the decomposition of deformations. Institute of Electrical and Electronics Engineers, Transactions on Pattern Analysis and Machine Intelligence, 11, 567–585.

    Google Scholar 

  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bookstein, F. L. (1996a). Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology, 58, 313–365.

    Article  Google Scholar 

  • Bookstein, F. L. (1996/1997). Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Imaging Analysis, 1, 225–243.

    Google Scholar 

  • Bookstein, F. L. (2015). The relation between geometric morphometrics and functional morphology, as explored by Procrustes interpretation of individual shape measures pertinent to function. The Anatomical Record, 298, 314–327.

    Google Scholar 

  • Bookstein, F. L. (2016). The inappropriate symmetries of multivariate statistical analysis in geometric morphometrics. Evolutionary Biology, 43, 277–313.

    Google Scholar 

  • Bookstein, F. L. (2017a). A newly noticed formula enforces fundamental limits on geometric morphometric analyses. Evolutionary Biology, 44, 522–541.

    Google Scholar 

  • Bookstein, F. L. (2017b). A method of factor analysis for shape coordinates. American Journal of Physical Anthropology, 164, 221–245.

    Article  Google Scholar 

  • Bookstein, F. L., Chernoff, B., Elder, R., Humphries, J., Smith, G., & Strauss, R. (1985). Morphometrics in evolutionary biology. (Special Publication No. 15). Philadelphia: Academy of Natural Sciences.

    Google Scholar 

  • Bottom-Divet, L., Cornette, R., Houssaye, A., Fabre, A.-C., & Herrel, A. (2017). Swimming and running: a study of the convergence in long bone morphology among semiaquatic mustelids (Carnivora: Mustelidae). Biological Journal of the Linnean Society, 121, 38–49.

    Article  Google Scholar 

  • Boyer, C. B. (1991). A history of mathematics (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  • Boyer, D., Lipman, Y., Clair, E. St., Puente, J., Funkhouser, T., Patel, B., et al. (2011). Algorithms to automatically quantify the geometric similarity of anatomical surfaces. Proceedings of the National Academy of Sciences, USA, 108, 18221–18226.

    Article  Google Scholar 

  • Boyer, D. M., Puente, J., Gladman, J. T., Glynn, C., Mukherjee, S., Yapuncich, G. S., et al. (2015). A new fully automated approach for aligning and comparing shapes. The Anatomical Record, 298, 249–276.

    Google Scholar 

  • Breda, M. (2008). Palaeoecology and palaeoethology of the Plio-Pleistocene genus Cervalces (Cervidae, Mammalia) in Eurasia. Journal of Vertebrate Paleontology, 28, 886–899.

    Google Scholar 

  • Cáceres, N., Meloro, C., Carotenuto, F., Passaro, F., Sponchiado, J., Melo, G. L., et al. (2014). Ecogeographical variation in skull shape of capuchin monkeys. Journal of Biogeography, 41, 501–512.

    Article  Google Scholar 

  • Cano, A. R. G., Fernández, M. H., & Álvarez-Sierra, M. Á. (2013). Dietary ecology of Murinae (Muridae, Rodentia): a geometric morphometric approach. PLoS ONE, 11, e79080.

    Google Scholar 

  • Cardini, A., & Elton, S. (2007). Sample size and sampling error in geometric morphometric studies of size and shape. Zoomorphology, 126, 121–134.

    Article  Google Scholar 

  • Cardini, A., & Loy, A. (Eds.). (2013). Virtual morphology and evolutionary morphometrics in the new millennium. Hystrix: The Italian Journal of Mammology, 24(1).

    Google Scholar 

  • Cardini, A., Seetah, K., & Barker, G. (2015). How many specimens do I need? Sampling error in geometric morphometrics: testing the sensitivity of means and variances in simple randomized selection experiments. Zoomorphology, 134, 149–163.

    Article  Google Scholar 

  • Christensen, P. (2008). Evolution of skull and mandible shape in cats (Carnivora: Felidae). PLoS ONE, 3, e2807.

    Google Scholar 

  • Colangelo, P., Castiglia, R., Franchini, P., & Solano, E. (2010). Patterns of shape variation in the eastern African gerbils of the genus Gerbilliscus, USA (Rodentia, Muridae): environmental correlations and implications for taxonomy and systematics. Mammalian Biology, 75, 302–310.

    Article  Google Scholar 

  • Cooke, S. B. (2011). Paleodiet of extinct platyrrhines with emphasis on the Caribbean forms: three-dimensional geometric morphometrics of mandibular second molars. The Anatomical Record, 294, 2073–2091.

    Google Scholar 

  • Cooke, S. B., & Terhune, C. E. (2015). Form, function, and geometric morphometrics. The Anatomical Record, 298, 5–28.

    Google Scholar 

  • Copes, L. E., Lucas, L. M., Thostenson, J. O., Hoekstra, H. E., & Boyer, D. M. (2016). A collection of non-human primate computed tomography scans housed in MorphoSource, a repository for 3D data. Scientific Data, 3, 160001.

    Article  Google Scholar 

  • Curran, S. (2009). Hominin paleoecology and cervid ecomorphology. Ph.D. Dissertation, University of Minnesota.

    Google Scholar 

  • Curran, S. (2012). Expanding ecomorphological methods: geometric morphometric analysis of Cervidae post-crania. Journal of Archaeological Science, 39, 1172–1182.

    Article  Google Scholar 

  • Curran, S. (2015). Examining Eucladoceros ecomorphology using geometric morphometrics. The Anatomical Record, 298, 291–313.

    Google Scholar 

  • Curran, S., Terhune, C., Sylvester, A., Gogol, S., & Hubbard, J. (2016). New ecomorphological proxies for paleohabitat reconstructions: Geometric morphometric analyses of cervid joint surface morphology. PaleoAnthropology Society meetings, 12 April (2016).

    Google Scholar 

  • Davies, T. G., Rahman, I. A., Lautenschlager, S., Cunningham, J. A., Asher, R. J., Barrett, P. M., et al. (2017). Open data and digital morphology. Proceedings of the Royal Society B: Biological Sciences, 284, 20170194.

    Article  Google Scholar 

  • DeGusta, D., & Vrba, E. (2003). A method for inferring paleohabitats from the functional morphology of bovid astragali. Journal of Archaeological Science, 30, 1009–1022.

    Article  Google Scholar 

  • DeGusta, D., & Vrba, E. (2005). Methods for inferring paleohabitats from the functional morphology of bovid phalanges. Journal of Archaeological Science, 32, 1099–1113.

    Article  Google Scholar 

  • Delson, E., Faure, M., Guérin, C., Aprile, A., Argant, J., Blackwell, B., et al. (2006). Franco-American renewed research at the Late Villafranchian locality of Senèze (Haute-Loire, France). Courier Forschunginstitut Senckenberg, 256, 275–290.

    Google Scholar 

  • Dunn, R. H. (2018). Functional morphology of the postcranial skeleton. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 23–36). Cham: Springer.

    Google Scholar 

  • Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis. New York: Wiley.

    Google Scholar 

  • Eronen, J. T., Evans, A. R., Jernvall, J., & Fortelius, M. (2010). The impacts of regional climate on the evolution of mammals: a case study using fossil horses. Evolution, 64, 398–408.

    Article  Google Scholar 

  • Evans, A. R., & Fortelius, M. (2008). Three-dimensional reconstruction of tooth relationships during carnivoran chewing. Palaeontologia Electronica, 11(2), 10A.

    Google Scholar 

  • Evans, A. R., & Pineda-Munoz, S. (2018). Inferring mammal dietary ecology from dental morphology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 37–51). Cham: Springer.

    Google Scholar 

  • Evans, A. R., Wilson, G. P., Fortelius, M., & Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.

    Article  Google Scholar 

  • Evin, A., Souter, T., Hulme-Beaman, Ameen, C., Allen, R., Viacava, P., et al. (2016). Use of close-range photogrammetry in zooarchaeology: creating accurate 3D models of wolf crania to study dog domestication. Journal of Archaeological Science: Reports, 9, 87–93.

    Article  Google Scholar 

  • Fabre, A.-C., Cornette, R., Goswami, A., & Peigné, S. (2015). Do constraints associated with locomotor habitat drive the evolution of forelimb shape? Journal of Anatomy, 226, 596–610.

    Article  Google Scholar 

  • Falsetti, A. B., Jungers, W. L., & Cole III, T. M. (1993). Morphometrics of the callitrichid forelimb. International Journal of Primatology, 14, 551–572.

    Article  Google Scholar 

  • Fernández, P. J., Holowka, N. B., Demes, B., & Jungers, W. L. (2016). Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism. Scientific Reports, 6, 30532.

    Article  Google Scholar 

  • Ferring, R., Oms, O., Agusti, J., Berna, F., Niotadze, M., Sheila, T., et al. (2011). Earliest human occupation at Dmanisi (Georgian Caucasus) dated to 1.85–1.78 Ma. Proceedings of the National Academy of Sciences, USA, 108, 10432–10436.

    Article  Google Scholar 

  • Figueirido, B., Palmqvist, P., & Pérez-Claros, J. A. (2005). Ecomorphological correlates of craniodental variation in bears and paleobiological implications for extinct taxa: an approach based on geometric morphometrics. Journal of Zoology, 277, 70–80.

    Article  Google Scholar 

  • Figueirido, B., & Soibelzon, L. H. (2010). Inferring palaeoecology in extinct tremarctine bears (Carnivora, Ursidae) using geometric morphometrics. Lethaia, 43, 209–222.

    Google Scholar 

  • Forrest, F. L., Plummer, T. W., & Raaum, R. L. (2018). Ecomorphological analysis of bovid mandibles from Laetoli Tanzania using 3D geometric morphometrics: implications for hominin paleoenvironmental reconstruction. Journal of Human Evolution, 114, 20–34.

    Article  Google Scholar 

  • Frost, S. R., Marcus, L. F., Bookstein, F. L., Reddy, D. P., & Delson, E. (2003). Cranial allometry, phylogeography, and systematics of large-bodied papionins (Primates: Cercopithecinae) inferred from geometric morphometric analysis of landmark data. The Anatomical Record, 275A, 1048–1072.

    Article  Google Scholar 

  • Furió, M., Agustí, J., Mouskhelishvili, A., Sanisidro, Ó., & Santos-Cubedo, A. (2010). The paleobiology of the extinct venomous shrew Beremendia (Sorcidae, Insectivora, Mammalia) in relation to the geology and paleoenvironment of Dmanisi (Early Pleistocene, Georgia). Journal of Vertebrate Paleontology, 30, 928–942.

    Google Scholar 

  • Gabunia, L., Vekua, A., & Lordkipanidze, D. (2000). The environmental contexts of early occupation of Georgia (Transcaucasia). Journal of Human Evolution, 38, 785–802.

    Article  Google Scholar 

  • Gilbert, C., Ropiquet, A., & Hassanin, A. (2006). Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): systematics, morphology, and biogeography. Molecular Phylogenetics and Evolution, 40, 101–117.

    Google Scholar 

  • Geiger, M. F., Schreiner, C., Delmastro, G. B., & Herder, F. (2016). Combining geometric morphometrics with molecular genetics to investigate a putative hybrid complex: a case study with barbels Barbus spp. (Teleostei: Cyprinidae). Journal of Fish Biology, 88, 1038–1055.

    Article  Google Scholar 

  • Gonzalez, P. N., Barbeito-Andres, J., D’Addona, L. A., Bernail, V., & Perez, S. I. (2016). Technical note: Performance of semi and fully automated approaches for registration of 3D surface coordinates in geometric morphometric studies. American Journal of Physical Anthropology, 160, 169–178.

    Google Scholar 

  • Green, J. L., & Croft, D. A. (2018). Using dental mesowear and microwear for dietary inference: a review of current techniques and applications. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 53–73). Cham: Springer.

    Google Scholar 

  • Gunz, P., Mitteroecker, P., & Bookstein, F. L. (2005). Semilandmarks in three dimensions. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 73–98). New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Gunz, P., & Mitteroecker, P. (2013). Semilandmarks: a method for quantifying curves and surfaces. Hystrix: The Italian Journal of Mammology, 24, 103–109.

    Google Scholar 

  • Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W., & Bookstein, F. L. (2009). Principles for the virtual reconstruction of hominin crania. Journal of Human Evolution, 57, 48–62.

    Google Scholar 

  • Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J., & Spoor, F. (2012). The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. Journal of Anatomy, 220, 529–543.

    Article  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1:4), 9 pp.

    Google Scholar 

  • Harcourt-Smith, W. E., Tallman, M., Frost, S. R., Wiley, D. F., Rohlf, F. J., & Delson, E. (2008). Analysis of selected hominoid joint surfaces using laser scanning and geometric morphometrics: a preliminary report. In E. J. Sargis & M. Dagosto (Eds.), Mammalian evolutionary morphology: A tribute to Frederick S. Szalay (pp. 373–383). Berlin: Springer Science + Business Media.

    Chapter  Google Scholar 

  • Hemmer, H., Kahlke, R.-D., & Vekua, A. (2011). A cheetah Acinonyx pardinesis (Croizet et Jobert, 1828) s.l. at the hominin site of Dmanisi (Georgia) – A potential prime meat supplier in Early Pleistocene ecosystems. Quaternary Science Reviews, 30, 2703–2714.

    Article  Google Scholar 

  • Hildebrand, M. (1985). Walking and running. In M. Hildebrand, D. M. Bramble, K. F. Liem, & D. B. Wake (Eds.), Functional vertebrate morphology (pp. 38–57). Cambridge, MA, USA: Belknap Press.

    Google Scholar 

  • Jungers, W. L., Falsetti, A. B., & Wall, C. E. (1995). Shape, relative size, and size-adjustments in morphometrics. Yearbook of Physical Anthropology, 38, 137–161.

    Google Scholar 

  • Kappelman, J. (1988). Morphology and locomotor adaptations of the bovid femur in relation to habitat. Journal of Morphology, 198, 119–130.

    Google Scholar 

  • Kappelman, J. (1991). The paleoenvironment of Kenyapithecus at Fort Ternan. Journal of Human Evolution, 20, 95–129.

    Article  Google Scholar 

  • Kaliontzopoulou, A. (2011). Geometric morphometrics in herpetology: modern tools for enhancing the study of morphological variation in amphibians and reptiles. Basic and Applied Herpetology, 25, 5–32.

    Google Scholar 

  • Kendall, D. G. (1977). The diffusion of shape. Advances in Applied Probability, 9, 428–430.

    Google Scholar 

  • Klingenberg, C. P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353–357.

    Article  Google Scholar 

  • Klingenberg, C. P. (2013). Visualizations in geometric morphometrics: how to read and how to make graphs showing shape changes. Hystrix, the Italian Journal of Mammalogy, 24, 15–24.

    Google Scholar 

  • Klingenberg, C. P. (2016). Size, shape, and form: concepts of allometry in geometric morphometrics. Development, Genes, and Evolution, 226, 113–137.

    Article  Google Scholar 

  • Kovarovic, K., & Andrews, P. (2007). Bovid post-cranial ecomorphological survey of the Laetoli paleoenvironment. Journal of Human Evolution, 52, 663–680.

    Article  Google Scholar 

  • Kovarovic, K., Aiella, L. C., Cardini, A., & Lockwood, C. A. (2011). Discriminant function analyses in archaeology: are classification rates too good to be true? Journal of Archaeological Science, 38, 3006–3018.

    Article  Google Scholar 

  • Lordkipanidze, D., Jashashvili, T., Vekua, A., De León, M. S. P., Zollikofer, C. P., Rightmire, G. P., et al. (2007). Postcranial evidence from early Homo from Dmanisi, Georgia. Nature, 449, 305–310.

    Google Scholar 

  • MacLeod, N. (1999). Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiology, 25, 107–138.

    Google Scholar 

  • Mander, L., & Punyasena, S. W. (2018). Fossil pollen and spores in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 213–232). Cham: Springer.

    Google Scholar 

  • Marcus, L. F., Bello, E., & García-Valdecasas, A. (Eds.). (1993). Contribution to morphometrics. Madrid: Monografias del Museo Nacional de Ciencias Naturales.

    Google Scholar 

  • Marcus, L. F., Corti, M., Loy, A., Naylor, G. J. P., & Slice, D. E. (Eds.). (1996). Advances in morphometrics. (NATO ASI Series A: Life Sciences, Vol. 284). New York: Plenum.

    Google Scholar 

  • Martinez-Abadias, N., Mateu, R., Niksic, M., Russo, L., & Sharpe, J. (2016). Geometric morphometrics on gene expression patterns within phenotypes: a case study on limb development. Systematic Biology, 65, 194–211.

    Google Scholar 

  • McGuire, J. L. (2010). Geometric morphometrics of vole (Microtus californicus) dentition as a new paleoclimate proxy: shape change along geographic and climatic clines. Quaternary International, 212, 198–205.

    Google Scholar 

  • McNulty, K. P. (2003). Geometric morphometric analyses of extant and fossil hominoid craniofacial morphology. Ph.D. Dissertation, City University of New York.

    Google Scholar 

  • McNulty, K. P., Frost, S. R., & Strait, D. S. (2006). Examining affinities of the Taung child by developmental simulation. Journal of Human Evolution, 51, 274–296.

    Article  Google Scholar 

  • McNulty, K. P., & Vinyard, C. J. (2015). Morphometry, geometry, function and the future. The Anatomical Record, 298, 328–333.

    Article  Google Scholar 

  • Meloro, C., Cáceres, N., Carotenuto, F., Passaro, F., Sponchiado, J., Melo, G. L., et al. (2014). Ecogeographical variation in skull morphometry of howler monkeys (Primates: Atelidae). Zoologischer Anzeiger, 253, 345–359.

    Article  Google Scholar 

  • Messager, E., Lordkipanidze, D., Kvavadze, E., Ferring, C. R., & Voinchet, P. (2010a). Palaeoenvironmental reconstruction of Dmanisi site (Georgia) based on palaeobotanical data. Quaternary International, 223–224, 20–27.

    Article  Google Scholar 

  • Messager, E., Lordkipanidze, D., Delhon, C., & Ferring, C. R. (2010b). Palaeoecological implications of the Lower Pleistocene phytolith record from the Dmanisi Site (Georgia). Palaeogeography, Palaeoclimatology, Palaeoecology, 288, 1–13.

    Article  Google Scholar 

  • Millella, M., Zollikofer, C. P. E., & Ponce de León, M. S. (2015). Virtual reconstruction and geometric morphometrics as tools for paleopathology: a new approach to study rare developmental disorders of the skeleton. The Anatomical Record, 298, 335–345.

    Google Scholar 

  • Mitteroecker, P., & Bookstein, F. (2011). Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evolutionary Biology, 38, 100–114.

    Google Scholar 

  • Mitteroecker, P., & Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary Biology, 36, 235–247.

    Google Scholar 

  • Moncel, M.-H. (2010). Oldest human expansions in Eurasia: favoring and limiting factors. Quaternary International, 223–224, 1–9.

    Article  Google Scholar 

  • Monteiro, L. R. (1999). Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Systematic Biology, 48, 192–199.

    Article  Google Scholar 

  • Monteiro, L. R., Duarte, L. C., & dos Reis, S. F. (2003). Environmental correlates of geographical variation in skull and mandible shape of the punar´e rat Thrichomys apereoides (Rodentia: Echimyidae). Journal of Zoology, London, 261, 47–57.

    Article  Google Scholar 

  • Morgan, C. C., & Álvarez, A. (2012). The humerus of South American caviomorph rodents: shape, function and size in a phylogenetic context. Journal of Zoology, 290, 107–116.

    Article  Google Scholar 

  • Muñoz, N. A., Cassini, G. H., Candela, A. M., & Vizcaíno, S. F. (2017). Ulnar articular surface 3D landmarks and ecomorphology of small mammals: a case study of two early Miocene typotheres (Notoungulata) from Patagonia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 106, 315–323.

    Article  Google Scholar 

  • Neff, N. A., & Marcus, L. F. (1980). A survey of multivariate methods for systematics. New York: American Museum of Natural History.

    Google Scholar 

  • Nowak, R. (1999). Walker’s mammals of the world, (Vol. II, pp. 1091–1133). Baltimore: John Hopkins University Press.

    Google Scholar 

  • Nomade, S., Pastre, J. F., Guillou, H., Faure, M., Guérin, C., Delson, E., et al. (2014). 40Ar/39Ar constraints on some French landmark Late Pliocene to Early Pleistocene large mammalian paleofaunas: paleoenvironmental and paleoecological implications. Quaternary Geochronology, 21, 2–15.

    Article  Google Scholar 

  • O’Higgins, P., & Jones, N. (2006). Tools for statistical shape analysis. Hull York Medical School. http://hyms.fme.googlepages.com/resources.

  • O’Higgins, P., & Milne, N. (2013). Applying geometric morphometrics to compare changes in size and shape arising from finite element analyses. Hystrix, the Italian Journal of Morphology, 24, 126–132.

    Google Scholar 

  • Palmqvist, P. (2002). On the community structure of the large mammals assemblage from Dmanisi (East Georgia, Caucasus). In M. D. Renzi, M. V. P. Alonso, M. Belinchón, E. Penalver, P. Montoya & A. Márquez-Aliaga (Eds.), Current topics in taphonomy and fossilization (pp. 361–383). Valencia: Ayuntamentio de Valencia.

    Google Scholar 

  • Panagiotopoulou, O. (2009). Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology. Annals of Human Biology, 36, 609–623.

    Article  Google Scholar 

  • Parr, W. C. H., Wroe, S., Chamoli, U., Richards, H. S., McCurry, M. R., Clausen, P. D., et al. (2012). Toward integration of geometric morphometrics and computational biomechanics: new methods for 3D virtual reconstruction and quantitative analysis of Finite Element Models. Journal of Theoretical Biology, 301, 1–14.

    Google Scholar 

  • Peppe, D. J., Baumgartner, A., Flynn, A., & Blonder, B. (2018). Reconstructing paleoclimate and paleoecology using fossil leaves. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 287–315). Cham: Springer.

    Google Scholar 

  • Perez, S. I., Bernal, V., & Gonzalez, P. N. (2006). Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. Journal of Anatomy, 208, 769–784.

    Article  Google Scholar 

  • Piras, P., Marcolini, F., Claude, J., Venture, J., Kotsakis, T., & Cubo, J. (2012). Ecological and functional correlates of molar shape variation in European populations of Arvicola (Arvicolinae, Rodentia). Zoologischer Anzeiger, 251, 335–343.

    Article  Google Scholar 

  • Plummer, T. W., & Bishop, L. C. (1994). Hominid paleoecology at Olduvai Gorge, Tanzania as indicated by antelope remains. Journal of Human Evolution, 27, 47–75.

    Article  Google Scholar 

  • Plummer, T. W., Bishop, L. C., & Hertel, F. (2008). Habitat preference of extant African bovids based on astragalus morphology: operationalizing ecomorphology for palaeoenvironmental reconstruction. Journal of Archaeological Science, 35, 3016–3027.

    Article  Google Scholar 

  • Plummer, T. W., Ferraro, J. V., Louys, J., Hertel, F., Alemseged, Z., Bobe, R., et al. (2015). Bovid ecomorphology and hominin paleoenvironments of the Shungura Formation, lower Omo River Valley, Ethiopia. Journal of Human Evolution, 88, 108–126.

    Article  Google Scholar 

  • Raia, P. (2004). Morphological correlates of tough food consumption in large land carnivores. Italian Journal of Zoology, 71, 45–50.

    Article  Google Scholar 

  • Renaud, S., Dufour, A.-B., Hardouin, E. A., Ledevine, R., & Auffray, J.-C. (2015). Once upon multivariate analyses: when they tell several stories about biological evolution. PLoS ONE, 10, e0132801.

    Google Scholar 

  • Ritzman, T. B., Terhune, C. E., Gunz, P., & Robinson, C. A. (2016). Mandibular ramus shape of Australopithecus sediba suggests a single variable species. Journal of Human Evolution, 10, 54–64.

    Article  Google Scholar 

  • Robinson, C., & Terhune, C. E. (2017). Error in geometric morphometric data collection: combining data from multiple sources. American Journal of Physical Anthropology, 164, 62–75.

    Article  Google Scholar 

  • Rohlf, F. J. (2015). The tps series of software. Hystrix, the Italian Journal of Mammalogy, 26, 9–12.

    Google Scholar 

  • Rohlf, F. J., & Bookstein, F. L. (Eds.). (1990). Proceedings of the Michigan Morphometrics Workshop. University of Michigan Museum of Zoology Special Publication 2.

    Google Scholar 

  • Rohlf, F. J., & Marcus, L. F. (1993). A revolution in morphometrics. Trends in Ecology & Evolution, 8, 129–132.

    Google Scholar 

  • Rohlf, F. J., & Corti, M. (2000). Use of two-block partial least-squares to study covariation in shape. Systematic Biology, 49, 740–753.

    Google Scholar 

  • Schlager, S. (2017). Morpho and Rvcg – Shape analysis in R. In G. Zheng, S. Li & G. Szekely (Eds.), Statistical shape and deformation analysis (pp. 217–256). Cambridge: Academic Press.

    Google Scholar 

  • Scott, R., Kappelman, J., & Kelley, J. (1999). The paleoenvironment of Sivapithecus parvada. Journal of Human Evolution, 36, 245–274.

    Article  Google Scholar 

  • Shearer, B. M., Tallman, M., Cooke, S. B., Halenar, L. B., Reber, S. L., Plummer, J., et al. (2017). Evaluating causes of error in landmark-based data collection using scanners. PLoS ONE, 12, e0187452.

    Article  Google Scholar 

  • Sheets, H. D., Covino, K. M., Panasiewicz, J. M., & Morris, S. R. (2006). Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape. Frontiers in Zoology, 3, 15.

    Article  Google Scholar 

  • Sherwood, R. J., & McNulty, K. P. (2011). Dissecting the genetic architecture of craniofacial shape. In P. E. Lestrel (Ed.), Biological shape analysis: Proceedings of the 1st international symposium (pp. 145–171). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Slater, G. J., Figuerirido, B., Louis, L., Yang, P., & Van Valkenburgh, B. (2010). Biomechanical consequences of rapid evolution in the polar bear linage. PLoS ONE, 5, e13870.

    Google Scholar 

  • Slice, D. E. (2002). Morpheus et al. Department of Ecology and Evolution. State University of New York, Stony Brook.

    Google Scholar 

  • Slice, D. E. (2005). Modern morphometrics. In D. E. Slice (Ed.), Modern morphometrics in physical anthropology (pp. 1–45). New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Slice, D. E. (2007). Geometric morphometrics. Annual Review of Anthropology, 36, 261–281.

    Google Scholar 

  • Smith, A. L., Benazzi, S., Ledogar, J. A., Tamvada, K., Smith, L. C. P., Weber, G. W., et al. (2015). Biomechanical implications of intraspecific shape variation in chimpanzee crania: moving toward an integration of geometric morphometrics and finite element analysis. The Anatomical Record, 298, 122–144.

    Google Scholar 

  • Smits, P. D., & Evans, A. R. (2012). Functional constraints on tooth morphology in carnivorous mammals. BMC Evolutionary Biology, 12, 146.

    Article  Google Scholar 

  • Sommer III, H. J., Eckhardt, R. B., & Shiang, T. Y. (2006). Superquadratic modeling of cranial and cerebral shape and asymmetry. American Journal of Physical Anthropology, 129, 189–195.

    Google Scholar 

  • Strömberg, C. A. E., Dunn, R. E., Crifò, C., & Harris, E. B. (2018). Phytoliths in paleoecology: analytical considerations, current use, and future directions. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 233–285). Cham: Springer.

    Google Scholar 

  • Tallman, M., Amenta, A., Delson, E., Frost, S. R., Ghosh, D., Klukkert, Z. S., et al. (2014). Evaluation of a new method of fossil retrodeformation by algorithmic symmetrization: crania of papionins (Primates: Cercopithecidae) as a test case. PLoS ONE, 9, e100833.

    Article  Google Scholar 

  • Tappen, M. J., Lordkipanidze, D., Bukshianidze, M., Vekua, A., & Ferring, R. (2007). Are you in or out (of Africa)? In T. R. Pickering, K. Schick, & N. Toth (Eds.), Breathing life into fossils: Taphonomic studies in honor of C. K. Brain (pp. 119–135). Bloomington: Stone Age Institute Press.

    Google Scholar 

  • Taylor, A. C., Lautenschlager, S., Qi, Z., & Rayfield, E. J. (2016). Biomechanical evaluation of different musculoskeletal arrangements in Psittacosaurus and implications for cranial function. The Anatomical Record, 300, 49–61.

    Google Scholar 

  • Thompson, D. W. (1917). On growth and form. London: Cambridge University Press.

    Google Scholar 

  • Tocheri, M. W., Solhan, C. R., Orr, C. M., Femiani, J., Frohlich, B., Groves, C. P., et al. (2011). Ecological divergence and medial cuneiform morphology in gorillas. Journal of Human Evolution, 60, 171–184.

    Article  Google Scholar 

  • Tocheri, M. W., Orr, C. M., Jacofsky, M. C., & Marzke, M. W. (2008). The evolutionary history of the hominin hand since the last common ancestor of Pan and Homo. Journal of Anatomy, 212, 544–562.

    Article  Google Scholar 

  • Valli, A. M. F. (2004a). Cervidae from the late Pleistocene deposit (Mid-Villafranchian) of Saint-Vallier, (Drôme, France). Geobios, 37, S191–S232.

    Google Scholar 

  • Valli, A. M. F. (2004b). Taphonomy of Saint-Vallier (Drôme, France), the reference locality for biozone MN17 (Upper Pliocene). Lethaia, 37, 337–350.

    Google Scholar 

  • van Heteren, A. H., MacLarnon, A., Soligo, C., & Rae, T. C. (2016). Functional morphology of the cave bear (Ursus spelaeus) mandible: a 3D geometric morphometric analysis. Organisms, Diversity & Analysis, 16, 299–314.

    Article  Google Scholar 

  • von Cramon-Taubadel, N., Frazier, B. C., & Lahr, M. M. (2007). The problem of assessing landmark error in geometric morphometrics: theory, methods, and modifications. American Journal of Physical Anthropology, 134, 24–35.

    Google Scholar 

  • Walmsley, A., Elton, S., Louys, J., Bishop, L. C., & Meloro, C. (2012). Humeral epiphyseal shape in the Felidae: the influence of phylogeny, allometry, and locomotion. The Journal of Morphology, 273, 1424–1438.

    Google Scholar 

  • Weinand, D. C. (2007). A study of parametric versus non-parametric methods for predicting paleohabitat from Southeast Asia bovid astragali. Journal of Archaeological Science, 34, 1774–1783.

    Google Scholar 

  • White, J. (2009). Geometric morphometric investigation of molar shape diversity in modern lemurs and lorises. The Anatomical Record, 292, 701–719.

    Google Scholar 

  • Wiley, D. F., Amenta, N., Alcantara, D. A., Ghosh, D., Kil, Y. J., Delson, E., Harcourt-Smith, W., Rohlf, F. J., St. John, K., & Hamann, B. (2005). Evolutionary morphing. IEEE Visualization, Proceedings, 431–438.

    Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometrics for biologists: A primer. London: Elsevier Academic Press.

    Google Scholar 

Download references

Acknowledgements

Special thanks to Darin Croft, Scott Simpson, and Denise Su for organizing the excellent “Latest Methods in Cenozoic Paleoecology ” symposium and to the Cleveland Museum of Natural History for hosting the event. Funding for this research was provided by National Science Foundation Doctoral Dissertation Improvement Grant BCS-0824607, University of Minnesota Doctoral Dissertation Fellowship, University of Minnesota Herb E. Wright Fellowship in Paleoecology, and University of Minnesota, Department of Anthropology Block Grants. For access to and assistance with collections I thank Alexandru Petculescu (Institute of Speleology, Bucharest, Romania), Aurelian Popescu (Museum of Oltenia, Craiova, Romania), Abel Prieur (Collections de Geologie, Universite C. Bernard Lyon 1, France), Didier Berthet (Collection du Musee des Confluences, Lyon, France), Michi Schulenberg (Chicago Field Museum, USA), Eileen Westwig (American Museum of Natural History, USA), Linda Gordon (National Museum of Natural History, USA), and Chris Conroy (UC Berkeley Museum of Vertebrate Zoology, USA). Thanks to Adam Sylvester for the femoral head visualization in Fig. 14.1 and to the editors and reviewers whose insights greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina C. Curran .

Editor information

Editors and Affiliations

Appendices

Appendix 14.1

Software Packages

On-line Resources

Appendix 14.2

ID

Species

Site

Assigned Habitat

Closed

InterClosed

InterOpen

Open

FR684a

Cervidae (m)

Senèze

Open

0.0096

0.0792

0.0839

0.8273

FR684b

Cervidae (m)

Senèze

Open

0.0091

0.1811

0.0838

0.726

FR684c

Cervidae (m)

Senèze

Open

0.0439

0.1076

0.1281

0.7204

FR683a

Cervidae (m)

Senèze

Open

0.0022

0.1576

0.2168

0.6235

FR662a

Cervus (l)

Senèze

InterOpen

0.0094

0.0248

0.5111

0.4547

FR608a

Eucladoceros senezensis

Senèze

InterOpen

0.0938

0.036

0.6379

0.2323

FR574a

Eucladoceros senezensis

Senèze

InterOpen

0.0037

0.001

0.9376

0.0577

FR537a

Alces (Libralces)

Senèze

Closed

0.5834

0.0318

0.1544

0.2305

FR2817

Cervidae (s)

St. Vallier

Open

0

0.0015

0.0013

0.9972

FR2821

Cervidae (s)

St. Vallier

Open

0

0.0021

0.0025

0.9954

FR2816

Cervidae (s)

St. Vallier

Open

0

0.0063

0.0112

0.9825

FR2819

Cervidae (s)

St. Vallier

Open

0.001

0.002

0.0212

0.9758

FR2818

Cervidae (s)

St. Vallier

Open

0.0001

0.0254

0.0189

0.9556

FR2791

Cervidae (l)

St. Vallier

Open

0.0004

0.0157

0.1087

0.8752

FR2808

Cervidae (m)

St. Vallier

Open

0.0067

0.03

0.0906

0.8727

FR2810

Cervidae (s)

St. Vallier

Open

0.0052

0.0199

0.1021

0.8727

FR2805

Cervidae (m)

St. Vallier

Open

0.0002

0.0995

0.1293

0.771

FR2813

Cervidae (s)

St. Vallier

Open

0.0036

0.0231

0.2835

0.6898

FR497716

Croizetoceros ramosus

St. Vallier

Open

0.0025

0.0437

0.2825

0.6713

FR2823

Cervidae (m)

St. Vallier

Open

0.0085

0.0337

0.3265

0.6314

FR2809

Cervidae (m)

St. Vallier

Open

0.0627

0.2448

0.137

0.5555

FR497661

Croizetoceros ramosus

St. Vallier

Open

0.005

0.0068

0.4675

0.5207

FR2130

Eucladoceros senezensis

St. Vallier

InterOpen

0.0096

0.0123

0.696

0.2821

FR2120

Eucladoceros senezensis

St. Vallier

InterOpen

0.0021

0.0123

0.7241

0.2616

FR2792

Cervidae (l)

St. Vallier

InterOpen

0.0053

0.0051

0.8284

0.1612

FR2796

Cervidae (l)

St. Vallier

InterOpen

0.1394

0.0171

0.7031

0.1405

FR2131

Eucladoceros senezensis

St. Vallier

InterOpen

0.1063

0.0043

0.8121

0.0772

FR2795

Cervidae (l)

St. Vallier

InterOpen

0.0288

0.0193

0.878

0.0739

FR2797

Cervidae (l)

St. Vallier

InterOpen

0.0221

0.0124

0.9081

0.0575

FR2798

Cervidae (l)

St. Vallier

InterOpen

0.0267

0.0004

0.9689

0.004

ROIV-V.1

Eucladoceros sp.

Grăunceanu

Open

0

0.017

0.0187

0.9642

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Curran, S.C. (2018). Three-Dimensional Geometric Morphometrics in Paleoecology. In: Croft, D., Su, D., Simpson, S. (eds) Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-94265-0_14

Download citation

Publish with us

Policies and ethics