Skip to main content

Phytoliths in Paleoecology: Analytical Considerations, Current Use, and Future Directions

  • Chapter
  • First Online:
Methods in Paleoecology

Abstract

Phytoliths, microscopic plant silica bodies, are often preserved in modern and fossil soils and sediment, as well as in archaeological contexts. They record unique characteristics of past vegetation and, unlike palynomorphs and macrofossils, are commonly found in direct association with fossil vertebrates, providing vital paleoecological data. Within pre-Quaternary paleoecology , phytolith analysis has so far elucidated Cretaceous-Cenozoic grass evolution, vegetation change including the spread of grasslands, plant-animal co-evolution, and diets of extinct animals. Because deep-time phytolith analysis is a young field, many methodological aspects are not standardized, preventing comparisons among studies and calibration using published modern analogs. On the other hand, the plethora of novel approaches in recent literature points to the potential of phytolith-based paleoecology. Here, we review the present state of phytolith analysis, focusing on pre-Quaternary applications. We discuss the nature and known biases of the phytolith record, current methods, and examples of when phytoliths contributed substantially to knowledge of past ecosystems, and highlight important future avenues of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert, R. M., & Bamford, M. K. (2012). Vegetation during UMBI and deposition of Tuff IF at Olduvai Gorge, Tanzania (ca. 1.8 Ma) based on phytoliths and plant remains. Journal of Human Evolution, 63, 342–350.

    Article  Google Scholar 

  • Albert, R. M., Bamford, M. K., & Cabanes, D. (2006). Taphonomy of phytoliths and macroplants in different soils from Olduvai Gorge (Tanzania) and the application to Plio-Pleistocene palaeoanthropological samples. Quaternary International, 148, 78–94.

    Article  Google Scholar 

  • Albert, R. M., Bamford, M. K., & Cabanes, D. (2009). Palaeoecological significance of palms at Olduvai Gorge, Tanzania, based on phytolith remains. Quaternary International, 193, 41–48.

    Article  Google Scholar 

  • Albert, R. M., Bamford, M. K., & Esteban, I. (2015). Reconstruction of ancient palm vegetation landscapes using a phytolith approach. Quaternary International, 369, 51–66.

    Article  Google Scholar 

  • Albert, R. M., & Cabanes, D. (2008). Fire in prehistory: an experimental approach to combustion processes and phytolith remains. Israel Journal of Earth Sciences, 56, 175–189.

    Google Scholar 

  • Albert, R. M., Esteban, I. (2016). 9. What early human populations ate: the use of phytoliths for identifying plant remains in the archaeological record at Olduvai. In K. Hardy & L. Kubiak-Martens (Eds.), Wild Harvest: Plants in the Hominin and Pre-Agrarian Human Worlds (pp. 171–190). Oxford, UK: Oxbow Books.

    Google Scholar 

  • Albert, R. M., Ruíz, J. A., & Sans, A. (2016). PhytCore ODB: a new tool to improve efficiency in the management and exchange of information on phytoliths. Journal of Archaeological Science, 68, 98–105.

    Article  Google Scholar 

  • Albert, R. M., & Weiner, S. (2001). Study of phytoliths in prehistoric ash layers from Kebara and Tabun caves using a quantitative approach. In J. D. Meunier & F. Colin (Eds.), Phytoliths: Applications in Earth sciences and human history (pp. 251–266). Lisse: A. A. Balkema Publishers.

    Google Scholar 

  • Aleman, J., Leys, B., Apema, R., Bentaleb, I., Dubois, M. A., Lamba, B., et al. (2012). Reconstructing savanna tree cover from pollen, phytoliths and stable carbon isotopes. Journal of Vegetation Science, 23, 187–197.

    Article  Google Scholar 

  • Aleman, J. C., Canal-Subitani, S., Favier, C., & Bremond, L. (2014). Influence of the local environment on lacustrine sedimentary phytolith records. Palaeogeography, Palaeoclimatology, Palaeoecology, 414, 273–283.

    Article  Google Scholar 

  • Alexandre, A., Basile-Doelsch, I., Delhaye, T., Borshneck, D., Mazur, J., Reyerson, P., et al. (2015). New highlights of phytolith structure and occluded carbon location: 3-D X-ray microscopy and NanoSIMS results. Biogeosciences, 12, 863–873.

    Article  Google Scholar 

  • Alexandre, A., Bouvet, M., & Abbadie, L. (2011a). The role of savannas in the terrestrial Si cycle: a case-study from Lamto, Ivory Coast. Global and Planetary Change, 78, 162–169.

    Google Scholar 

  • Alexandre, A., Crespin, J., Sylvestre, F., Sonzogni, C., & Hilbert, D. W. (2011b). The oxygen isotopic composition of phytoliths from tropical rainforest soils (Queensland, Australia): application of a new paleoenvironmental tool. Climate of the Past Discussions, 7, 1693–1735.

    Google Scholar 

  • Alexandre, A., Crespin, J., Sylvestre, F., Sonzogni, C., & Hilbert, D. W. (2012). The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool. Climate of the Past, 8, 307–324.

    Google Scholar 

  • Alexandre, A., Meunier, J.-D., Colin, F., & Koud, J.-M. (1997a). Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochimica et Cosmochimica Acta, 61, 677–682.

    Article  Google Scholar 

  • Alexandre, A., Meunier, J.-D., Lezine, A.-M., Vincens, A., & Schwartz, D. (1997b). Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 213–229.

    Google Scholar 

  • Alexandre, A., Meunier, J.-D., Mariotti, A., & Soubies, F. (1999). Late Holocene phytolith and carbon-isotope record from a Latosol at Salitre, South-Central Brazil. Quaternary Research, 51, 187–194.

    Article  Google Scholar 

  • Aliscioni, S., Bell, H. L., Besnard, G., Christin, P. A., Columbus, J. T., Duvall, M. R., et al. (2012). New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytologist, 193, 304–312.

    Google Scholar 

  • An, X. (2016). Morphological characteristics of phytoliths from representative conifers in China. Palaeoworld, 25, 116–127.

    Google Scholar 

  • An, X., Lu, H., & Chu, G. (2015). Surface soil phytoliths as vegetation and altitude indicators: a study from the southern Himalaya. Scientific Reports, 5, 15523.

    Google Scholar 

  • Archibald, S. B., Morse, G. E., Greenwood, D. R., & Mathewes, R. W. (2014). Fossil palm beetles refine upland winter temperatures in the Early Eocene Climatic Optimum. Proceedings of the National Academy of Sciences, USA, 111, 8095–8100.

    Google Scholar 

  • Archibold, O. W. (1995). Ecology of world vegetation. London: Chapman & Hall.

    Book  Google Scholar 

  • Armitage, P. L. (1975). The extraction and identification of opal phytoliths from the teeth of ungulates. Journal of Archaeological Science, 2, 187–197.

    Article  Google Scholar 

  • Asevedo, L., Winck, G. R., Mothé, D., & Avilla, L. S. (2012). Ancient diet of the Pleistocene gomphothere Notiomastodon platensis (Mammalia, Proboscidea, Gomphotheriidae) from lowland mid-latitudes of South America: stereomicrowear and tooth calculus analyses combined. Quaternary International, 255, 42–52.

    Google Scholar 

  • Askin, R., & Raine, J. (2000). Oligocene and Early Miocene terrestrial palynology of the Cape Roberts Drillhole CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antartica, 7, 493–501.

    Google Scholar 

  • Asner, G. P., Scurlock, J. M., & Hicke, J. (2003). Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12, 191–205.

    Google Scholar 

  • Augustin, C. H. R. R., Coe, H. H. G., Chueng, K. F., & Gomes, J. G. (2015). Analysis of geomorphic dynamics in ancient quartzite landscape using phytolith and carbon isotopes, Espinhaço Mountain Range, Minas Gerais, Brazil. Géomorphologie, 4, 355–376.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

    Google Scholar 

  • Baker, G. (1960). Fossil opal-phytoliths. Micropaleontology, 6, 79–85.

    Article  Google Scholar 

  • Baker, G. J. (1979). A study of dental disease in the horse. Glasgow: University of Glasgow.

    Google Scholar 

  • Ball, T. B., Gardner, J. S., & Anderson, N. (1999). Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum) (Graminae). American Journal of Botany, 86, 1615–1623.

    Article  Google Scholar 

  • Ball, T. B., Gardner, J. S., & Brotherson, J. D. (1996). Identifying phytoliths produced by the inflorescence bracts of three species of wheat (Triticum monococcum L., T. dicoccon Schrank., and T. aestivum L.) using computer-assisted image and statistical analyses. Journal of Archaeological Science, 23, 619–632.

    Article  Google Scholar 

  • Bamford, M., Neumann, F., Pereira, L., Scott, L., Dirks, P., & Berger, L. (2010). Botanical remains from a coprolite from the Pleistocene hominin site of Malapa, Sterkfontein Valley, South Africa. Palaeontologia Africana, 45, 23–28.

    Google Scholar 

  • Bamford, M. K., Albert, R. M., & Cabanes, D. (2006). Plio-Pleistocene macroplant fossil remains and phytoliths from Lowermost Bed II in the eastern palaeolake margin of Olduvai Gorge, Tanzania. Quaternary International, 148, 95–112.

    Article  Google Scholar 

  • Bamford, M. K., Stanistreet, I. G., Stollhofen, H., & Albert, R. M. (2008). Late Pliocene grassland from Olduvai Gorge, Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 257, 280–293.

    Article  Google Scholar 

  • Barboni, D. (2014). Vegetation of Northern Tanzania during the Plio-Pleistocene: a synthesis of the paleobotanical evidences from Laetoli, Olduvai, and Peninj hominin sites. Quaternary International, 322, 264–276.

    Google Scholar 

  • Barboni, D., Ashley, G. M., Dominguez-Rodrigo, M., Bunn, H. T., Mabulla, A. Z. P., & Baquedano, E. (2010). Phytoliths infer locally dense and heterogeneous paleovegetation at FLK North and surrounding localities during upper Bed I time, Olduvai Gorge, Tanzania. Quaternary Research, 74, 344–354.

    Article  Google Scholar 

  • Barboni, D., Bonnefille, R., Alexandre, A., & Meunier, J.-D. (1999). Phytoliths as paleoenvironmental indicators, West Side Middle Awash Valley, Ethiopia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152, 87–100.

    Article  Google Scholar 

  • Barboni, D., & Bremond, L. (2009). Phytoliths of East African grasses: an assessment of their environmental and taxonomic significance based on floristic data. Review of Palaeobotany and Palynology, 158, 29–41.

    Article  Google Scholar 

  • Barboni, D., Bremond, L., & Bonnefille, R. (2007). Comparative study of modern phytolith assemblages from inter-tropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 246, 454–470.

    Article  Google Scholar 

  • Bartoli, F. (1985). Crystallochemistry and surface properties of biogenic opal. Journal of Soil Science, 36, 335–350.

    Article  Google Scholar 

  • Bartoli, F., & Wilding, L. P. (1980). Dissolution of biogenic opal as a function of its physical and chemical properties. Proceedings of the Soil Science Society of America, 44, 873–878.

    Article  Google Scholar 

  • Behrensmeyer, A. K. & Hook, R. W. (1992). Paleoenvironmental contexts and taphonomic models. In A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H.-D. Sues & S. L. Wing (Eds.), Terrestrial ecosystems through time. Evolutionary paleoecology of terrestrial plants and animals (pp. 15–136). Chicago: The University of Chicago Press.

    Google Scholar 

  • Bellosi, E. (2010). Loessic and fluvial sedimentation in Sarmiento Formation pyroclastics, middle Cenozoic of Central Patagonia. In R. H. Madden, A. A. Carlini, M. G. Vucetich & R. F. Kay (Eds.), The paleontology of Gran Barranca (pp. 278–292). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bellosi, E. & González, M. G. (2010). Paleosols of the middle Cenozoic Sarmiento Formation, Central Patagonia. In R. H. Madden, A. A. Carlini, M. G. Vucetich & R. F. Kay (Eds.), The paleontology of Gran Barranca (pp. 293–305). Cambridge: Cambridge University Press

    Google Scholar 

  • Bellosi, E. S., & Krause, J. M. (2014). Onset of the Middle Eocene global cooling and expansion of open-vegetation habitats in central Patagonia. Andean Geology, 41, 29–48.

    Article  Google Scholar 

  • Bennett, P. C. (1991). Quartz dissolution in organic-rich aqueous systems. Geochimica et Cosmochimica Acta, 55, 1781–1797.

    Article  Google Scholar 

  • Bertoldi de Pomar, H. (1971). Ensayo de clasificación morfológica de los silicofitolitos. Ameghiniana, 8, 317–328.

    Google Scholar 

  • Birks, H. J. B., & Birks, H. H. (1980). Quaternary palaeoecology. London: Edward Arnold Ltd.

    Google Scholar 

  • Biswas, O., Ghosh, R., Paruya, D. K., Mukherjee, B., Thapa, K. K., & Bera, S. (2016). Can grass phytoliths and indices be relied on during vegetation and climate interpretations in the eastern Himalayas? Studies from Darjeeling and Arunachal Pradesh, India. Quaternary Science Reviews, 134, 114–132.

    Article  Google Scholar 

  • Blecker, S. W., McCulley, R. L., Chadwick, O. A., & Kelly, E. F. (2006). Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochemical Cycles, 20, GB3023.

    Google Scholar 

  • Blecker, S. W., Yonker, C. M., Olson, C. G., & Kelly, E. F. (1997). Paleopedologic and geomorphic evidence for Holocene climate variation, Shortgrass Steppe, Colorado, USA. Geoderma, 76, 113–130.

    Article  Google Scholar 

  • Blinnikov, M. S. (2005). Phytoliths in plants and soils of the interior Pacific Northwest, USA. Review of Palaeobotany and Palynology, 135, 71–98.

    Article  Google Scholar 

  • Blinnikov, M. S. (2016). Phytolith gallery. http://web.stcloudstate.edu/msblinnikov/phd/phyt.html.

  • Blinnikov, M. S., Bagent, C. M., & Reyerson, P. E. (2013). Phytolith assemblages and opal concentrations from modern soils differentiate temperate grasslands of controlled composition on experimental plots at Cedar Creek, Minnesota. Quaternary International, 287, 101–113.

    Article  Google Scholar 

  • Blinnikov, M. S., Busacca, A., & Whitlock, C. (2002). Reconstruction of the Late Pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 77–101.

    Article  Google Scholar 

  • Blueweiss, L., Fox, H., Kudzma, V., Nakashima, D., Peters, R., & Sams, S. (1978). Relationships between body size and some life history parameters. Oecologia, 37, 257–272.

    Article  Google Scholar 

  • Borrelli, N., Alvarez, M. F., Osterrieth, M. L., & Marcovecchio, J. E. (2010). Silica content in soil solution and its relation with phytolith weathering and silica biogeochemical cycle in typical Argiudolls of the Pampean Plain, Argentina—A preliminary study. Journal of Soils and Sediments, 10, 983–994.

    Google Scholar 

  • Borrelli, N., Fernández Honaine, M., Altamirano, S. M., & Osterrieth, M. (2011). Calcium and silica biomineralizations in leaves of eleven aquatic species of the Pampean Plain, Argentina. Aquatic Botany, 94, 29–36.

    Article  Google Scholar 

  • Borrelli, N., Osterrieth, M., & Marcovecchio, J. (2008). Interrelations of vegetal cover, silicophytolith content and pedogenesis of typical Argiudolls of the Pampean Plain, Argentina. Catena, 75, 146–153.

    Google Scholar 

  • Bouchenak-Khelladi, Y., Verboom, G. A., Hodkinson, T. R., Salamin, N., Francois, O., Chonghaile, G. N., et al. (2009). The origins and diversification of C4 grasses and savanna adapted ungulates. Global Change Biology, 15, 2397–2417.

    Article  Google Scholar 

  • Bouchenak-Khelladi, Y., Verboom, G. A., Savolainen, V., & Hodkinson, T. R. (2010). Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. Botanical Journal of the Linnean Society, 162, 543–557.

    Google Scholar 

  • Bouchenak-Khelladi, Y., Muasya, A. M., & Linder, H. P. (2014). A revised evolutionary history of Poales: origins and diversification. Botanical Journal of the Linnean Society, 175, 4–16.

    Google Scholar 

  • Bowdery, D., Hart, D. M., Lentfer, C. J., & Wallis, L. A. (2001). A universal phytolith key. In J. D. Meunier & F. Colin (Eds.), Phytoliths: Applications in Earth sciences and human history (pp. 267–278). Lisse: A. A. Balkema Publishers.

    Google Scholar 

  • Boyadjian, C. H. C., Eggers, S., & Reinhard, K. (2007). Dental wash: a problematic method for extracting microfossils from teeth. Journal of Archaeological Science, 34, 1622–1628.

    Google Scholar 

  • Boyd, M. (2002). Identification of anthropogenic burning in the paleoecological record of the northern prairies: a new approach. Annals of the Association of American Geographers, 92, 471–487.

    Google Scholar 

  • Boyd, W. E., Lentfer, C. J., & Torrence, R. (1998). Phytolith analysis for a wet tropics environment: methodological issues and implications for the archaeology of Garua Island, West New Britain, Papa New Guinea. Palynology, 22, 213–228.

    Google Scholar 

  • Bozarth, S., & Hofman, J. (1998). Phytolith analysis of bison teeth calculus and impacta from sites in Kansas and Oklahoma. Current Research in the Pleistocene, 15, 95–96.

    Google Scholar 

  • Bozarth, S. R. (1985). Distinctive phytoliths from various dicot species. Phytolitharien Newsletter, 3, 7–8.

    Google Scholar 

  • Bozarth, S. R. (1987). Diagnostic opal morphotypes from rinds of selected Cucurbita species. American Antiquity, 52, 607–615.

    Article  Google Scholar 

  • Bozarth, S. R. (1990). Diagnostic opal phytoliths from pods of selected varieties of common beans (Phaseolus vulgaris). American Antiquity, 55, 98–104.

    Article  Google Scholar 

  • Bozarth, S. R. (1992). Classification of opal phytoliths formed in selected dicotyledons native to the Great Plains. In G. J. Rapp & S. C. Mulholland (Eds.), Phytolith systematics. Emerging issues, vol 1. Advances in Archaeological and Museum Science (pp. 193–214). New York: Plenum Press.

    Google Scholar 

  • Bozarth, S. R. (1993). Biosilicate assemblages of boreal forests and aspen parklands. In D. M. Pearsall & D. R. Piperno (Eds.), Current research in phytolith analysis: Applications in archaeology and paleoecology, vol 10. MASCA Research Papers in Science and Archaeology (pp. 95–105). Philadelphia: University Museum of Archaeology and Anthropology, University of Pennsylvania.

    Google Scholar 

  • Brea, M., Zucol, A., & Iglesias, A. (2012). Fossil plant studies from late Early Miocene of the Santa Cruz Formation: paleoecology and paleoclimatology at the passive margin of Patagonia, Argentina. In S. Vizcaíno, R. F. Kay & M. S. Bargo (Eds.), Early Miocene paleobiology in Patagonia (pp. 104–128). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bremer, K. (2002). Gondwanan evolution of the grass alliance of families (Poales). Evolution, 56, 1374–1387.

    Article  Google Scholar 

  • Bremond, L., Alexandre, A., Véla, E., & Guiot, J. (2004). Advantages and disadvantages of phytolith analysis for the reconstruction of Mediterranean vegetation: an assessment based on modern phytolith, pollen and botanical data (Luberon, France). Review of Palaeobotany and Palynology, 129, 213–228.

    Google Scholar 

  • Bremond, L., Alexandre, A., Hély, C., & Guiot, J. (2005a). A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest–savanna transect in southeastern Cameroon. Global and Planetary Change, 45, 277–293.

    Article  Google Scholar 

  • Bremond, L., Alexandre, A., Peyron, O., & Guiot, J. (2005b). Grass water stress estimated from phytoliths in West Africa. Journal of Biogeography, 32, 311–327.

    Article  Google Scholar 

  • Bremond, L., Alexandre, A., Peyron, O., & Guiot, J. (2008a). Definition of grassland biomes from phytoliths in West Africa. Journal of Biogeography, 35, 2039–2048.

    Article  Google Scholar 

  • Bremond, L., Alexandre, A., Wooller, M. J., Hely, C., Williamson, D., Schafer, P. A., et al. (2008b). Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Global and Planetary Change, 61, 209–224.

    Article  Google Scholar 

  • Brophy, J. K., de Ruiter, D. J., Fortelius, M., Bamford, M., & Berger, L. R. (2016). Pleistocene Bovidae (Mammalia) from Malapa, Gauteng Province, South Africa. Palaeontologia Electronica, 19, 1–22.

    Google Scholar 

  • Brown, D. A. (1984). Prospects and limits of a phytolith key for grasses in the Central United States. Journal of Archaeological Science, 11, 345–368.

    Article  Google Scholar 

  • Buján, E. (2013). Elemental composition of phytoliths in modern plants (Ericaceae). Quaternary International, 287, 114–120.

    Article  Google Scholar 

  • Cabanes, D., Weiner, S., & Shahack-Gross, R. (2011). Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths. Journal of Archaeological Science, 38, 2480–2490.

    Google Scholar 

  • Calderón, C. E., & Soderstrom, T. R. (1980). The genera of Bambusoideae (Poaceae) of the American conitinent: keys and comments. Smithsonian Contributions to Botany, 44, 1–27.

    Google Scholar 

  • Calegari, M. R., Madella, M., Vidal-Torrado, P., Pessenda, L. C. R., & Marques, F. A. (2013). Combining phytoliths and δ13C matter in Holocene palaeoenvironmental studies of tropical soils: an example of an Oxisol in Brazil. Quaternary International, 287, 47–55.

    Article  Google Scholar 

  • Campbell, C. S. & Kellogg, E. A. (1987). Sister group relationships of the Poaceae. In T. R. Soderstrom, K. W. Hilu, C. S. Campbell & M. E. Barkworth (Eds.), Grass systematics and evolution (pp. 217–224). Washington, D. C.: Smithsonian Institution Press.

    Google Scholar 

  • Carnelli, A. L., Madella, M., & Theurillat, J.-P. (2001). Biogenic silica production in selected Alpine plant species and plant communities. Annals of Botany, 87, 425–434.

    Article  Google Scholar 

  • Carnelli, A. L., Madella, M., Theurillat, J.-P., & Ammann, B. (2002). Aluminum in the opal silica reticule of phytoliths: a new tool in palaeoecological studies. American Journal of Botany, 89, 346–351.

    Article  Google Scholar 

  • Carnelli, A. L., Theurillat, J.-P., & Madella, M. (2004). Phytolith types and type-frequencies in subalpine–alpine plant species of the European Alps. Review of Palaeobotany and Palynology, 129, 39–65.

    Article  Google Scholar 

  • Cerling, T. E. (1992). Development of grasslands and savannas in East Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 97, 241–247.

    Article  Google Scholar 

  • Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., et al. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 153–158.

    Article  Google Scholar 

  • Cerling, T. E., Levin, N. E., Quade, J., Wynn, J. G., Fox, D. L., Kingston, J. D., et al. (2010). Comment on the paleoenvironment of Ardipithecus ramidus. Science, 328, 1105.

    Google Scholar 

  • Chen, S. T., & Smith, S. Y. (2013). Phytolith variability in Zingiberales: a tool for the reconstruction of past tropical vegetation. Palaeogeography, Palaeoclimatology, Palaeoecology, 370, 1–12.

    Article  Google Scholar 

  • Chen, S. T., Smith, S. Y., Sheldon, N. D., & Strömberg, C. A. E. (2015). Regional-scale variability in the spread of grasslands in the late Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 437, 42–52.

    Article  Google Scholar 

  • Christin, P.-A., Spriggs, E., Osborne, C. P., Strömberg, C. A. E., Salamin, N., & Edwards, E. J. (2014). Molecular dating, evolutionary rates, and the age of the grasses. Systematic Biology, 63, 153–165.

    Article  Google Scholar 

  • Ciochon, R. L., Piperno, D. R., & Thompson, R. G. (1990). Opal phytoliths found on the teeth of the extinct ape Gigantopithecus blacki: implications for paleodietary studies. Proceedings of the National Academy of Sciences, USA, 87, 8120–8124.

    Google Scholar 

  • Clarke, J. (2003). The occurrence and significance of biogenic opal in the regolith. Earth Science Reviews, 60, 175–194.

    Article  Google Scholar 

  • Coe, H. H., Macario, K., Gomes, J. G., Chueng, K. F., Oliveira, F., Gomes, P. R., et al. (2014). Understanding Holocene variations in the vegetation of Sao Joao River basin, southeastern coast of Brazil, using phytolith and carbon isotopic analyses. Palaeogeography, Palaeoclimatology, Palaeoecology, 415, 59–68.

    Article  Google Scholar 

  • Coe, H. H. G., Alexandre, A., Carvalho, C. N., Santos, G. M., da Silva, A. S., Sousa, L. O. F., et al. (2013). Changes in Holocene tree cover density in Cabo Frio (Rio de Janeiro, Brazil): evidence from soil phytolith assemblages. Quaternary International, 287, 63–72.

    Article  Google Scholar 

  • Collura, L. V., & Neumann, K. (2017). Wood and bark phytoliths of West African woody plants. Quaternary International, 434, 142–159.

    Article  Google Scholar 

  • Cooke, J., & Leishman, M. R. (2011). Is plant ecology more siliceous than we realise? Trends in Plant Science, 16, 61–68.

    Article  Google Scholar 

  • Cordova, C. E. (2013). C3 Poaceae and Restionaceae phytoliths as potential proxies for reconstructing winter rainfall in South Africa. Quaternary International, 287, 121–140.

    Article  Google Scholar 

  • Cordova, C. E., Johnson, W. C., Mandel, R. D., & Palmer, M. W. (2011). Late Quaternary environmental change inferred from phytoliths and other soil-related proxies: case studies from the central and southern Great Plains, USA. Catena, 85, 87–108.

    Article  Google Scholar 

  • Cordova, C. E., & Scott, L. (2010). The potential of Poaceae, Cyperaceae, and Restionaceae phytoliths to reflect past environmental conditions in South Africa. In J. Runge (Ed.), African palaeoenviornments and geomorphic landscape evolution (pp. 107–133). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Cornelis, J. T., Delvaux, B., Georg, R. B., Lucas, Y., Ranger, J., & Opfergelt, S. (2011). Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences, 8, 89–112.

    Google Scholar 

  • Cotton, J. M., Hyland, E. G., & Sheldon, N. D. (2014). Multi-proxy evidence for tectonic control on the expansion of C4 grasses in northwest Argentina. Earth and Planetary Science Letters, 395, 41–50.

    Google Scholar 

  • Cotton, J. M., Sheldon, N. D., & Strömberg, C. A. E. (2012). High resolution isotopic record of C4 photosynthesis of a Miocene grassland. Palaeogeography, Palaeoclimatology, Palaeoecology, 337–338, 88–98.

    Article  Google Scholar 

  • Couvreur, T. L. P., & Baker, W. J. (2013). Tropical rain forest evolution: palms as a model group. BMC Biology, 11, 48.

    Google Scholar 

  • Crifò, C., & Strömberg, C. A. E. (2016). Phytoliths in paleoecology: a tool for reconstructing habitat structure, and heterogeneity. Geologic Society of America Abstracts with Programs, 48.

    Google Scholar 

  • Currie, H. A., & Perry, C. C. (2007). Silica in plants: biological, biochemical and chemical studies. Annals of Botany, 100, 1383–1389.

    Google Scholar 

  • da Costa, F. G., Souza, P. C., Klein, D. E., & Bove, C. P. (2016). Application of acetolysis in phytoliths extraction. Review of Palaeobotany and Palynology, 228, 93–97.

    Article  Google Scholar 

  • Dahlgren, R. M. T., Clifford, H. T., & Yeo, P. F. (1985). The families of the monocotyledons. Structure, evolution, and taxonomy. New York: Springer.

    Google Scholar 

  • Das, S., Ghosh, P., Paruya, D. K., Yao, Y.-F., & Li, C.-S. (2013a). Phytolith spectra in respiratory aerial roots of some mangrove plants of the Indian Sunderbans and its efficacy in ancient deltaic environment reconstruction. Quaternary International, 325, 179–196.

    Article  Google Scholar 

  • Das, S., Ghosh, R., & Bera, S. (2013b). Application of non-grass phytoliths in reconstructing deltaic environments: a study from the Indian Sunderbans. Palaeogeography, Palaeoclimatology, Palaeoecology, 376, 48–65.

    Article  Google Scholar 

  • Delhon, C., Alexandre, A., Berger, J.-F., Thiébault, S., Brochier, J.-L., & Meunier, J.-D. (2003). Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation. Quaternary Research, 59, 48–60.

    Article  Google Scholar 

  • Delhon, C., Martin, L., Argant, J., & Thiebault, S. (2008). Shepherds and plants in the Alps: multi-proxy archaeobotanical analysis of neolithic dung from “La Grande Rivoire”(Isère, France). Journal of Archaeological Science, 35, 2937–2952.

    Google Scholar 

  • Dickau, R., Whitney, B. S., Iriarte, J., Mayle, F. E., Soto, J. D., Metcalfe, P., et al. (2013). Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions. Review of Palaeobotany and Palynology, 193, 15–37.

    Article  Google Scholar 

  • Diester-Haass, L., Schrader, H. J., & Thiede, J. (1973). Sedimentological and paleoclimatological investigations of two pelagic ooze cores off Cape Barbas, North-West Africa. “Meteor” Forschungsergebnisse, C16, 19–66.

    Google Scholar 

  • Dillhoff, R. M., Dillhoff, T. A., Jijina, A. P., & Strömberg, C. A. E. (2014). The Vasa Park flora, King County, Washington, USA – a window into the late Miocene of the Pacific Northwest. In W. D. Stevens, O. M. Montiel & P. H. Raven (Eds.), Paleobotany and biogrography, a festschrift for Alan Graham in his 80th year (pp. 64–97). St. Louis: Missouri Botanical Garden Press.

    Google Scholar 

  • Dinan, E. H. & Rowlett, R. M. (1993). Vegetational changes at the Shriver paleo-Indian site, N. W. Missouri: Phytolith analysis as an aid in environmental reconstruction. In D. M. Pearsall & D. R. Piperno (Eds.), Current research in phytolith analysis: Applications in archaeology and paleoecology, vol 10. MASCA Research Papers in Science and Archaeology (pp. 73–82). Philadelphia: University Museum of Archaeology and Anthropology, University of Pennsylvania.

    Google Scholar 

  • Dixon, P., Tremaine, W., Pickles, K., Kuhns, L., Hawe, C., McCann, J., et al. (1999). Equine dental disease Part 1: a long-term study of 400 cases: disorders of incisor, canine and first premolar teeth. Equine Veterinary Journal, 31, 369–377.

    Google Scholar 

  • Donohue, J. A. & Dinan, E. H. (1993). A geoarchaeological analysis of phytolith data from the Bear Creek site, Cedar County, Missouri. In D. M. Pearsall & D. R. Piperno (Eds.), Current research in phytolith analysis: Applications in archaeology and paleoecology, vol 10. MASCA Research Papers in Science and Archaeology (pp. 83–94). Philadelphia: University Museum of Archaeology and Anthropology, University of Pennsylvania.

    Google Scholar 

  • Drees, R. L., Wilding, L. P., Smeck, N. E., & Senkayi, A. L. (1989). Silica in soils: Quartz and disordered silica polymorphs. In J. B. Dixon & S. B. Weed (Eds.), Minerals in Soil Environments (pp. 913–974). Madison: Soil Science Society of America.

    Google Scholar 

  • Dugas, D. P., & Retallack, G. J. (1993). Middle Miocene fossil grasses from Fort Ternan, Kenya. Journal of Paleontology, 67, 113–128.

    Article  Google Scholar 

  • Dumitriča, P. (1973). Phytolitharia. In A. G. Kaneps (Ed.), Initial reports of the deep sea drilling project, vol XIII. Part 2 (pp. 940–943). Washington, D. C.: U. S. Printing Office.

    Google Scholar 

  • Dunn, R. E., Strömberg, C. A. E., & Le, T.-Y. (2015a). Light environment and epidermal cell morphology in grasses. International Journal of Plant Sciences, 176, 832–847.

    Article  Google Scholar 

  • Dunn, R. E., Strömberg, C. A. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2015b). Linked canopy, climate and faunal evolution in the Cenozoic of Patagonia. Science, 347, 258–261.

    Article  Google Scholar 

  • Edwards, E. J., Osborne, C. P., Strömberg, C. A. E., Smith, S. A., & C4 Grasses Consortium (2010). The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science, 328, 587–591

    Google Scholar 

  • Edwards, E. J., & Smith, S. A. (2010). Phylogenetic analyses reveal the shady history of C4 grasses. Proceedings of the National Academy of Sciences, USA, 107, 2532–2537.

    Article  Google Scholar 

  • Ehrenberg, C. G. (1847). Passatstaub und Blutregen: Ein grosses organisches unsichtbares Wirken und Leben in der Atmosphäre. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin, 1847, 269–460.

    Google Scholar 

  • Ehrlich, H., Demadis, K. D., Pokrovsky, O. S., & Koutsoukos, P. G. (2010). Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chemical Review, 110, 4656–4689.

    Google Scholar 

  • Eichhorn, B., Neumann, K., & Garnier, A. (2010). Seed phytoliths in West African Commelinaceae and their potential for palaeoecological studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 298, 300–310.

    Google Scholar 

  • Elbaum, R., Melamed-Bessudo, C., Tuross, N., Levy, A. A., & Weiner, S. (2009). New methods to isolate organic materials from silicified phytoliths reveal fragmented glycoproteins but no DNA. Quaternary International, 193, 11–19.

    Article  Google Scholar 

  • Elbaum, R., Weiner, S., Albert, R. M., & Elbaum, M. (2003). Detection of burning of plant materials in the archaeological record by changes in the refractive indices of siliceous phytoliths. Journal of Archaeological Science, 30, 217–226.

    Article  Google Scholar 

  • Ellis, B., & Johnson, K. R. (2013). Comparison of leaf samples from mapped tropical and temperate forests: implications for interpretations of the diversity of fossil assemblages. PALAIOS, 28, 163–177.

    Google Scholar 

  • Eronen, J. T., Puolamaki, K., Liu, L., Lintulaakso, K., Damuth, J., Janis, C., et al. (2010). Precipitation and large herbivorous mammals I: estimates from present-day communities. Evolutionary Ecology Research, 12, 217–233.

    Google Scholar 

  • Esau, K. (1965). Plant anatomy (2nd ed.). New York: Wiley.

    Google Scholar 

  • Esteban, I., De Vynck, J. C., Singels, E., Vlok, J., Marean, C. W., Cowling, R. M., et al. (2017). Modern soil phytolith assemblages used as proxies for Paleoscape reconstruction on the south coast of South Africa. Quaternary International, 434, 160–179.

    Article  Google Scholar 

  • Evett, R. R., & Cuthrell, R. Q. (2016). A conceptual framework for a computer-assisted, morphometric-based phytolith analysis and classification system. Journal of Archaeological Science, 68, 70–78.

    Article  Google Scholar 

  • Evett, R. R., & Cuthrell, R. Q. (2017). Testing phytolith analysis approaches to estimate the prehistoric anthropogenic burning regime on the central California coast. Quaternary International, 434, 78–90.

    Article  Google Scholar 

  • Fahmy, A. G. (2008). Diversity of lobate phytoliths in grass leaves from the Sahel region, West Tropical Africa: tribe Paniceae. Plant Systematics and Evolution, 270, 1–23.

    Article  Google Scholar 

  • Faisal, S., Callis, K. L., Slot, M., & Kitajima, K. (2012). Transpiration-dependent passive silica accumulation in cucumber (Cucumis sativus) under varying soil silicon availability. Botany, 90, 1058–1064.

    Article  Google Scholar 

  • Fauteux, F., Remus-Borel, W., Menzies, J. G., & Belanger, R. R. (2005). Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters, 249, 1–6.

    Article  Google Scholar 

  • Feakins, S. J., Levin, N. E., Liddy, H. M., Sieracki, A., Eglinton, T. I., & Bonnefille, R. (2013). Northeast African vegetation change over 12 my. Geology, 41, 295–298.

    Article  Google Scholar 

  • Fearn, M. L. (1998). Phytoliths in sediment as indicators of grass pollen source. Review of Palaeobotany and Palynology, 103, 75–81.

    Article  Google Scholar 

  • Fein, J. B. (2009). Experimental and field constraints on the role of silica–organic complexation and silica–microbial interactions during sediment diagenesis. In R. H. Worden & M. Sadoon (Eds.), Quartz Cementation in Sandstones (pp. 119–127). Oxford: Blackwell Publishing Ltd.

    Google Scholar 

  • Fernandez Honaine, M., Zucol, A. F., & Osterrieth, M. L. (2006). Phytolith assemblages and systematic associations in grassland species of the south-eastern Pampean plains, Argentina. Annals of Botany, 98, 1155–1165.

    Google Scholar 

  • Fernández Pepi, M. G., Zucol, A. F., & Arriaga, M. O. (2012). Comparative phytolith analysis of Festuca (Pooideae: Poaceae) species native to Tierra del Fuego, Argentina. Botany, 90, 1113–1124.

    Article  Google Scholar 

  • Fishkis, O., Ingwersen, J., Lamers, M., Denysenko, D., & Streck, T. (2010a). Phytolith transport in soil: a field study using fluorescent labelling. Geoderma, 157, 27–36.

    Article  Google Scholar 

  • Fishkis, O., Ingwersen, J., Lamers, M., Denysenko, D., & Streck, T. (2010b). Phytolith transport in soil: a laboratory study on intact soil cores. European Journal of Soil Science, 61, 445–455.

    Google Scholar 

  • Fishkis, O., Ingwersen, J., & Streck, T. (2009). Phytolith transport in sandy sediment: experiments and modeling. Geoderma, 151, 168–178.

    Article  Google Scholar 

  • Folger, D. (1970). Wind transport of land-derived mineral, biogenic, and industrial matter over the North Atlantic. Deep Sea Research and Oceanographic Abstracts, 2, 337.

    Article  Google Scholar 

  • Folger, D., Burckle, L., & Heezen, B. (1967). Opal phytoliths in a North Atlantic dust fall. Science, 155, 1243–1244.

    Article  Google Scholar 

  • Fox, C. L., Juan, J., & Albert, R. M. (1996). Phytolith analysis on dental calculus, enamel surface, and burial soil: information about diet and paleoenvironment. American Journal of Physical Anthropology, 101, 101–113.

    Google Scholar 

  • Fox, D. L., Honey, J. G., Martin, R. A., & Pelaez-Campomanes, P. (2012a). Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Carbon isotopes and the evolution of C4-dominated grasslands. Geological Society of America Bulletin, 124, 444–462.

    Google Scholar 

  • Fox, D. L., Honey, J. G., Martin, R. A., & Pelaez-Campomanes, P. (2012b). Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Oxygen isotopes and paleoclimate during the evolution of C4-dominated grasslands. Geological Society of America Bulletin, 124, 431–443.

    Google Scholar 

  • Fraysse, F., Pokrovsky, O. S., & Meunier, J.-D. (2010). Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochimica et Coscmochimica Acta, 74, 70–84.

    Article  Google Scholar 

  • Fraysse, F., Pokrovsky, O. S., Schott, J., & Meunier, J.-D. (2006). Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochimica et Coscmochimica Acta, 70, 1939–1951.

    Article  Google Scholar 

  • Fraysse, F., Pokrovsky, O. S., Schott, J., & Meunier, J.-D. (2009). Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chemical Geology, 258, 197–206.

    Article  Google Scholar 

  • Fredlund, G. G. (1986). Problems in the simultaneous extraction of pollen and phytoliths from clastic sediments. In I. Rovner (Ed.), Plant opal phytolith analysis in archaeology and paleoecology. Proceedings of the 1984 Phytolith Research Workshop, vol 1. Occasional Papers of the Phytolitharien (pp. 102–111). Raleigh: North Carolina State University.

    Google Scholar 

  • Fredlund, G. G., & Tieszen, L. L. (1994). Modern phytolith assemblages from the North American Great Plains. Journal of Biogeography, 21, 321–335.

    Article  Google Scholar 

  • Fredlund, G. G., & Tieszen, L. L. (1997a). Calibrating grass phytolith assemblages in climatic terms: application to late Pleistocene assemblages from Kansas and Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 199–211.

    Article  Google Scholar 

  • Fredlund, G. G., & Tieszen, L. L. (1997b). Phytolith and carbon evidence for Late Quaternary vegetation and climate change in the Southern Black Hills, South Dakota. Quaternary Research, 47, 206–217.

    Article  Google Scholar 

  • Gallaher, T. J., Senske, A., Marvet, C., Akbar, S., Wong, S., Hsu, T., Jessett, K., Klahs, P. C., Clark, L. G., & Strömberg, C. A. E. (2017). 3D digitization of grass silica short cell phytoliths (GSSCP’s): a digital reference collection to improve their utility for the study of grasses and grassland evolution. Geological Society of America Abstracts with Programs 49, 261.

    Google Scholar 

  • Gallego, L., & Distel, R. A. (2004). Phytolith assemblages in grasses native to Central Argentina. Annals of Botany, 94, 865–874.

    Google Scholar 

  • Gallego, L., Distel, R. A., Camina, R., & Iglesias, R. M. R. (2004). Soil phytoliths as evidence for species replacement in grazed rangelands of central Argentina. Ecography, 27, 725–732.

    Article  Google Scholar 

  • Garnier, A., Neumann, K., Eichhorn, B., & Lespez, L. (2012). Phytolith taphonomy in the middle- to late-Holocene fluvial sediments of Ounjougou (Mali, West Africa). Holocene, 23, 416–431.

    Article  Google Scholar 

  • Ge, Y., Jie, D. M., Sun, Y. L., & Liu, H. M. (2011). Phytoliths in woody plants from the northern slope of the Changbai Mountain (Northeast China), and their implication. Plant Systematics and Evolution, 292, 55–62.

    Article  Google Scholar 

  • Geis, J. W. (1973). Biogenic silica in selected species of deciduous angiosperms. Soil Science, 116, 113–130.

    Article  Google Scholar 

  • George, W. O. (1924). The relation of the physical properties of natural glasses to their chemical composition. The Journal of Geology, 32, 353–372.

    Article  Google Scholar 

  • Gérard, F., Mayer, K. U., Hodson, M. J., & Ranger, J. (2008). Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochimica et Cosmochimica Acta, 72, 741–758.

    Article  Google Scholar 

  • Ghosh, P., Bhattacharya, S. K., Sahni, A., Kar, R. K., Mohabey, D. M., & Ambwani, K. (2003). Dinosaur coprolites from the Late Cretaceous (Maastrichtian) Lameta Formation of India: isotopic and other markers suggesting a C3 plant diet. Cretaceous Research, 24, 743–750.

    Google Scholar 

  • Ghosh, R., Gupta, S., Bera, S., Jiang, H-e, Li, X., & Li, C.-S. (2008). Ovi-caprid dung as an indicator of paleovegetation and paleoclimate in northwestern China. Quaternary Research, 70, 149–157.

    Article  Google Scholar 

  • Givnish, T. (1988). Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology, 15, 63–92.

    Google Scholar 

  • Gobetz, K., & Bozarth, S. (2000). Diet and paleoecology of Columbian mammoth (Mammuthus columbi) determined from phytoliths and diatoms in teeth. Current Research in the Pleistocene, 17, 120–122.

    Google Scholar 

  • Gobetz, K. E., & Bozarth, S. R. (2001). Implications for Late Pleistocene mastodon diet from opal phytoliths in tooth calculus. Quaternary Research, 55, 115–122.

    Article  Google Scholar 

  • Gol’eva, A. A. (1997). Content and distribution of phytoliths in the main types of soils in eastern Europe. In A. Pinilla, J. Juan-Tresserras & M. J. Machado (Eds.), The state of the art of phytoliths in soils and plants, vol 4. Monografías del Centro de Ciencias Medioambientales (pp. 15–22). Madrid: CSIC.

    Google Scholar 

  • Gol’eva, A. A. (2001). Phytoliths and their informational role in natural and archaeological objects. Syktuvar Elista, Moscow: Russian Academy of Sciences.

    Google Scholar 

  • Grave, P., & Kealhofer, L. (1999). Assessing bioturbation in archaeological sediments using soil morphology and phytolith analysis. Journal of Archaeological Science, 26, 1239–1248.

    Article  Google Scholar 

  • Greenwood, D. R., & Wing, S. L. (1995). Eocene continental climates and latitudinal temperature gradients. Geology, 23, 1044–1048.

    Article  Google Scholar 

  • Griffith, D. M., Anderson, T. M., Osborne, C. P., Strömberg, C. A. E., Forrestel, E. J., & Still, C. J. (2014). Biogeographically distinct controls on C3 and C4 grass distributions: merging community and physiological ecology. Global Ecology and Biogeography, 24, 304–313.

    Google Scholar 

  • Gu, Y., Zhao, Z., & Pearsall, D. M. (2013). Phytolith morphology research on wild and domesticated rice species in East Asia. Quaternary International, 287, 141–148.

    Article  Google Scholar 

  • Gügel, I. L., Grupe, G., & Kunzelmann, K. H. (2001). Simulation of dental microwear: characteristic traces by opal phytoliths give clues to ancient human dietary behavior. American Journal of Physical Anthropology, 114, 124–138.

    Article  Google Scholar 

  • Guo, M., Jie, D., Liu, H., Luo, S., & Li, N. (2012). Phytolith analysis of selected wetland plants from Changbai mountain region and implications for palaeoenvironment. Quaternary International, 250, 119–128.

    Article  Google Scholar 

  • Habermann, J. M., Stanistreet, I. G., Stollhofen, H., Albert, R. M., Bamford, M. K., Pante, M. C., et al. (2016). In situ 2.0 Ma trees discovered as fossil rooted stumps, lowermost Bed I, Olduvai Gorge, Tanzania. Journal of Human Evolution, 9, 74–87.

    Google Scholar 

  • Halffter, G., & Matthews, E. G. (1966). The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Folia Entomologica Mexicana, 12–14, 1–312.

    Google Scholar 

  • Hanski, I. (1983). Dung beetles. In H. Lieth & M. J. A. Werger (Eds.), Tropical rain forest ecosystems, vol 14B. Ecosystems of the World, 1st edn. (pp. 489–511). Amsterdam: Elsevier.

    Google Scholar 

  • Harris, E. B. (2016). Effects of the mid-Miocene climatic optimum on ecosystem structure and plant-animal interactions: A phytolith and stable isotope perspective. Ph.D. Dissertation, Department of Biology. University of Washington, Seattle, 212 pages.

    Google Scholar 

  • Harris, E. B., Strömberg, C. A. E., Sheldon, N. D., Smith, S. Y., & Vilhena, D. (2017). Vegetation response during the lead-up to the middle Miocene warming event in the Northern Rocky Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 401–415.

    Article  Google Scholar 

  • Hart, D. M. (1988). The plant opal content in the vegetation and sediment of a swamp at Oxford Falls, New South Wales, Australia. Australian Journal of Botany, 36, 159–170.

    Article  Google Scholar 

  • Hartley, S. E., & DeGabriel, J. L. (2016). The ecology of herbivore-induced silicon defences in grasses. Functional Ecology, 30, 1311–1322.

    Article  Google Scholar 

  • He, H., Bleby, T. M., Veneklaas, E. J., Lambers, H., & Kuo, J. (2012). Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of Acacia robeorum (Leguminosae: Mimosoideae). Annals of Botany, 109, 887–896.

    Google Scholar 

  • Henry, A. G. (2012). Recovering dietary information from extant and extinct primates using plant microremains. International Journal of Primatology, 33, 702–715.

    Article  Google Scholar 

  • Henry, A. G., Brooks, A. S., & Piperno, D. R. (2011). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proceedings of the National Academy of Sciences, USA, 108, 486–491.

    Google Scholar 

  • Henry, A. G., Brooks, A. S., & Piperno, D. R. (2014). Plant foods and the dietary ecology of Neanderthals and early modern humans. Journal of Human Evolution, 69, 44–54.

    Article  Google Scholar 

  • Henry, A. G., & Piperno, D. R. (2008). Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raqā’i, Syria. Journal of Archaeological Science, 35, 1943–1950.

    Google Scholar 

  • Henry, A. G., Ungar, P. S., Passey, B. H., Sponheimer, M., Rossouw, L., Bamford, M., et al. (2012). The diet of Australopithecus sediba. Nature, 487, 90–93.

    Google Scholar 

  • Hodson, M. J. (2016). The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology. Journal of Archaeological Science, 68, 62–69.

    Article  Google Scholar 

  • Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96, 1027–1046.

    Article  Google Scholar 

  • Hoetzel, S., Dupont, L., Schefuß, E., Rommerskirchen, F., & Wefer, G. (2013). The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution. Nature Geoscience, 6, 1027–1030.

    Google Scholar 

  • Honaine, M. F., Osterrieth, M. L., & Zucol, A. F. (2009). Plant communities and soil phytolith assemblages relationship in native grasslands from southeastern Buenos Aires province, Argentina. Catena, 76, 89–96.

    Article  Google Scholar 

  • Horrocks, M., Baisden, T., Flenley, J., Feek, D., Love, C., Haoa-Cardinali, S., et al. (2016). Pollen, phytolith and starch analyses of dryland soils from Easter Island (Rapa Nui) show widespread vegetation clearance and Polynesian-introduced crops. Palynology, 41, 339–350.

    Article  Google Scholar 

  • Hwang, S., Yoon, S.-O., Lee, J.-Y., Kim, H.-S., & Choi, J. (2012). Phytolith analysis and reconstruction of palaeoenvironment at the Nabokri Valley Plain, Buyeo, Korea. Quaternary International, 254, 129–137.

    Google Scholar 

  • Hyland, E., Sheldon, N. D., & Fan, M. (2013a). Terrestrial paleoenvironmental reconstructions indicate transient peak warming during the Early Eocene Climatic Optimum. Geological Society of America Bulletin, 125, 1338–1348.

    Google Scholar 

  • Hyland, E., Sheldon, N. D., & Smith, S. Y. (2013b). Representational bias in phytoliths from modern soils of central North America: implications for paleovegetation reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 338–348.

    Article  Google Scholar 

  • Hyland, E. G., Sheldon, N. D., & Cotton, J. M. (2015). Terrestrial evidence for a two-stage mid-Paleocene biotic event. Palaeogeography, Palaeoclimatology, Palaeoecology, 417, 371–378.

    Article  Google Scholar 

  • ICPN Working Group: Madella, M., Alexandre, A., & Ball, T. (2005). International code for phytolith nomenclature 1.0. Annals of Botany, 96, 253–260.

    Google Scholar 

  • Iles, W. J., Smith, S. Y., Gandolfo, M. A., & Graham, S. W. (2015). Monocot fossils suitable for molecular dating analyses. Botanical Journal of the Linnean Society, 178, 346–374.

    Article  Google Scholar 

  • Inoue, K., & Sase, T. (1996). Paleoenvironmental history of post-Toya ash tephric deposits and paleosols at Iwate Volcano, Japan, using aeolian dust content and phytolith composition. Quaternary International, 34–36, 127–137.

    Article  Google Scholar 

  • Iriarte, J. (2003). Assessing the feasibility of identifying maize through the analysis of cross-shaped size and three-dimensional morphology of phytoliths in the grasslands of southeastern South America. Journal of Archaeological Science, 30, 1085–1094.

    Article  Google Scholar 

  • Iriarte, J., & Paz, E. A. (2009). Phytolith analysis of selected native plants and modern soils from southeastern Uruguay and its implications for paleoenvironmental and archeological reconstruction. Quaternary International, 193, 99–123.

    Article  Google Scholar 

  • Issaharou-Matchi, I., Barboni, D., Meunier, J. D., Saadou, M., Dussouillez, P., Contoux, C., et al. (2016). Intraspecific biogenic silica variations in the grass species Pennisetum pedicellatum along an evapotranspiration gradient in South Niger. Flora – Morphology, Distribution, Functional Ecology of Plants, 220, 84–93.

    Article  Google Scholar 

  • Jacobs, B. F., Kingston, J. D., & Jacobs, L. L. (1999). The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86, 590–643.

    Article  Google Scholar 

  • Janis, C. M. (1988). An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preferences. In D. E. Russel, J.-P. Santoro & D. Sigogneau-Russel (Eds.), Teeth revisited: Proceedings of the VIIth International Symposium on Dental Morphology, Paris, France, 1988 (pp. 367–387). Paris: Memoires de Museum National d’Histoire Naturelle, series C.

    Google Scholar 

  • Jones, J. G., & Bryant, V. M., Jr. (1992). Phytolith taxonomy in selected species of Texas cacti. In G. J. Rapp & S. C. Mulholland (Eds.), Phytolith systematics. Emerging issues, vol 1. Advances in Archaeological and Museum Science (pp. 215–238). New York: Plenum Press.

    Google Scholar 

  • Jones, L. H. P., & Handreck, K. A. (1967). Silica in soils, plants, and animals. Advances in Agronomy, 19, 107–149.

    Article  Google Scholar 

  • Jones, L. H. P., Milne, A. A., & Sanders, J. V. (1966). Tabashir: an opal of plant origin. Science, 151, 464–466.

    Google Scholar 

  • Jones, R. L. (1964). Note on occurrence of opal phytoliths in some Cenozoic sedimentary rocks. Journal of Paleontology, 38, 773–775.

    Google Scholar 

  • Jones, R. L., & Beavers, A. H. (1963). Some mineralogical and chemical properties of plant opal. Soil Science, 96, 6.

    Article  Google Scholar 

  • Jones, R. L., & Beavers, A. H. (1964). Aspects of catenary and depth distribution of opal phytoliths in Illinois soils. Proceedings of the Soil Science Society of America, 28, 413–416.

    Article  Google Scholar 

  • Jubb, K. V. F., Kennedy, P. C., & Palmer, N. (1985). Pathology of domestic animals (3rd ed., Vol. 2). Orlando, Florida: Academic Press, Inc.

    Google Scholar 

  • Katz, O. (2015). Silica phytoliths in angiosperms: phylogeny and early evolutionary history. New Phytologist, 208, 642–464.

    Google Scholar 

  • Katz, O., Cabanes, D., Weiner, S., Maeir, A. M., Boaretto, E., & Shahack-Gross, R. (2010). Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: an application at Tell es-Safi/Gath, Israel. Journal of Archaeological Science, 37, 1557–1563.

    Google Scholar 

  • Katz, O., Gilead, I., Bar (Kuthiel), P., & Shahack-Gross, R. (2007). Chalcolithic agricultural life at Grar, northern Negev, Israel: dry farmed cereals and dung-fueled hearths. Paléorient, 33, 101–116.

    Google Scholar 

  • Katz, O., Lev-Yadun, S., & Bar, P. (2013). Plasticity and variability in the patterns of phytolith formation in Asteraceae species along a large rainfall gradient in Israel. Flora, 208, 438–444.

    Google Scholar 

  • Kaufman, P. B., Takeoka, P., Bigelow, W. C., Schmid, R., & Ghosheh, N. S. (1971). Electron microprobe analysis of silica in epidermal cells of Equisetum. American Journal of Botany, 58, 309–316.

    Article  Google Scholar 

  • Kawano, T., Sasaki, N., Hayashi, T., & Takahara, H. (2012). Grassland and fire history since the late-glacial in northern part of Aso Caldera, central Kyusyu, Japan, inferred from phytolith and charcoal records. Quaternary International, 254, 18–27.

    Article  Google Scholar 

  • Kay, R. F., Madden, R. H., Vucetich, M. G., Carlini, A. A., Mazzoni, M. M., Re, G. H., et al. (1999). Revised geochronology of the Casamayoran South American Land Mammal Age: climatic and biotic implications. Proceedings of the National Academy of Sciences, USA, 96, 13235–13240.

    Google Scholar 

  • Kealhofer, L. (1996). The human environment during the terminal Pleistocene and Holocene in northeastern Thailand: phytolith evidence from Lake Kumphawapi. Asian Perspectives, 35, 229–254.

    Google Scholar 

  • Kealhofer, L., & Penny, D. (1998). A combined pollen and phytolith record for fourteen thousand years of vegetation change in northeastern Thailand. Review of Palaeobotany and Palynology, 103, 83–93.

    Article  Google Scholar 

  • Kealhofer, L., & Piperno, D. (1998). Opal phytoliths in Southeast Asian flora. Smithsonian Contributions to Botany, 88, 1–39.

    Google Scholar 

  • Keeley, J. E., & Rundel, P. W. (2005). Fire and the Miocene expansion of C4 grasslands. Ecology Letters, 8, 683–690.

    Article  Google Scholar 

  • Kellogg, E. A. (2015). Fossil record and dates of diversification. In E. A. Kellogg, Flowering Plants. Monocots (pp. 103–107). Cham: Springer.

    Google Scholar 

  • Kellogg, E. A., & Campbell, C. S. (1987). Phylogenetic analyses of the Gramineae. In T. R. Soderstrom, K. W. Hilu, C. S. Campbell, & M. E. Barkworth (Eds.), Grass systematics and evolution (pp. 310–322). Washington, D. C.: Smithsonian Institution.

    Google Scholar 

  • Kelly, E. F., Amundson, R. G., Marino, B. D., & Deniro, M. J. (1991). Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change. Quaternary Research, 35, 222–233.

    Article  Google Scholar 

  • Kendrick, K. J. (2005). Pedogenic silica accumulation. In L. Rattan (Ed.), Encyclopedia of soil science (pp. 1251–1253). Taylor & Francis.

    Google Scholar 

  • Kendrick, K. J., & Graham, R. C. (2004). Pedogenic silica accumulation in chronosequence soils, southern California. Soil Science Society of America Journal, 68, 1295–1303.

    Article  Google Scholar 

  • Kerns, B. K. (2001). Diagnostic phytoliths for a ponderosa pine-bunchgrass community near Flagstaff, Arizona. The Southwestern Naturalist, 46, 282–294.

    Google Scholar 

  • Kerns, B. K., Moore, M. M., & Hart, S. C. (2001). Estimating forest-grassland dynamics using soil phytolith assemblages and d13C of soil organic matter. Ecoscience, 8, 478–488.

    Article  Google Scholar 

  • Klein, R. L., & Geis, J. W. (1978). Biogenic silica in the Pinaceae. Soil Science, 126, 145–156.

    Article  Google Scholar 

  • Kohn, M. J., Strömberg, C. A. E., Madden, R. H., Dunn, R. E., Evans, S., Palacios, A., et al. (2015). Quasi-static Eocene-Oligocene climate in Patagonia promotes slow faunal evolution and mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 435, 24–37.

    Article  Google Scholar 

  • Kondo, R., Childs, C., & Atkinson, I. (1994). Opal phytoliths of New Zealand. Canterbury, New Zealand: Manaaki Whenua Press.

    Google Scholar 

  • Kondo, R., & Pearson, T. (1981). Opal phytoliths in tree leaves (Part 2): Opal phytoliths in dicotyledon angiosperm trees leaves. Research Bulletin of Obihiro University, Series, 1, 217–230.

    Google Scholar 

  • Kondo, R., & Sase, T. (1986). Opal phytoliths, their nature and application. The Quaternary Research, 25, 31–63.

    Article  Google Scholar 

  • Kraus, M. J. (1999). Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews, 47, 41–70.

    Google Scholar 

  • Krauss, D. A. (1997). The use of phytolith analysis in paleoenvironmental reconstruction and environmental management on Martha’s Vineyard, Massachusetts. Ph.D. Dissertation, University of Massachusetts, Boston.

    Google Scholar 

  • Kumar, S., Milstein, Y., Brami, Y., Elbaum, M., & Elbaum, R. (2017). Mechanism of silica deposition in sorghum silica cells. New Phytologist, 213, 791–798.

    Article  Google Scholar 

  • Kumari, I. S., & Kumarasamy, D. (2014). Studies on phytoliths in some marine plants. International Journal of Plant, Animal and Environmental Sciences, 4, 1–5.

    Google Scholar 

  • Kurmann, M. H. (1985). An opal phytolith and palynomorph study of extant and fossil soils in Kansas (U.S.A.). Palaeogeography, Palaeoclimatology, Palaeoecology, 49, 217–235.

    Article  Google Scholar 

  • Kürschner, W. M. (1997). The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein/Q. pseudocastanea Goeppert)—Implications for their use as biosensors of palaeoatmospheric CO2 levels. Palaeogeography, Palaeoclimatology, Palaeoecology, 96, 1–30.

    Google Scholar 

  • Lander, B. (1998). Oreodontoidea. In C. M. Janis, K. M. Scott, L. L. Jacobs (Eds.), Evolution of Tertiary mammals in North America. Volume 1: Terrestrial carnivores, ungulates, and ungulatelike mammals (pp. 402–420). Cambridge: Cambridge University Press.

    Google Scholar 

  • Law, C., & Exley, C. (2011). New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biology, 11, 112.

    Article  Google Scholar 

  • Lazzati, A., Levrini, L., Rampazzi, L., Dossi, C., Castelletti, L., Licata, M., et al. (2016). The diet of three Medieval individuals from Caravate (Varese, Italy). Combined results of ICP‐MS analysis of trace elements and phytolith analysis conducted on their dental calculus. International Journal of Osteoarchaeology, 26, 670–681.

    Google Scholar 

  • Lehmann, C. E., Anderson, T. M., Sankaran, M., Higgins, S. I., Archibald, S., Hoffmann, W. A., et al. (2014). Savanna vegetation-fire-climate relationships differ among continents. Science, 343, 548–552.

    Article  Google Scholar 

  • Lentfer, C. J., & Boyd, W. E. (1998). A comparison of three methods for the extraction of phytoliths from sediments. Journal of Archaeological Science, 25, 1159–1183.

    Article  Google Scholar 

  • Lentfer, C. J., & Boyd, W. E. (1999). An assessment of techniques for the deflocculation and removal of clays from sediments used in phytolith analysis. Journal of Archaeological Science, 26, 31–44.

    Article  Google Scholar 

  • Lentfer, C. J., & Boyd, W. E. (2000). Simultaneous extraction of phytoliths, pollen and spores from sediments. Journal of Archaeological Science, 27, 363–372.

    Article  Google Scholar 

  • Lentfer, C. J., Cotter, M. M., & Boyd, W. E. (2003). Particle settling times for gravity sedimentation and centrifugation: a practical guide for palynologists. Journal of Archaeological Science, 30, 149–168.

    Google Scholar 

  • Levin, N. E., Quade, J., Simpson, S. W., Semaw, S., & Rogers, M. (2004). Isotopic evidence for Plio-Pleistocene environmental change at Gona, Ethiopia. Earth and Planetary Science Letters, 219, 93–110.

    Article  Google Scholar 

  • Liang, M.-M. (2004). Palynology, palaeocology and palaeoclimate of the Miocene Shanwang Basin, Shangdong Province, China. Acta Palaeobotanica, Supp. No. 5, 1–95.

    Google Scholar 

  • Lieverse, A. R. (1999). Diet and the aetiology of dental calculus. International Journal of Osteoarchaeology, 9, 219–232.

    Article  Google Scholar 

  • Lins, U., Barros, C., Da Cunha, M., & Miguens, F. C. (2002). Structure, morphology, and composition of silicon biocomposites in the palm tree Syagrus coronata (Mart.) Becc. Protoplasma, 220, 89–96.

    Google Scholar 

  • Linseele, V., Riemer, H., Baeten, J., De Vos, D., Marinova, E., & Ottoni, C. (2013). Species identification of archaeological dung remains: a critical review of potential methods. Environmental Archaeology, 18, 5–17.

    Article  Google Scholar 

  • Little, S. A., Kembel, S. W., & Wilf, P. (2010). Paleotemperature proxies from leaf fossils reinterpreted in light of evolutionary history. PLoS ONE, 5, e15161.

    Article  Google Scholar 

  • Liu, H., Jie, D., Liu, L., Li, N., Wang, T., & Qiao, Z. (2016). The shape factors of phytoliths in selected plants from the Changbai Mountains and their implications. Review of Palaeobotany and Palynology, 226, 44–53.

    Article  Google Scholar 

  • Locker, S., & Martini, E. (1986). Phytoliths from the southwest Pacific Site 591. Initial reports of the Deep Sea Drilling Program, 90, 1079–1084.

    Google Scholar 

  • Loucaides, S., Behrends, T., & Van Cappellen, P. (2010). Reactivity of biogenic silica: surface versus bulk charge density. Geochimica et Cosmochimica Acta, 74, 517–530.

    Article  Google Scholar 

  • Lu, H.-Y., & Liu, K.-B. (2003a). Morphological variations of lobate phytoliths from grasses in China and the south-eastern United States. Diversity and Distributions, 9, 73–87.

    Article  Google Scholar 

  • Lu, H.-Y., & Liu, K.-B. (2003b). Phytoliths of common grasses in the coastal environments of southeastern USA. Estuarine Coastal and Shelf Science 58, 587–600.

    Google Scholar 

  • Lu, H.-Y., Wu, N.-Q., Liu, K.-B., Jiang, H., & Liu, T.-S. (2007). Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quaternary Science Reviews, 26, 759–772.

    Google Scholar 

  • Lu, H.-Y., Wu, N.-Q., Yang, X.-D., Jiang, H., Liu, K.-B., & Liu, T.-S. (2006). Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China I: Phytolith-based transfer functions. Quaternary Science Reviews, 25, 945–959.

    Google Scholar 

  • Lu, H. Y., Wang, Y. J., Wang, G. A., Yang, H., & Li, Z. (2000). Analysis of carbon isotope in phytoliths from C3 and C4 plants and modern soils. Chinese Science Bulletin, 45, 1804–1808.

    Article  Google Scholar 

  • Ma, J. F. (2003). Mechanism of Si uptake in plants. Fertilizer, 94, 26–32.

    Google Scholar 

  • Ma, J. F., Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan. Elsevier Science. 294 p.

    Google Scholar 

  • Ma, J. F., Miyake, Y., & Takahashi, E. (2001). Chapter 2. Silicon as a beneficial element for crop plants. In L. E. Datnoff, G. H. Snyder & G. H. Korndörfer (Eds.), Silicon in agriculture. Studies in plant science, vol 8 (pp. 17–39). Amsterdam: Elsevier Science B.V.

    Google Scholar 

  • Ma, J. F., & Yamaji, N. (2008). Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65, 3049–3057.

    Article  Google Scholar 

  • MacFadden, B. J. (1997). Origin and evolution of the grazing guild in New World terrestrial mammals. Trends in Ecology & Evolution, 12, 182–187.

    Article  Google Scholar 

  • Madden, R. H., Carlini, A. A., Vucetich, M. G., & Kay, R. F. (Eds.). (2010). The paleontology of Gran Barranca. Cambridge: Cambridge University Press.

    Google Scholar 

  • Madella, M., Jones, M. K., Echlin, P., Powers-Jones, A., & Moore, M. (2009). Plant water availability and analytical microscopy of phytoliths: implications for ancient irrigation in arid zones. Quaternary International, 193, 32–40.

    Article  Google Scholar 

  • Madella, M., & Lancelotti, C. (2012). Taphonomy and phytoliths: a user manual. Quaternary International, 275, 76–83.

    Article  Google Scholar 

  • Madella, M., Powers-Jones, A. H., & Jones, M. K. (1998). A simple method of extraction of opal phytoliths from sediments using a non-toxic heavy liquid. Journal of Archaeological Science, 25, 801–803.

    Article  Google Scholar 

  • Mander, L., Li, M., Mio, W., Fowlkes, C. C., & Punyasena, S. W. (2013). Classification of grass pollen through the quantitative analysis of surface ornamentation and texture. Proceedings of the Royal Society B, 280, 20131905.

    Article  Google Scholar 

  • Marx, R., Lee, D. E., Lloyd, K. M., & Lee, W. G. (2004). Phytolith morphology and biogenic silica concentrations and abundance in leaves of Chionochloa (Danthonieae) and Festuca (Poeae) in New Zealand. New Zealand Journal of Botany, 42, 677–691.

    Google Scholar 

  • Massey, F. P., Ennos, A. R., & Hartley, S. E. (2006). Silica in grasses as a defence against insect herbivores: contrasting effects on folivores and a phloem feeder. Journal of Animal Ecology, 75, 595–603.

    Google Scholar 

  • Mazumdar, J., & Mukhopadhyay, R. (2009a). Opal phytoliths in three Indian thelypteroid ferns. Bionature, 29, 11–15.

    Google Scholar 

  • Mazumdar, J., & Mukhopadhyay, R. (2009b). Phytoliths of some lycopods. Indian Fern Journal, 26, 132–136.

    Google Scholar 

  • Mazumdar, J., & Mukhopadhyay, R. (2010a). Phytoliths of Ferns II: in some more thelypteroid ferns. Bionature, 30, 13–17.

    Google Scholar 

  • Mazumdar, J., & Mukhopadhyay, R. (2010b). Phytoliths of Ferns III. in Himalayan horsetail and some ferns. Bionature, 30, 39–45.

    Google Scholar 

  • Mazumdar, J., & Mukhopadhyay, R. (2011). Phytoliths of ferns IV: in some aquatic ferns and Chinese brake fern. Bioresearch Bulletin, 6, 385–388.

    Google Scholar 

  • Mazzoni, M. M. (1979). Contribución al conocimiento petrográfico de la Formación Sarmiento, barranca sur del lago Colhue Huapi, provincia de Chubut. Revista de la Asociación Argentina de Mineralogía, Petrología y Sedimentología, 10, 33–54.

    Google Scholar 

  • McClaran, M. P., & Umlauf, M. (2000). Desert grassland dynamics estimated from carbon isotopes in grass phytoliths and soil organic matter. Journal of Vegetation Science, 11, 71–76.

    Article  Google Scholar 

  • McCullough, D. R. (1982). White-tailed deer pellet-group weights. The Journal of Wildlife Management, 46, 829–832.

    Article  Google Scholar 

  • McCune, J. L., & Pellatt, M. G. (2013). Phytoliths of southeastern Vancouver Island, Canada, and their potential use to reconstruct shifting boundaries between Douglas-fir forest and oak savannah. Palaeogeography, Palaeoclimatology, Palaeoecology, 383, 59–71.

    Google Scholar 

  • McCune, J. L., Vellend, M., & Pellatt, M. G. (2014). Combining phytolith analysis with historical ecology to reveal the long-term, local-scale dynamics within a savannah-forest landscape mosaic. Biodiversity and Conservation, 24, 609–626.

    Article  Google Scholar 

  • McInerney, F. A., Strömberg, C. A. E., & White, J. W. C. (2011). The Neogene transition from C3 to C4 grasslands in North America: stable carbon isotope ratios of fossil phytoliths. Paleobiology, 37, 23–49.

    Article  Google Scholar 

  • McMichael, C. H., Bush, M. B., Piperno, D. R., Silman, M. R., Zimmerman, A. R., & Anderson, C. (2012a). Spatial and temporal scales of pre-Columbian disturbance associated with western Amazonian lakes. Holocene, 22, 131–141.

    Article  Google Scholar 

  • McMichael, C. H., Piperno, D. R., Bush, M. B., Silman, M. R., Zimmerman, A. R., Raczka, M. F., et al. (2012b). Sparse pre-Columbian human habitation in western Amazonia. Science, 336, 1429–1431.

    Google Scholar 

  • McNab, B. K. (1963). Bioenergetics and the determination of home range size. The American Naturalist, 97, 133–140.

    Article  Google Scholar 

  • Mercader, J., Astudillo, F., Barkworth, M., Bennett, T., Esselmont, C., Kinyanjui, R., et al. (2010). Poaceae phytoliths from the Niassa Rift, Mozambique. Journal of Archaeological Science, 37, 1953–1967.

    Article  Google Scholar 

  • Mercader, J., Bennett, T., Esselmont, C., Simpson, S., & Walde, D. (2009). Phytoliths in woody plants from the Miombo woodlands of Mozambique. Annals of Botany, 104, 91–113.

    Article  Google Scholar 

  • Mercader, J., Bennett, T., Esselmont, C., Simpson, S., & Walde, D. (2011). Soil phytoliths from Miombo woodlands in Mozambique. Quaternary Research, 75(138–150), 8.

    Google Scholar 

  • Mercader, J., Runge, F., Vrydaghs, L., Doutrelepont, H., Ewango, C. E. N., & Juan-Tresseras, J. (2000). Phytoliths from archaeological sites in the tropical forest of Ituri, Democratic Republic of Congo. Quaternary Research, 54, 102–112.

    Article  Google Scholar 

  • Merceron, G., Novello, A., & Scott, R. S. (2016). Paleoenvironments inferred from phytoliths and Dental Microwear Texture Analyses of meso-herbivores. Geobios, 49, 135–146.

    Article  Google Scholar 

  • Messager, E., Lebreton, V., Marquer, L., Russo-Ermolli, E., Orain, R., Renault-Miskovsky, J., et al. (2011). Palaeoenvironments of early hominins in temperate and Mediterranean Eurasia: new palaeobotanical data from Palaeolithic key-sites and synchronous natural sequences. Quaternary Science Reviews, 30, 1439–1447.

    Google Scholar 

  • Metcalfe, C. R. (1960). Anatomy of the monocotyledons, Volume I, Gramineae. London: Oxford University Press.

    Google Scholar 

  • Meunier, J. D., Colin, F., & Alarcon, C. (1999). Biogenic silica storage in soils. Geology, 27, 835–838.

    Article  Google Scholar 

  • Middleton, W. D., & Rovner, I. (1994). Extraction of opal phytoliths from herbivore dental calculus. Journal of Archaeological Science, 21, 469–473.

    Article  Google Scholar 

  • Mihlbachler, M. C., & Solounias, N. (2006). Coevolution of tooth crown height and diet in oreodonts (Merycoidodontidae, Artiodactyla) examined with phylogenetically independent contrasts. Journal of Mammalian Evolution, 13, 11–36.

    Article  Google Scholar 

  • Miller, L. A., Smith, S. Y., Sheldon, N. D., & Strömberg, C. A. E. (2012). Eocene vegetation dynamics in Montana inferred from a high-resolution phytolith record. Geological Society of America Bulletin, 124, 1577–1589.

    Article  Google Scholar 

  • Ming Huang, P., Li, Y., & Sumner, M. E. (Eds.). (2011). Handbook of soil sciences: Properties and processes (2nd ed.). Boca Raton, FL: Taylor & Francis Group LLC.

    Google Scholar 

  • Mohabey, D., & Samant, B. (2003). Floral remains from Late Cretaceous faecal mass of sauropods from central India: implication to their diet and habitat. Gondwana Geological Magazine, 6, 225–238.

    Google Scholar 

  • Montti, L., Honaine, M. F., Osterrieth, M., & Ribeiro, D. G. (2009). Phytolith analysis of Chusquea ramosissima Lindm. (Poaceae: Bambusoideae) and associated soils. Quaternary International, 193, 80–89.

    Google Scholar 

  • Morcote-Ríos, G., Bernal, R., & Raz, L. (2016). Phytoliths as a tool for archaeobotanical, palaeobotanical and palaeoecological studies in Amazonian palms. Botanical Journal of the Linnean Society, 182, 348–360.

    Article  Google Scholar 

  • Morgan-Edel, K. D., Boston, P. J., Spilde, M. N., & Reynolds, R. E. (2015). Phytoliths (plant-derived mineral bodies) as geobiological and climatic indicators in arid environments. New Mexico Geology, 37, 1–20.

    Google Scholar 

  • Morris, L. R., Baker, F. A., Morris, C., & Ryel, R. J. (2009a). Phytolith types and type-frequencies in native and introduced species of the sagebrush steppe and pinyon-juniper woodlands of the Great Basin, USA. Review of Palaeobotany and Palynology, 157, 339–357.

    Article  Google Scholar 

  • Morris, L. R., West, N. E., Baker, F. A., Van Miegroet, H., & Ryel, R. J. (2009b). Developing an approach for using the soil phytolith record to infer vegetation and disturbance regime changes over the past 200 years. Quaternary International, 193, 90–98.

    Article  Google Scholar 

  • Morris, L. R., West, N. E., & Ryel, R. J. (2010). Testing soil phytolith analysis as a tool to understand vegetation change in the sagebrush steppe and pinyon-juniper woodlands of the Great Basin Desert, USA. Holocene, 20, 697–709.

    Article  Google Scholar 

  • Mosimann, J. E. (1965). Statistical methods for the pollen analyst: Multinomial and negative multinomial techniques. In B. Kummel & D. Raup (Eds.), Handbook of paleontological techniques (pp. 636–673). San Francisco: W. Freeman.

    Google Scholar 

  • Motomura, H., Mita, N., & Suzuki, M. (2002). Silica accumulation in long-lived leaves of Sasa veitchii (Carrière) Rehder (Poaceae–Bambusoideae). Annals of Botany, 90, 149–152.

    Google Scholar 

  • Mulholland, S. C. (1989). Phytolith shape frequencies in North Dakota grasses: a comparison to general patterns. Journal of Archaeological Science, 16, 489–511.

    Article  Google Scholar 

  • Mulholland, S. C. & Rapp, G. J. (1992). A morphological classification of grass silica-bodies. In G. J. Rapp & S. C. Mulholland (Eds.), Phytolith systematics. Emerging issues, vol 1. Advances in archaeological and museum science (pp. 65–89). New York: Plenum Press.

    Google Scholar 

  • Murungi, M. L., McGlynn, G., & Lejju, J. B. (2016). Alpine grassland palaeoecology of the Virunga Volcanoes, East Africa: a new phytolith record from Mt. Muhavura. Quaternary International, 434, 102–116.

    Google Scholar 

  • Neumann, K., Fahmy, A., Lespez, L., Ballouche, A., & Huysecom, E. (2009). The Early Holocene palaeoenvironment of Ounjougou (Mali): Phytoliths in a multiproxy context. Palaeogeography, Palaeoclimatology, Palaeoecology, 276, 87–106.

    Article  Google Scholar 

  • Neumann, K., Fahmy, A. G., Müller-Scheeßel, N., & Schmidt, M. (2017). Taxonomic, ecological and palaeoecological significance of leaf phytoliths in West African grasses. Quaternary International, 434, 15–32.

    Article  Google Scholar 

  • Novello, A., & Barboni, D. (2015). Grass inflorescence phytoliths of useful species and wild cereals from sub-Saharan Africa. Journal of Archaeological Science, 59, 10–22.

    Article  Google Scholar 

  • Novello, A., Barboni, D., Berti-Equille, L., Mazur, J. C., Poilecot, P., & Vignaud, P. (2012). Phytolith signal of aquatic plants and soils in Chad, Central Africa. Review of Palaeobotany and Palynology, 178, 43–58.

    Article  Google Scholar 

  • Novello, A., Lebatard, A.-E., Moussa, A., Barboni, D., Sylvestre, F., Bourlès, D. L., et al. (2015). Diatom, phytolith, and pollen records from a 10Be/9Be dated lacustrine succession in the Chad basin: insight on the Miocene-Pliocene paleoenvironmental changes in Central Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 430, 85–103.

    Google Scholar 

  • Ollendorf, A. L., Mulholland, S. C., & Rapp, Jr., G. (1988). Phytolith analysis as a means of plant identification: Arundo donax and Phragmites communis. Annals of Botany, 61, 209–214.

    Google Scholar 

  • Osborn, H. F. (1910). The age of mammals in Europe, Asia and North America. New York: The Macmillan Company.

    Book  Google Scholar 

  • Osborne, C. P. (2008). Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? Journal of Ecology, 96, 35–45.

    Google Scholar 

  • Osterrieth, M., Madella, M., Zurro, D., & Alvarez, M. F. (2009). Taphonomical aspects of silica phytoliths in the loess sediments of the Argentinean Pampas. Quaternary International, 193, 70–79.

    Article  Google Scholar 

  • Panadès i Blas, X., Bartolomé i Filella, J., Strömberg, C.A.E., Soriano i Tomàs, I., Buckland, P., Serieyssol, K. K., et al. (2017). The utility of livestock dung for reconstructing recent ethnological and environmental histories. Environmental Archaeology, 22, 128–146.

    Google Scholar 

  • Parolin, M., Rasbold, G. G., & Pessenda, L. C. R. (2014). Paleoenvironmental conditions of Campos Gerais, Paraná, since the Late Pleistocene, based on phytoliths and C and N isotopes. In H. H. G. Coe & M. Osterrieth (Eds.), Synthesis of some phytoliths studies in South America (Brazil and Argentina) (pp. 149–170). New York: Nova Science Publishers.

    Google Scholar 

  • Parr, J. F. (2002). A comparison of heavy liquid floatation and microwave digestion techniques for the extraction of fossil phytoliths from sediments. Review of Palaeobotany and Palynology, 120, 315–336.

    Article  Google Scholar 

  • Parr, J. F. (2006). Effect of fire on phytolith coloration. Geoarchaeology, 21, 171–185.

    Article  Google Scholar 

  • Parr, J. F., Dolic, G. L., & Boyd, D. K. (2001). A microwave digestion method for the extraction of phytoliths from herbarium specimens. Review of Palaeobotany and Palynology, 116, 203–212.

    Article  Google Scholar 

  • Passey, B. H., Ayliffe, L. K., Kaakinen, A., Eronen, J. T., Zhang, Z. Q., Cerling, T. E., et al. (2009). Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China. Earth and Planetary Science Letters, 277, 443–452.

    Article  Google Scholar 

  • Pearsall, D. M. (1978). Phytolith analysis of archaeological soils: evidence for maize cultivation in formative Ecuador. Science, 199, 177–178.

    Google Scholar 

  • Pearsall, D. M. (2000). Paleoethnobotany: A handbook of procedures. 2nd edn. San Diego: Academic Press.

    Google Scholar 

  • Pearsall, D. M. (2016a). Phytoliths in the flora of Ecuador: The University of Missouri online phytolith database. http://phytolith.missouri.edu/.

  • Pearsall, D. M. (2016b). The phytoliths in the flora of Ecuador project: perspectives on phytolith classification, identification, and establishing regional phytolith databases. Journal of Archaeological Science, 68, 89–97.

    Google Scholar 

  • Pearsall, D. M., Chandler-Ezell, K., & Chandler-Ezell, A. (2003). Identifying maize in neotropical sediments and soils using cob phytoliths. Journal of Archaeological Science, 30, 611–627.

    Article  Google Scholar 

  • Penny, D., & Kealhofer, L. (2005). Microfossil evidence of land-use intensification in north Thailand. Journal of Archaeological Science, 32, 69–82.

    Article  Google Scholar 

  • Perrier, X., De Langhe, E., Donohue, M., Lentfer, C., Vrydaghs, L., Bakry, F., Carreel, F., Hippolyte, I., Horry, J. P., Jenny, C., & Lebot, V. (2011). Multidisciplinary perspectives on banana (Musa spp.) domestication. Proceedings of the National Academy of Sciences, USA, 108, 11311–11318.

    Google Scholar 

  • Pinilla, A. & Bustillo, A. (1997). Sílicofitolitos en secencies arcillosas con silcretas, Mioceno Medio, Madrid. In A. Pinilla, J. Juan-Tresserras & M. J. Machado (Eds.), The state of the art of phytoliths in soils and plants, vol 4. Monografias del Centro de Ciencieas Medioambientales (pp. 255–265). Madrid: CSIC.

    Google Scholar 

  • Piperno, D. R. (1985). Phytolith analysis and tropical paleo-ecology: production and taxonomic significance of siliceous forms in New World plant domesticates and wild species. Review of Palaeobotany and Palynology, 45, 185–228.

    Article  Google Scholar 

  • Piperno, D. R. (1988). Phytolith analysis, an archaeological and geological perspective. San Diego: Academic Press.

    Google Scholar 

  • Piperno, D. R. (1989). The occurrence of phytoliths in the reproductive structures of selected tropical angiosperms and their significance in tropical paleoecology, paleoethnobotany and systematics. Review of Palaeobotany and Palynology, 61, 147–173.

    Article  Google Scholar 

  • Piperno, D. R. (1993). Phytolith and charcoal records from deep lake cores in the American tropics. In D. M. Pearsall & D. R. Piperno (Eds.), Current research in phytolith analysis: Applications in archaeology and paleoecology, vol 10. MASCA Research Papers in Science and Archaeology (pp. 58–71). Philadelphia: University Museum of Archaeology and Anthropology, University of Pennsylvania.

    Google Scholar 

  • Piperno, D. R. (2001). 11. Phytoliths. In J. P. Smol, H. J. B. Birks & W. M. Last (Eds.), Terrestrial, algal, and siliceous indicators, vol 3. Tracking environmental change using lake sediments (pp. 235–251). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Piperno, D. R. (2006). Phytoliths: A comprehensive guide for archaeologists and paleoecologists 1st edn. New York: AltaMira Press.

    Google Scholar 

  • Piperno, D. R. (2009). Identifying crop plants with phytoliths (and starch grains) in Central and South America: a review and an update of the evidence. Quaternary International, 193, 146–159.

    Article  Google Scholar 

  • Piperno, D. R. (2016). Phytolith radiocarbon dating in archaeological and paleoecological research: a case study of phytoliths from modern Neotropical plants and a review of the previous dating evidence. Journal of Archaeological Science, 68, 54–61.

    Google Scholar 

  • Piperno, D. R., Andres, T. C., & Stothert, K. E. (2000). Phytoliths in Cucurbita and other neotropical Cucrubitaceae and their occurrence in early archaeological sites from the lowland American tropics. Journal of Archaeological Science, 27, 193–208.

    Google Scholar 

  • Piperno, D. R., & Becker, P. (1996). Vegetational history of a site in the central Amazon basin derived from phytolith and charcoal records from natural soils. Quaternary Research, 45, 202–209.

    Article  Google Scholar 

  • Piperno, D. R., McMichael, C., & Bush, M. B. (2015). Amazonia and the Anthropocene: what was the spatial extent and intensity of human landscape modification in the Amazon Basin at the end of prehistory? The Holocene, 25, 1588–1597.

    Article  Google Scholar 

  • Piperno, D. R., & Pearsall, D. M. (1998). The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Smithsonian Contributions to Botany, 85, 1–40.

    Article  Google Scholar 

  • Piperno, D. R., Ranere, A. J., Holst, I., Iriarte, J., & Dickau, R. (2009). Starch grain and phytolith evidence for early ninth millennium BP maize from the Central Balsas River Valley, Mexico. Proceedings of the National Academy of Sciences, USA, 106, 5019–5024.

    Google Scholar 

  • Pironon, J., Meunier, J. D., Alexandre, A., Mathieu, R., Mansuy, L., Grosjean, A., et al. (2001). Individual characterization of phytoliths: experimental approach and consequences on paleoenvironment understanding. In J.-D. Meunier & F. Colin (Eds.), Phytoliths: Applications in Earth sciences and human history (pp. 329–341). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Poinar, G., Jr. (2011). Silica bodies in the Early Cretaceous Programinis laminatus (Angiospermae: Poales). Palaeodiversity, 4, 1–6.

    Google Scholar 

  • Porse, S. (2008). Biomes classified by vegetsert. License: CC-BY 3.0. https://en.wikipedia.org/wiki/Vegetation-/media/File:Vegetation-no-legend.PNG. Database accessed on June 16, 2016.

  • Powers, A. H., & Gilbertson, D. D. (1987). A simple preparation technique for the study of opal phytoliths from archaeological and Quaternary sediments. Journal of Archaeological Science, 14, 529–535.

    Article  Google Scholar 

  • Powers-Jones, A. H. & Padmore, J. (1993). The use of quantitative methods and statistical analyses in the study of opal phytoliths. In D. M. Pearsall & D. R. Piperno (Eds.), Current research in phytolith analysis: Applications in archaeology and paleoecology, vol 10. MASCA Research Papers in Science and Archaeology (pp. 47–56). Philadelphia: University Museum of Archaeology and Anthropology, University of Pennsylvania.

    Google Scholar 

  • Prasad, V., Strömberg, C. A. E., Alimohammadian, H., & Sahni, A. (2005). Dinosaur coprolites and the early evolution of grasses and grazers. Science, 310, 1177–1180.

    Article  Google Scholar 

  • Prasad, V., Strömberg, C. A. E., Leache, A., Samant, B. R. P., Tang, L., Mohabey, D. M., et al. (2011). Late Cretaceous origin of the rice tribe. Nature Communications, 2, 480.

    Article  Google Scholar 

  • Prebble, M., Schallenberg, M., Carter, J., & Shulmeister, J. (2002). An analysis of phytolith assemblages for the quantitative reconstruction of late Quaternary environments of the Lower Taieri Plain, Otago, South Island, New Zealand I. Modern assemblages and transfer functions. Journal of Paleolimnology, 27, 393–413.

    Google Scholar 

  • Prentice, A. J., & Webb, E. A. (2016). The effect of progressive dissolution on the oxygen and silicon isotope composition of opal-A phytoliths: implications for palaeoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 453, 42–51.

    Article  Google Scholar 

  • Prychid, C. J., Furness, C. A., & Rudall, P. J. (2003). Systematic significance of cell inclusions in Haemodoraceae and allied families: silica bodies and tapetal raphides. Annals of Botany, 92, 571–580.

    Google Scholar 

  • Prychid, C. J., & Rudall, P. J. (1999). Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. Annals of Botany, 84, 725–739.

    Google Scholar 

  • Prychid, C. J., Rudall, P. J., & Gregory, M. (2004). Systematics and biology of silica bodies in monocotyledons. The Botanical Review, 69, 377–440.

    Article  Google Scholar 

  • Quigley, K. M., & Anderson, T. M. (2014). Leaf silica concentration in Serengeti grasses increases with watering but not clipping: insights from a common garden study and literature review. Frontiers in Plant Science, 5, 568.

    Google Scholar 

  • Raigemborn, M., Brea, M., Zucol, A. F., & Matheos, S. (2009). Early Paleogene climate at mid latitude in South America: mineralogical and paleobotanical proxies from continental sequences in Golfo San Jorge basin (Patagonia, Argentina). Geologica Acta, 7, 125–145.

    Article  Google Scholar 

  • Raine, J., & Askin, R. (2001). Terrestrial palynology of Cape Roberts Project Drillhole CRP-3, Victoria Land Basin, Antarctica. Terra Antartica, 8, 389–400.

    Google Scholar 

  • Rana, R. S., & Wilson, G. P. (2003). New Late Cretaceous mammals from the Intertrappean beds of Rangapur, India and paleobiogeographic framework. Acta Palaeontologica Polonica, 48, 331–348.

    Google Scholar 

  • Raven, J. A. (1983). The transport and function of silicon in plants. Biological Reviews, 58, 179–207.

    Article  Google Scholar 

  • Retallack, G. (2001a). Soils of the past (2nd ed.). Malden, Massachusetts: Blackwell Science Ltd.

    Google Scholar 

  • Retallack, G. J. (1983a). Late Eocene and Oligocene paleosols from Badlands National Park, South Dakota. Geological Society of America Special Paper, 193, 1–82.

    Article  Google Scholar 

  • Retallack, G. J. (1983b). A paleopedological approach to the interpretation of terrestrial sedimentary rocks; the mid-Tertiary fossil soils of Badlands National Park, South Dakota. Geological Society of America Bulletin, 94, 823–840.

    Article  Google Scholar 

  • Retallack, G. J. (1990). Soils of the past: An introduction to paleopedology. Boston, MA: Hyman Press.

    Google Scholar 

  • Retallack, G. J. (1997). Neogene expansion of the North American prairie. PALAIOS, 12, 380–390.

    Article  Google Scholar 

  • Retallack, G. J. (2001b). Cenozoic expansion of grasslands and climatic cooling. Journal of Geology, 109, 407–426.

    Article  Google Scholar 

  • Retallack, G. J., Dugas, D. P., & Bestland, E. A. (1990). Fossil soils and grasses of a Middle Miocene East African grassland. Science, 247, 1325–1328.

    Article  Google Scholar 

  • Rosen, A. M., & Weiner, S. (1994). Identifying ancient irrigation: a new method using opaline phytoliths from emmer wheat. Journal of Archaeological Science, 21, 125–132.

    Google Scholar 

  • Rossouw, L., & Scott, L. (2011). Phytoliths and pollen, the microscopic plant remains in Pliocene volcanic sediments around Laetoli, Tanzania. In T. Harrison (Ed.), Paleontology and geology of Laetoli: Human evolution in context (pp. 2015–2215). Dordrecht: Springer.

    Google Scholar 

  • Rossouw, L., Stynder, D. D., & Haarhof, P. (2009). Evidence for opal phytolith preservation in the Langebaanweg ‘E’ Quarry Varswater Formation and its potential for palaeohabitat reconstruction. South African Journal of Science, 105, 223–227.

    Google Scholar 

  • Rossuow, L. (2009). The application of fossil grass-phytolith analysis in the reconstruction of late Cainozoic environments in the South African interior. Ph.D. Dissertation. Bloemfontein, South Africa: University of the Free State.

    Google Scholar 

  • Rovner, I. (1971). Potential of opal phytoliths for use in paleoecological reconstruction. Quaternary Research, 1, 343–359.

    Article  Google Scholar 

  • Rovner, I. (1972). Note on a safer procedure for opal phytolith extraction. Quaternary Research, 2, 591.

    Article  Google Scholar 

  • Royer, D. L., Osborne, C. P., & Beerling, D. J. (2002). High CO2 increases the freezing sensitivity of plants: implications for paleoclimatic reconstructions from fossil floras. Geology, 30, 963–966.

    Article  Google Scholar 

  • Rudall, P. J., Prychid, C. J., & Gregory, T. (2014). Epidermal patterning and silica phytoliths in grasses: an evolutionary history. The Botanical Review, 80, 59–71.

    Google Scholar 

  • Runge, F. (1996). Opal Phytolithe in Pflantzen aus dem humiden und semi-ariden Osten Afrikas und ihre Bedeutung fur die Klima- und Vegetationsgeschichte. Botanische Jahrbüch für Systematik, 118, 303–363.

    Google Scholar 

  • Runge, F. (1999). The opal phytolith inventory of soils in central Africa – quantities, shapes, classification, and spectra. Review of Palaeobotany and Palynology, 107, 23–53.

    Article  Google Scholar 

  • Runge, F. (2001). Evidence for land use history by opal phytolith analysis: examples from the central African tropics (eastern Kivu, D. R. Congo). In J. D. Meunier & F. Colin (Eds.), Phytoliths: Applications in Earth sciences and human history (pp. 73–85). Lisse: A.A. Balkema Publishers.

    Google Scholar 

  • Runge, F. & Runge, J. (1997). Opal phytoliths in East African plants and soils. In A. Pinilla, J. Juan-Tresserras & M. J. Machado (Eds.), The state of the art of phytoliths in soils and plants, vol 4. Monografias del Centro de Ciencieas Medioambientales (pp. 71–81). Madrid: CSIC.

    Google Scholar 

  • Sánchez, M. V., Gonzalez, M. G., & Genise, J. F. (2010). Phytolith analysis of Coprinisphaera, unlocking dung beetle behaviour, herbivore diets and palaeoenvironments along the Middle Eocene-Early Miocene of Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 285, 224–236.

    Article  Google Scholar 

  • Sandve, S. R., & Fjellheim, S. (2010). Did gene family expansions during the Eocene-Oligocene boundary climate cooling play a role in Pooideae adaptation to cool climates? Molecular Ecology, 19, 2075–2088.

    Article  Google Scholar 

  • Sangster, A. G., Hodson, M. J., & Tubb, H. J. (2001). Silicon deposition in higher plants. In L. E. Datnoff, G. H. Snyder, & G. H. Korndörfer (Eds.), Silicon in agriculture (pp. 85–113). Amsterdam: Elsevier.

    Google Scholar 

  • Sangster, A. G., & Parry, D. W. (1969). Some factors in relation to bulliform cell silicification in the grass leaf. Annals of Botany, 33, 315–323.

    Article  Google Scholar 

  • Sankaran, M., Ratnam, J., & Hanan, N. (2007). Woody cover in African savannas: the role of resources, fire and herbivory. Global Ecology and Biogeography, 2007, 1–10.

    Google Scholar 

  • Santos, G., Alexandre, A., Southon, J., Treseder, K., Corbineau, R., & Reyerson, P. (2012). Possible source of ancient carbon in phytolith concentrates from harvested grasses. Biogeosciences, 9, 1873–1884.

    Article  Google Scholar 

  • Sase, T. & Hosono, M. (2001). Phytolith record in soils interstratified with late Qauternary tephras overlying the eastern region of Towada volcano. In J.D. Meunier & F. Colin (Eds.), Phytoliths: Applications in Earth sciences and human history (pp. 57–71). Lisse: A.A. Balkema Publishers.

    Google Scholar 

  • Scurfield, G., Anderson, C. A., & Segnit, E. R. (1974a). Silica in woody stems. Australian Journal of Botany, 22, 211–229.

    Google Scholar 

  • Scurfield, G., Segnit, E. R., & Anderson, C. A. (1974b). Silicification of wood. In Scanning electron microscopy. Part II. Proceedings of the Workshop on Scanning Electron Microscopy and the Plant Sciences. Chicago: IIT Research Institute.

    Google Scholar 

  • Selkin, P. A., Strömberg, C. A. E., Dunn, R. E., Kohn, M. J., Carlini, A. A., Davies-Vollum, K. S., et al. (2015). Climate, dust, and fire across the Eocene-Oligocene transition, Patagonia. Geology, 43, 567–570.

    Google Scholar 

  • Shahack-Gross, R. (2011). Herbivorous livestock dung: formation, taphonomy, methods for identification, and archaeological significance. Journal of Archaeological Science, 38, 205–218.

    Google Scholar 

  • Shahack-Gross, R., Boaretto, E., Cabanes, D., Katz, O., & Finkelstein, I. (2014). Subsistence economy in the Negev Highlands: the Iron Age and the Byzantine/Early Islamic period. Levant, 46, 98–117.

    Google Scholar 

  • Sheldon, N. D., & Tabor, N. J. (2009). Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95, 1–52.

    Article  Google Scholar 

  • Shi, G., Grimaldi, D. A., Harlow, G. E., Wang, J., Yang, M., Lei, W., et al. (2012). Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37, 155–163.

    Article  Google Scholar 

  • Shoji, S., Nanzyo, M., & Dahlgren, R. (1994). Volcanic ash soils: Genesis, properties and utilization, vol 21. Amsterdam: Elsevier Science Publishers B.V.

    Google Scholar 

  • Simpson, K. J., Ripley, B. S., Christin, P. A., Belcher, C. M., Lehmann, C. E., Thomas, G. H., et al. (2016). Determinants of flammability in savanna grass species. Journal of Ecology, 104, 138–148.

    Article  Google Scholar 

  • Smiley, C., & Huggins, L. M. (1981). Pseudofagus idahoensis, n. gen. et sp. (Fagaceae) from the Miocene Clarkia Flora from Idaho. American Journal of Botany, 68, 741–761.

    Article  Google Scholar 

  • Smith, F. A., & Anderson, K. B. (2001). Characterization of organic compounds in phytoliths: improving the resolving power of phytoliths d13C as a tool for paleoecological reconstruction of C3 and C4 grasses. In J. D. Meunier & F. Colin (Eds.), Phytoliths: Applications in Earth sciences and human history (pp. 317–327). Lisse: A.A. Balkema Publishers.

    Google Scholar 

  • Smith, F. A., & White, J. W. C. (2004). Modern calibration of phytolith carbon isotope signatures for C3/C4 paleograssland reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 277–304.

    Article  Google Scholar 

  • Soderstrom, T. R., & Calderón, C. E. (1974). Primitive forest grasses and evolution of the Bambusoideae. Biotropica, 6, 141–153.

    Article  Google Scholar 

  • Soil Survey Staff (2006). Keys to soil taxonomy (10 ed.). Washington, D. C.: U. S. Department of Agriculture, Natural Resources Conservation Services.

    Google Scholar 

  • Song, Z., McGrouther, K., & Wang, H. (2016). Occurrence, turnover and carbon sequestration potential of phytoliths in terrestrial ecosystems. Earth-Science Reviews, 158, 19–30.

    Article  Google Scholar 

  • Soreng, R. J., Peterson, P. M., Romaschenko, K., Davidse, G., Zuloaga, F. O., Judziewicz, E. J., et al. (2015). A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution, 53, 117–137.

    Article  Google Scholar 

  • Spriggs, E. L., Christin, P. A., & Edwards, E. J. (2014). C4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS ONE, 9, e9772210.

    Article  Google Scholar 

  • Stebbins, G. L. (1981). Coevolution of grasses and herbivores. Annals of the Missouri Botanical Garden, 68, 75–86.

    Article  Google Scholar 

  • Stevenson, R., Bothwell, M., & Loweet, R. (1996). Algal ecology: Freshwater benthic ecosystems. San Diego: Academic Press.

    Google Scholar 

  • Strömberg, C. A. E. (2002). The origin and spread of grass-dominated ecosystems in the Late Tertiary of North America: preliminary results concerning the evolution of hypsodonty. Palaeogeography, Palaeoclimatology, Palaeoecology, 177, 59–75.

    Article  Google Scholar 

  • Strömberg, C. A. E. (2003). The origin and spread of grass-dominated ecosystems during the Tertiary of North America and how it relates to the evolution of hypsodonty in equids. Ph.D. Dissertation, University of California, Berkeley.

    Google Scholar 

  • Strömberg, C. A. E. (2004). Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the Great Plains during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 239–275.

    Article  Google Scholar 

  • Strömberg, C. A. E. (2005). Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America. Proceedings of the National Academy of Sciences, USA, 102, 11980–11984.

    Google Scholar 

  • Strömberg, C. A. E. (2006). The evolution of hypsodonty in equids: testing a hypothesis of adaptation. Paleobiology, 32, 236–258.

    Article  Google Scholar 

  • Strömberg, C. A. E. (2007). Can slide preparation methods cause size biases in phytolith assemblages?: results from a preliminary study. In M. Madella, D. Zurro, & M. K. Jones (Eds.), Plants, people and places. Recent studies in phytolith analysis (pp. 1–12). Oxford: Oxbow Books.

    Google Scholar 

  • Strömberg, C. A. E. (2009a). Methodological concerns for analysis of phytolith assemblages: does count size matter? Quaternary International, 193, 124–140.

    Article  Google Scholar 

  • Strömberg, C. A. E. (2009b). Reply to comment on ‘‘Methodological concerns for analysis of phytolith assemblages: does count size matter?’’. Quaternary International, 193, 143–145.

    Article  Google Scholar 

  • Strömberg, C. A. E. (2011). Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences, 39, 517–544.

    Article  Google Scholar 

  • Strömberg, C. A. E., Di Stilio, V. S., & Song, Z. (2016). Functions of phytoliths in vascular plants: an evolutionary perspective. Functional Ecology, 30, 1286–1297.

    Google Scholar 

  • Strömberg, C. A. E., & Dunn, R. E. (2014). The vegetational context for rodent evolution in the Pacific Northwest: middle Miocene phytoliths the Mascall Formation of eastern Oregon. Geological Society of America Abstracts with Program, 46, 703.

    Google Scholar 

  • Strömberg, C. A. E., Dunn, R. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2013a). Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nature Communications, 4, 1478.

    Article  Google Scholar 

  • Strömberg, C. A. E., Dunn, R. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. (2013b). Where have all the grasses gone?: new middle Miocene phytolith records reveal that grasslands played a minor role in hypsodonty evolution in southern South America. Journal of Vertebrate Paleontology Program and Abstracts, 73, 221.

    Google Scholar 

  • Strömberg, C. A. E., & McInerney, F. A. (2011). The Neogene transition from C3 to C4 grasslands in North America: assemblage analysis of fossil phytoliths. Paleobiology, 37, 50–71.

    Article  Google Scholar 

  • Strömberg, C. A. E. & Stidham, T. A. (2001). Dung beetle brood balls and notoungulate diet. Journal of Vertebrate Paleontology, 21, 105A.

    Google Scholar 

  • Strömberg, C. A. E., Friis, E. M., Liang, M.-M., Werdelin, L., & Zhang, Y.-l., (2007a). Palaeoecology of an Early-Middle Miocene lake in China: preliminary interpretations based on phytoliths from the Shanwang Basin. Vertebrata PalAsiatica 45, 145–160.

    Google Scholar 

  • Strömberg, C. A. E., Werdelin, L., Friis, E. M., & Saraç, G. (2007b). The spread of grass-dominated habitats in Turkey and surrounding areas during the Cenozoic: phytolith evidence. Palaeogeography, Palaeoclimatology Palaeoecology, 250, 18–49

    Google Scholar 

  • Struve, G. A. (1835). De silica in Plantis Nonnullis. Ph.D. Dissertation, Humboldt University, Berlin.

    Google Scholar 

  • Sundue, M. (2009). Silica bodies and their systematic implications in Pteridaceae (Pteridophyta). Botanical Journal of the Linnean Society, 161, 422–435.

    Article  Google Scholar 

  • Swineford, A., Franks, P. C. (1959). Opal in the Ogallala Formation in Kansas. In H. A. Ireland (Ed.), Silica in sediments (Vol. 7, pp. 111–120). Tulsa: Society of Economic Paleontologists and Mineralogists.

    Google Scholar 

  • Syme, A. E. (2012). Diversification rates in the Australasian endemic grass Austrostipa: 15 million years of constant evolution. Plant Systematics and Evolution, 298, 221–227.

    Google Scholar 

  • Taub, D. R. (2001). Climate and the U.S. distribution of C4 grass subfamilies and decarboxylation variants of C4 photosynthesis. American Journal of Botany, 87, 1211–1215.

    Article  Google Scholar 

  • Tedford, R. A. (2009). A multi-proxy approach to investigating the latest Holocene (~4,500 Yrs. BP) Vegetational history of Catahoula Lake, Louisiana. Madison: University of Wisconsin-Madison.

    Google Scholar 

  • Thomasson, J. R. (1978). Epidermal patterns of the lemma in some fossil and living grasses and their phylogenetic significance. Science, 199, 975–977.

    Article  Google Scholar 

  • Thomasson, J. R. (1984). Miocene grass (Gramineae: Arundinoideae) leaves showing external micromorphological and internal anatomical features. Botanical Gazette, 145, 204–209.

    Article  Google Scholar 

  • Thomasson, J. R. (1987). Fossil grasses: 1820–1986 and beyond. In T. R. Soderstrom, K. W. Hilu, C. S. Campbell & M. E. Barkworth (Eds.), Grass systematics and evolution (pp. 159–167). Washington, D. C.: Smithsonian Institution Press.

    Google Scholar 

  • Thorn, V. C. (2001). Oligocene and early Miocene phytolits from CRP-2/2A and CRP-3, Victoria Land Basin, Antarctica. Terra Antartica, 8, 407–422.

    Google Scholar 

  • Thorn, V. C. (2007). Phytoliths in palaeoecology. Geology Today, 23, 153–157.

    Article  Google Scholar 

  • Thorn, V. C. (2004a). Data report: Phytoliths in drill core sediments from Sites 1165 and 1166, Leg 188, Prydz Bay, East Antarctica. In A. K. Cooper, P. E. O’Brien & C. Richter (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, vol 188 (pp. 1–12). College Station: Texas A & M University.

    Google Scholar 

  • Thorn, V. C. (2004b). Phytoliths from subantarctic Campbell Island: plant production and soil surface spectra. Review of Palaeobotany and Palynology, 132, 37–59

    Google Scholar 

  • Thorn, V. C. (2008). New Zealand sub-Antarctic phytoliths and their potential for past vegetation reconstruction. Antarctic Science, 20, 21–32.

    Article  Google Scholar 

  • Thummel, R. V., Strömberg, C. A. E., & Brightly, W. H. (2017). Evolution of phytolith deposition in modern bryophytes—implications for early land plants. Geologic Society of America Abstracts with Programs, 49.

    Google Scholar 

  • Tomlinson, P. B. (1961). Anatomy of the monocotyledons, Volume II, Palmae. Oxford: Oxford University Press.

    Google Scholar 

  • Trembath-Reichert, E., Wilson, J. P., McGlynn, S. E., & Fischer, W. W. (2015). Four hundred million years of silica biomineralization in land plants. Proceedings of the National Academy of Sciences, USA, 112, 5449–5454.

    Article  Google Scholar 

  • Tsartsidou, G., Lev-Yadun, S., Albert, R.-M., Miller-Rosen, A., Efstratiou, N., & Weiner, S. (2007). The phytolith archaeological record: Strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. Journal of Archaeological Science, 34, 1262–1275.

    Google Scholar 

  • Tsartsidou, G., Lev-Yadun, S., Efstratiou, N., & Weiner, S. (2008). Ethnoarchaeological study of phytolith assemblages from an agro-pastoral village in Northern Greece (Sarakini): development and application of a Phytolith Difference Index. Journal of Archaeological Science, 35, 600–613.

    Google Scholar 

  • Twiss, P. C. (1992). Predicted world distribution of C3 and C4 grass phytoliths. In G. J. Rapp & S. C. Mulholland (Eds.), Phytolith systematics. Emerging issues, vol. 1. Advances in Archaeological and Museum Science (pp. 113–128). New York: Plenum Press.

    Google Scholar 

  • Twiss, P. C., Dort Jr., W., Sorenson, C. J. (1987). Grass-opal phytoliths as climatic indicators of the Great Plains Pleistocene. In W. C. Johnson (Ed.), Quaternary environments of Kansas, vol 5. Guidebook Series, Kansas Geological Survey (pp. 179–188). Kansas Geologic Survey.

    Google Scholar 

  • Twiss, P. C., Suess, E., & Smith, R. M. (1969). Morphological classification of grass phytoliths. Soil Science Society of America, Proceedings, 33, 109–115.

    Article  Google Scholar 

  • Uhl, D., & Walther, H. (2000). Sun leaf or shade leaf? Known facts in the light of new data with implications for palaeobotany. Feddes Repert, 111, 165–174.

    Google Scholar 

  • Uhl, N. W., & Dransfield, J. (1987). Genera palmarum. Lawrence, Kansas: Allen Press.

    Google Scholar 

  • Vivanco, L., & Austin, A. T. (2006). Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia, 150, 97–107.

    Google Scholar 

  • Wallis, L. A. (2001). Environmental history of northwest Australia based on phytolith analysis at Carpenter’s Gap 1. Quaternary International, 83–85, 103–117.

    Article  Google Scholar 

  • Wallis, L. A. (2003). An overview of leaf phytolith production patterns in selected northwest Australian flora. Review of Palaeobotany and Palynology, 125, 201–248.

    Article  Google Scholar 

  • Wallis, L. A. (2013). A comparative study of phytolith assemblages in modern sediments from the Kimberley. Western Australia. Quaternary Australasia, 30, 6.

    Google Scholar 

  • Wang, Y., Cerling, T. E., MacFadden, B. J., & Bryant, J. D. (1994). Fossil horses and carbon isotopes: new evidence for Cenozoic dietary, habitat, and ecosystem changes in North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 107, 269–280.

    Article  Google Scholar 

  • Wang, Y. J., & Lu, H. Y. (1993). The study of phytolith and its application. Beijing, China: China Ocean Press.

    Google Scholar 

  • Watling, J., & Iriarte, J. (2013). Phytoliths from the coastal savannas of French Guiana. Quaternary International, 287, 162–180.

    Article  Google Scholar 

  • Watson, L. & Dallwitz, M. J. (1992). Grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. Version: 23rd April 2010. http://delta-intkey.com/.

  • Watson, R. (1942). The effect of cuticular hardening on the form of epidermal cells. New Phytologist, 41, 223–229.

    Article  Google Scholar 

  • Weaver, M. (1964). X-ray diffraction study of calculus of the miniature pig. Archives of Oral Biology, 9, 75–81.

    Article  Google Scholar 

  • Wesolowski, V., Ferraz Mendonça de Souza, S. M., Reinhard, K. J., & Ceccantini, G. (2010). Evaluating microfossil content of dental calculus from Brazilian sambaquis. Journal of Archaeological Science, 37, 1326–1338.

    Google Scholar 

  • White, A. F., Vivit, D. V., Schulz, M. S., Bullen, T. D., Evett, R. R., & Aagarwal, J. (2012). Biogenic and pedogenic controls on Si distributions and cycling in grasslands of the Santa Cruz soil chronosequence, California. Geochimica et Cosmochimica Acta, 94, 72–94.

    Article  Google Scholar 

  • Wilding, L. P., & Drees, L. R. (1971). Biogenic opal in Ohio soils. Soil Science Society of America, Proceedings, 35, 1004–1010.

    Article  Google Scholar 

  • Wilding, L. P., & Drees, L. R. (1973). Scanning electron microscopy of opaque opaline forms isolated from forest soils in Ohio. Soil Science Society of America Proceedings, 37, 647–650.

    Article  Google Scholar 

  • Wilding, L. P., & Drees, L. R. (1974). Contributions of forest opal and associated crystalline phases to fine silt and clay fractions of soils. Clays and Clay Minerals, 22, 295–306.

    Article  Google Scholar 

  • Williams, L. A., & Crerar, D. A. (1985). Silica diagenesis; II, General mechanisms. Journal of Sedimentary Petrology, 55, 312–321.

    Google Scholar 

  • Williams, L. A., Parks, G. A., & Crerar, D. A. (1985). Silica diagenesis; I, Solubility controls. Journal of Sedimentary Petrology, 55, 301–311.

    Google Scholar 

  • Williams, S. H., & Kay, R. F. (2001). A comparative test of adaptive explanations for hypsodonty in ungulates and rodents. Journal of Mammalian Evolution, 8, 207–229.

    Article  Google Scholar 

  • Wilson, G. P., Das Sarma, D. C., & Anantharaman, S. (2007). Late Cretaceous sudamericid gondwanatherians from India with paleobiogeographic considerations of Gondwanan mammals. Journal of Vertebrate Paleontology, 27, 521–531.

    Article  Google Scholar 

  • Wing, S. L., Strömberg, C. A. E., Hickey, L. J., Tiver, F., Willis, B., Burnham, R. J., et al. (2012). Floral and environmental gradients on a Late Cretaceous landscape. Ecological Monographs, 82, 23–47.

    Article  Google Scholar 

  • WoldeGabriel, G., Ambrose, S. H., Barboni, D., Bonnefille, R., Bremond, L., Currie, B., et al. (2009). The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. Science, 326, 65–65e5.

    Google Scholar 

  • Yost, C. L., & Blinnikov, M. S. (2011). Locally diagnostic phytoliths of wild rice (Zizania palustris L.) from Minnesota, USA: comparison to other wetland grasses and usefulness for archaeobotany and paleoecological reconstructions. Journal of Archaeological Science, 38, 1977–1991.

    Google Scholar 

  • Zhao, C., & Pearsall, D. M. (1998). Experiments for improving phytolith extractions from soils. Journal of Archaeological Science, 25, 587–598.

    Article  Google Scholar 

  • Zhao, Z., & Piperno, D. R. (2000). Late Pleistocene/Holocene environments in the Middle Yangtze River Valley, China and rice (Oryza sativa L.) domestication: the phytolith evidence. Geoarchaeology: An International Journal, 15, 203–222.

    Google Scholar 

  • Zhao, Z. J., Pearsall, D. M., Benfer, R. A., & Piperno, D. R. (1998). Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis, II – Finalized method. Economic Botany, 52, 134–145.

    Article  Google Scholar 

  • Zucol, A. F., & Brea, M. (2000). Análisis fitolítico de la Formación Paraná en la provincia de Entre Ríos. In F. G. Aceñolaza & R. Herbst (Eds.), El Neógeno de Argentina (INSUGEO, Serie Correlación Geológica, Vol. 14, pp. 67–76). Tucumán.

    Google Scholar 

  • Zucol, A. F., & Brea, M. (2005). Sistemática de fitolitos, pautas para un sistema clasificatorio. Un caso en estudio en la Formación Alvear (Pleistoceno inferior). Ameghiniana, 42, 685–704.

    Google Scholar 

  • Zucol, A. F., Brea, M., & Bellosi, E. (2010). Phytolith studies in Gran Barranca (central Patagonia, Argentina): the middle-late Eocene. In R. H. Madden, A. A. Carlini, M. G. Vucetich, & R. F. Kay (Eds.), The paleontology of Gran Barranca (pp. 317–340). Cambridge: Cambridge University Press.

    Google Scholar 

  • Zucol, A. F., Brea, M., Bellosi, E., Carlini, A. A., & Vucetich, M. G. (2007). Preliminary phytolith analysis of Sarmiento Formation in the Gran Barranca (central Patagonia, Argentina). In M. Madella & D. Zurro (Eds.), Plants, people and places. Recent studies in phytolith analysis (pp. 189–195). Oxford: Oxbow Books.

    Google Scholar 

  • Zucol, A. F., & Osterrieth, M. (2002). Técnicas de preparación de muestras sedimentarias para la extracción de fitolitos. Ameghiniana, 39, 379–382

    Google Scholar 

Download references

Acknowledgements

We thank Z. Song, D. Conley, and W. Clymans for fruitful discussions about silica in soil. This work was in part supported by the Biology Department, University of Washington, Seattle, and NSF awards EAR-1253713 and EAR-1349530 to C.A.E.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline A. E. Strömberg .

Editor information

Editors and Affiliations

Appendices

Appendix 12.1. Glossary of Common or Key Terms

Term

Explanation

Reference

BOP clade

One of two major lineages within Poaceae containing three subfamilies: Bambusoideae, Oryzoideae and Pooideae. Previously referred to as BEP

Aliscioni et al. (2012) and Soreng et al. (2015)

Bulliform cell

Large inflated cells of the epidermis that occur mostly on the upper side of monocot leaves. These cells are thought to control leaf rolling through water loss and are often a site of silica deposition. The resulting phytoliths are referred to as cuneiform and parallelipipedal bulliform cells (ICPN 1.0)

Piperno (2006)

Cuticle

A layer consisting of lipid polymers impregnated with waxes that cover the epidermis of leaves and other above-ground plant organs. The cuticle prevents water loss and protects the plants against contamination

Esau (1965)

Cystolith

Inorganic concretions formed in specialized cells called lithocysts, usually in leaves of plants of certain families (e.g., in the Moraceae and Ulmaceae). Cystoliths often consist of calcium oxalates, silica or both

Esau (1965) and Piperno (2006)

Grass Silica Short Cells (GSSC)

Cells in grass epidermis that are specialized for silicon deposition (idioblasts). Short cells are roughly equidimensional in most taxa and shorter (along the axis of the leaf) than the accompanying long cells within the epidermis. GSSC phytoliths (GSSCP) are the result of complete filling of the GSSCs, in the form of shapes that are more or less diagnostic of different Poaceae subclades (e.g., bilobate, cross, rondel, trapeziform polylobate). GSSCPs are a unique trait of Poaceae

Piperno (2006)

ICPN 1.0

International Code for Phytolith Nomenclature 1.0, a publication that sought to standardize phytolith morphotype naming

ICPN Working Group (2005)

Idioblast cells

Cells which differ markedly from neighboring cells, such as those that synthesize crystals of silica or calcium oxalate in some plant taxa

Esau (1965)

Multiplicity

The fact that many plants produce more than one phytolith morphotype

Piperno (1988) and Rovner (1971)

PACMAD clade

One of two major lineages within Poaceae, the grass family, which contains six subfamilies (Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, and Danthonioideae) for which the clade is named

Aliscioni et al. (2012) and Soreng et al. (2015)

Redundancy

Overlap in morphotype shape among phytoliths produced by more or less phylogenetically distant plants

Piperno (1988) and Rovner (1971)

Stegmata

Specialized silica-containing cells that often surround the vascular bundles in, for example palms, zingibers, and orchids. Stegmata phytoliths are often diagnostic to family or below

Tomlinson (1961)

Appendix 12.2. Ungulate Specimens Sampled for Dental Calculus from the Deep River Formation, Montana. Phytolith Assemblages from Taxa in Bold Font Were Analyzed Quantitatively (Fig. 12.7)

Museum Specimen Number

Taxon

Calculus Phytolith Productivity

Matrix Phytolith Productivity

UWBM 40039

Promerycochoerus

None

N/A

UWBM 39071

Merycoidodontid

None

N/A

UWBM 59145

Promerycochoerus

Some

Some

UWBM 54757

Leptauchenia

Some

Many

UWBM 54624

Merycoidodontid

Many

Many

UWBM 53242

Leptauchenia

None

N/A

UWBM 53245

Merycoidodontid

None

N/A

UWBM 48113

Leptauchenia

Some

Few to many

UWBM 40614

Merychippus

None

N/A

UWBM 46831

Merychippus

None

N/A

UWBM 48109

Leptauchenia

None

N/A

UWBM 48021

Merychippus

Some

Many

UWBM 52661

Merychippus

None

N/A

UWBM 52796

Promerycochoerus

None

N/A

UWBM 54650

Merychippus

Some

Few

UWBM 54756

Camelid

None

N/A

UWBM 58038

Tayassuid

None

N/A

UWBM 32414

Merycoidodontid

Many

Many

UWBM 39932

Leptauchenia

None

N/A

Appendix 12.3. Analysis of Dental Calculus in Middle Miocene Herbivores (E.B.H.)

Materials and Methods—Fossil teeth used for this study were collected from the Barstovian (16.3–13.6 Ma) Spring Creek 1 locality of the Deep River Formation, Montana (Appendix 12.2). They are held within the vertebrate paleontology collections at the Burke Museum of Natural History and Culture (UWBM), Seattle, Washington.

Fossil teeth specimens were sampled if they preserved a non-matrix film on the dental enamel or cementum surface that resembled dental calculus. The dental films were sampled from the buccal side of the teeth and ranged in color from white to tan (Fig. 12.7). Most dental films were found above the gingival margin. Teeth were first rinsed with DI water and rubbed with Q-tips to ensure the removal of any extraneous phytolith or matrix material. The dental film was gently removed using a dental pick onto a sterile piece of paper and then transferred into glass vials for storage. Samples were lightly crushed (if not already in a powdered form) and treated with hydrochloric acid (HCl) for 24–48 h to remove any calcareous substances. Samples were then transferred to 1.5 ml Eppendorf tubes and spun five to seven times in a mini-centrifuge to remove the HCl. The resulting yields were smeared onto microscope slides with ethanol, mounted with Meltmount, and counted for phytoliths.

In addition to dental calculus, matrix samples associated with each specimen were also collected. Following the method described in Strömberg (2002), and modified from Piperno (1988), matrix samples were processed with acids to remove carbonates , oxidized to remove organic materials, sieved, and gravimetrically separated to yield only the 3–50 µm fraction. Matrix samples were mounted on slides using Meltmount. All phytoliths were identified and categorized following classification used in Strömberg (2005).

Results—Of nineteen calculus samples analyzed, seven preserved phytoliths but only two preserved them in enough abundance to warrant counting (Appendix 12.2). The phytolith productivity of the matrix samples varied from sample to sample but generally contained substantially more phytoliths than the calculus. All calculus and matrix samples from Merycoidodon (UWBM 54624) and an unidentified oreodont (UWBM 32414) yielded a wide range of phytolith morphotypes (Table 12.2) of which grass forms—specifically C3 pooid forms—dominated (Fig. 12.7). The Merycoidodon calculus sample contained more forest indicator phytoliths (e.g., closed-habitat grass, dicotyledonous, and palm morphotypes) than the unidentified oreodont specimen. Additionally, there was a statistically significant difference between the calculus and matrix samples for each specimen when comparing the abundance of phytoliths of grasses and woody dicots (Fisher’s exact test; Merycoidodon: p ≪ 0.05; unident. oreodont: p < 0.05).

Discussion—The fact that the calculus and matrix phytolith assemblages differ lends support to our supposition that we did in fact sample dental calculus. Furthermore, our results suggest that it is reasonable to assume that these calculus phytolith assemblages are representative of the plants these animals ate. Therefore, we hypothesize that these two oreodonts fed mainly on C3 grasses, but incorporated some browse.

Appendix 12.4. Key to Modern Reference Studies Mapped in Fig. 12.8

No. in Fig. 12.8

Continent

Region

Country/US state

Type of study

Plant types

Vegetation types

Trop./temp. ¥

Reference

Grass

Other

Grassland

Forest

Other

1

Africa

West Africa (mainly)

Burkina Faso, Benin, Niger, Nigeria, Ethiopia

Plant

x

TR

Neumann et al. (2017)

2

Africa

 

Central African Republic

Sediment

x

x

TR

Aleman et al. (2012)

3

North America

 

United States

Plant

x

x

TR-TE

Strömberg (2003)

4

Asia

China-Nepal border

 

Sediment

x

x

TR-TE

An et al. (2015)

5

Asia

China

Plant

x

TE

An (2016)

6

Australia

Australia

Sediment

x

TR

Alexandre et al. (2012)

7

Africa

Central African Republic

Sediment

  

x

x

x

TR

Aleman et al. (2014)

8

Africa

Tanzania

Plant, sediment

x

x

x

x

TR

Albert et al. (2006, 2015)

9

Africa

Sahelian, Sudanian grassland

Sudan

Plant

x

TR

Novello and Barboni (2015)

10

Africa

East Africa (East African lakes)

Plant

x

TR

Barboni and Bremond (2009)

11

Asia

India

Plant, Sediment

x

x

TR-TE

Biswas et al. (2016)

12

Africa

Senegal, Congo

Sediment

x

x

TR

Alexandre et al. (1997b)

13

North America

United States, WA

Plant, Sediment

x

x

x

x

x

TE

Blinnikov (2005)

14

North America

United States, MN

Sediment

x

TE

Blinnikov et al. (2013)

15

Europe

France

Sediment

x

x

TE

Bremond et al. (2004)

16

Africa

Kenya, Tanzania

Sediment

x

x

TR

Bremond et al. (2008b)

17

Africa

Central Africa

Central African Republic, Congo

Sediment

x

TR

Runge (1999, 2001)

18

Africa

Ethiopia

Sediment

x

x

x

TR

Barboni et al. (1999, 2007)

19

Africa

Cameroon

Sediment

x

x

x

TR

Bremond et al. (2005a)

20

Africa

Senegal, Mauritania

Sediment

 

x

x

 

TR

Bremond et al. (2005b)

21

Africa

East Africa

Zaire, Rwanda, Kenya

Plant

x

x

TR

Runge (1996)

22

Africa

Tanzania

Sediment

TR

Barboni et al. (2007)

23

North America

Central North American grasslands

United States

Plant

x

TE

Brown (1984)

24

Europe

Swiss alps

Switzerland

Plant

x

x

TE

Carnelli et al. (2001, 2004)

25

Africa

West/Central Africa

Plant

x

TR

Collura and Neumann (2017)

26

South America

Brazil

Sediment

x

x

x

TR

Coe et al. (2013, 2014)

27

Global

Plant

x

TR-TE

Chen and Smith (2013)

28

South America

Bolivia

Sediment

 

x

x

x

TR

Dickau et al. (2013)

29

Europe

France

Sediment

 

x

x

 

TE

Delhon et al. (2003)

30

Asia

India

Plant, Sediment

x

x

 

x

x

TR

Das et al. (2013a, b)

31

South America

Argentina

Plant

x

TE

Fernández Pepi et al. (2012)

32

South America

Argentina

Plant

x

x

x

  

TE

Fernandez Honaine et al. (2006), Honaine et al. (2009)

33

North America

United States, LA

Sediment

x

x

TR

Fearn (1998)

34

Africa

West Africa (Sahel)

Plant

x

TR

Fahmy (2008)

35

Africa

South Africa

Sediment

x

x

x

TE

Esteban et al. (2017)

36

Africa

West/Central Africa

Plant

x

 

TR

Eichhorn et al. (2010)

37

Asia

China

Plant

 

x

TE

Ge et al. (2011)

38

Africa

Mali

Sediment

x

x

x

TR

Garnier et al. (2012)

39

South America

Argentina

Plant, Sediment

x

x

 

TE

Gallego and Distel (2004), Gallego et al. (2004)

40

North America

Great Plains

United States, Canada

Sediment

 

x

TE

Fredlund and Tieszen (1994) and (1997a)

41

North America

United States

Sediment

x

x

TE

Hyland et al. (2013b)

42

Asia

China

Plant

x

x

TE

Guo et al. (2012)

43

South America

Uruguay

Plant, Sediment

x

x

x

x

x

TR

Iriarte and Paz (2009)

44

North America

United States: (GA, LA, FL)

Plant

x

TR

Lu and Liu (2003a)

45

North America, Asia

Atlantic and Gulf coasts (United States)

United States, China

Plant

x

TR-TE

Lu and Liu (2003b)

46

Asia

China

Sediment

x

x

x

TR-TE

Lu et al. (2006)

47

Africa

 

South Africa

Plant

x

TE

Rossuow (2009)

48

Asia

 

India

Plant

x

TR

Kumari and Kumarasamy (2014)

49

North America

 

United States, AZ

Plant, sediment

x

x

x

x

TE

Kerns (2001)

50

Asia

 

Thailand

Plant

 

x

  

TR

Kealhofer and Piperno (1998)

51

Asia

 

Israel

Plant

 

x

 

TE

Katz et al. (2013)

52

North America

 

United States, TX

Plant*

 

x

TE

Jones and Bryant (1992)

53

Africa

 

Chad

Plant, Sediment

x

x

x

x

TR

Novello et al. (2012)

54

Africa

 

Mozambique

Plant, sediment

x

x

x

x

x

TR

Mercader et al. (2010, 2009, 2011)

55

North America

 

Canada, BC

Plant

x

x

x

x

TE

McCune and Pellatt (2013) and McCune et al. (2014)

56

Asia

 

India

Plant

x

TR

Mazumdar and Mukhopadhyay (2009a, 2010a, 2011)

57

Oceania

 

New Zealand

Plant

x

TE

Marx et al. (2004)

58

North America

 

United States, ID, UT

Plant, sediment

x

x

x

 

x

TE

Morris et al. (2009a, b, 2010)

59

North America

 

United States, NM

Plant**

x

TE

Morgan-Edel et al. (2015)

60

South America

Amazonas

(Colombia)

Plant

x

TR

Morcote‐Ríos et al. (2016)

61

South America

 

Argentina

Plant, Sediment

x

 

x

 

TR

Montti et al. (2009)

62

South America

 

Ecuador

Plant

x

x

   

TR

Pearsall (2016a, b)

63

South America

Tropical South America

 

Plant

x

    

TR

Piperno and Pearsall (1998)

64

South America

 

Brazil

Sediment

   

x

 

TR

Piperno and Becker (1996)

65

South America

 

Brazil

Sediment

   

x

x

TR

Alexandre et al. (1999)

66

South America, etc.

Tropical

 

Plant

 

x

   

TR

Piperno (1985, 1989)

67

Global

  

Plant*

x

x

   

TR-TE

Prychid and Rudall (1999)

68

Global

  

Plant**

 

x

   

TR-TE

Prychid et al. (2003)

69

Global

  

Plant

x

x

   

TR-TE

Prychid et al. (2004)

70

Oceania

 

New Zealand

Sediment

  

x

x

x

TE

Prebble et al. (2002)

71

Global

  

Plant

 

x

   

TR-TE

Scurfield et al. (1974a, b)

72

Global

  

Plant

x

(x)

   

TR-TE

Rudall et al. (2014)

73

Global

  

Plant

 

x

   

TR-TE

Sundue (2009)

74

South America

 

French Guiana

Plant

x

x

   

TR

Watling and Iriarte (2013)

75

Australia

 

Australia, West Australia

Sediment

  

x

x

x

TR

Wallis (2013)

76

Australia

 

Australia, West Australia

Plant

 

x

   

TR

Wallis (2003)

77

Europe

 

Greece

Plant

x

x

   

TE

Tsartsidou et al. (2007)

78

Oceania

 

New Zealand, Campbell Island

Plant, Sediment

x

x

x

 

x

TE

Thorn (2004a, 2008)

79

North America

 

United States, LA

Plant, Sediment

x

x

x

x

x

TR

Tedford (2009)

80

North America

 

United States, OH

Plant, sediment

 

x

 

x

TE

Wilding and Drees (476,477,478,)

81

Asia

 

China

Sediment

 

x

 

TR

Zhao and Piperno (2000)

82

North America

 

United States, MN

Plant

x

x

TE

Yost and Blinnikov (2011)

83

Global

Plant, sediment

x

x

x

x

x

TR-TE

Albert et al. (2016)

84

South America

 

Panama

Sediment

   

x

 

TR

Piperno (1993)

85

Asia

 

New Britain, Papa New Guinea

Sediment

  

x

x

x

TR

Boyd et al. (1998)

86

Africa

 

Democratic Republic Congo

Sediment

   

x

TR

Mercader et al. (2000)

87

North America

 

United States, KS

Sediment

x

x

TE

Kurmann (1985)

88

Australia

 

Australia, New South Wales

Plant, sediment

x

x

  

x

TE

Hart (1988)

89

North America

Central Great Plains

United States, KS

Plant

x

TE

Bozarth (68,69,70,71,)

90

North America

 

Canada, Saskatchewan

Sediment

 

x

x

TE

Bozarth (1993)

91

North America

 

United States, MO

Sediment

 

x

x

TE

Donohue and Dinan (1993)

92

Oceania

 

New Zealand

Plant, sediment

x

x

x

x

x

TR-TE

Kondo et al. (1994)

93

Asia

Japan

Plant

x

x

   

TE

Kondo and Pearson (1981), Kondo and Sase (1986)

94

Asia

Japan

Sediment

x

x

TE

Inoue and Sase (1996)

95

North America

United States, MA

Plant, sediment

x

x

x

x

x

TE

Krauss (1997)

96

Asia

Japan

Sediment

  

x

x

TE

Sase and Hosono (2001)

97

Europe

Russia, European part

Sediment

x

x

x

x

TE

Gol’eva (1997, 2001)

98

South America

Argentina

Plant**

 

x

   

TE

Borrelli et al. (2011)

99

Africa

Uganda/Rwanda

Plant, sediment

x

x

x

  

TR

Murungi et al. (2016)

100

Oceania (South America)

Easter Island, Chile

Sediment

x?

x?

TR

Horrocks et al. (2016)

101

Africa

South Africa

Plant

x

x

TE

Cordova (2013), Cordova and Scott (2010)

102

Asia

East Asia

China, East Asia

Plant

x

TE-TR

Gu et al. (2013)

103

North America

 

United States, MN

Plant

x

TE

Ollendorf et al. (1988)

  1. * Oxalates; ** Oxalates, silica; ¥ Tropical vs. temperate: TR = tropical, TE = temperate

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strömberg, C.A.E., Dunn, R.E., Crifò, C., Harris, E.B. (2018). Phytoliths in Paleoecology: Analytical Considerations, Current Use, and Future Directions. In: Croft, D., Su, D., Simpson, S. (eds) Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-94265-0_12

Download citation

Publish with us

Policies and ethics