Skip to main content

The Role of Continental Trace Fossils in Cenozoic Paleoenvironmental and Paleoecological Reconstructions

  • Chapter
  • First Online:
Book cover Methods in Paleoecology

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

Trace fossils are the preserved remains of burrows , tracks, trails, nests, borings, or any other record of the behavioral interaction between an organism and a substrate. This chapter reviews the significance of trace fossils to paleoenvironmental and paleoecological studies with an emphasis on their application to the interpretation of Cenozoic continental deposits. Topics include the behavioral and environmental significance of trace fossils, methods utilized in studying trace fossils in outcrop and core, as well as analogous traces of extant organisms, and the strengths , biases, and limitations of trace-fossil data and analyses. The utility of continental trace fossils to paleoecological, paleoenvironmental, and paleoclimatic interpretations are illustrated by two case studies of continental depositional environments from the Eocene-Oligocene and Miocene of North America. Future areas of research with trace fossils then are discussed including experimental and field research with modern organisms and digitization of both modern and ancient traces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber, J. D., & Melillo, J. M. (2001). Terrestrial ecosystems. San Diego: Harcourt Academic Press.

    Google Scholar 

  • Ahlbrandt, T. S., Andrews, S., & Gwynne, D. T. (1978). Bioturbation in eolian deposits. Journal of Sedimentary Petrology, 48, 839–848.

    Google Scholar 

  • Atkinson, R. J. A. (1986). Mud-dwelling megafauna of the Clyde Sea area. Royal Society of Edinburgh Proceedings, 90B, 351–361.

    Google Scholar 

  • Baucon, A., Bordy, E., Brustur, T., Buatois, L. A., Cunningham, T., De, C., et al. (2012). A history of ideas in ichnology. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments (pp. 3–44). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H. D., & Wing, S. L. (1992). Terrestrial ecosystems through time. Chicago: University of Chicago Press.

    Google Scholar 

  • Bellosi, E. S., & González, M. G. (2010). Paleosols of the middle Cenozoic Sarmiento Formation, central Patagonia. In R. H. Madden, A. A. Carlini, M. C. Vucetich & R. F. Kay (Eds.), The paleontology of Gran Barranca. Evolution and environmental change through the middle Cenozoic of Patagonia (pp. 293–305). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bellosi, E. S., Laza, J. H., Victoria Sánchez, M., & Genise, J. F. (2010). Ichnofacies analysis of the Sarmiento Formation (middle Eocene-early Miocene) at Gran Barranca, central Patagonia. In R. H. Madden, A. A. Carlini, M. C. Vucetich & R. F. Kay (Eds.), The paleontology of Gran Barranca. Evolution and environmental change through the Middle Cenozoic of Patagonia (pp. 306–316). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bertling, M., Braddy, S. J., Bromley, R. G., Demathiey, G. R., Genise, J., Mikulas, R., et al. (2006). Names for trace fossils: a uniform approach. Lethaia, 39, 265–286.

    Article  Google Scholar 

  • Birkeland, P. W. (1999). Soils and geomorphology. New York: Oxford University Press.

    Google Scholar 

  • Bowen, J., & Hembree, D. (2014). Neoichnology of two spirobolid millipedes: improving the understanding of the burrows of soil detritivores. Palaeontologia Electronica, 17, 1–48.

    Google Scholar 

  • Bown, T. M., & Laza, J. H. (1990). A Miocene termite nest from southern Argentina and its paleoclimatological implications. Ichnos, 1, 73–79.

    Article  Google Scholar 

  • Bromley, R. G. (1996). Trace fossils: Biology, taphonomy, and applications. London: Chapman and Hall.

    Book  Google Scholar 

  • Bromley, R. G., & Asgaard, U. (1975). Sediment structures produced by a spatangoid echinoid: a problem of preservation. Bulletin of the Geological Society of Denmark, 24, 261–281.

    Google Scholar 

  • Bromley, R. G., & Ekdale, A. A. (1986). Composite ichnofabrics and tiering of burrows. Geological Magazine, 123, 59–65.

    Article  Google Scholar 

  • Bromley, R. G., & Frey, R. W. (1974). Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha, Spongeliomorpha. Bulletin of the Geological Society of Denmark, 23, 311–335.

    Google Scholar 

  • Buatois, L. A., & Mángano, M. G. (2004). Animal-substrate interactions in freshwater environments: applications of ichnology in facies and sequence stratigraphic analysis of fluvio-lacustrine successions. In D. McIlroy (Ed.), The applications of ichnology to palaeoenvironmental and stratigraphic analysis (pp. 311–334). London: Geological Society of London, Special Publication 228.

    Google Scholar 

  • Buol, S. W., Southard, R. J., Graham, R. C., & McDaniel, P. A. (2003). Soil genesis and classification. Ames: Iowa State Press.

    Google Scholar 

  • Butler, D. R. (1995). Zoogeomorphology: Animals as geomorphic agents. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Buynevich, I. V. (2011). Buried tracks: ichnological applications of high-frequency georadar. Ichnos, 18, 189–191.

    Article  Google Scholar 

  • Buynevich, I. V., Curran, H. A., Wiest, L. A., Bentley, A. P. K., Kadurin, S. V., Seminack, C. T., et al. (2014). Near-surface imaging (GPR) of biogenic structures in siliciclastic, carbonate, and gypsum dunes. In D. I. Hembree, B. F. Platt & J. J. Smith (Eds.), Experimental approaches to understanding fossil organisms: Lessons from the living (pp. 405–418). Dordrecht: Springer.

    Google Scholar 

  • Cadée, G. C., & Goldring, R. (2007). The Wadden Sea, cradle of invertebrate ichnology. In W. Miller III (Ed.), Trace fossils: Concepts, problems, prospects (pp. 3–13). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Cambefort, Y., & Hanski, I. (1991). Dung beetle population biology. In I. Hanski & Y. Cambefort (Eds.), Dung beetle ecology (pp. 36–50). Princeton: Princeton University Press.

    Google Scholar 

  • Cantil, L. F., Sánchez, M. V., Sarzetti, L., Molina, A., & Genise, J. F. (2015). Nests and brood balls of Coprophanaeus (Coprophanaeus) cyanescens (Olsoufieff, 1924) (Coleoptera: Scarabaeidae: Scarabaeinae). The Coleopterists Bulletin, 69, 153–158.

    Article  Google Scholar 

  • Catena, A., & Hembree, D. I. (2014). Biogenic structures of burrowing skinks: neoichnology of Mabuya mutifasciata (Squamata: Scincidae). In D. I. Hembree, B. F. Platt & J. J. Smith (Eds.), Experimental approaches to understanding fossil organisms: Lessons from the living (pp. 343–369). Dordrecht: Springer.

    Google Scholar 

  • Counts, R. R., & Hasiotis, S. T. (2009). Neoichnological experiments with masked chafer beetles (Coleoptera: Scarabaeidae): implications for backfilled continental trace fossils. PALAIOS, 24, 74–91.

    Article  Google Scholar 

  • Dashtgard, S. E., & Gingras, M. K. (2005). Facies architecture and ichnology of recent salt-marsh deposits: Waterside Marsh, New Brunswick, Canada. Journal of Sedimentary Research, 75, 596–607.

    Article  Google Scholar 

  • Gibert, J. M. de, & Saez, A. (2009). Paleohydrological significance of trace fossil distribution in Oligocene fluvial-fan-to-lacustrine systems of the Ebro Basin, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 272, 162–175.

    Google Scholar 

  • Dold, P., & Prothero, D. (2003). Magnetic stratigraphy of the lower-middle Miocene Pawnee Creek and Martin Canyon formations, northeastern Colorado. Journal of Vertebrate Paleontology, 23, 46.

    Google Scholar 

  • Doody, J. S., James, H., Ellis, R., Gibson, N., Raven, M., Mahony, S., et al. (2014). Cryptic and complex nesting in the yellow-spotted monitor, Varanus panoptes. Journal of Herpetology, 48, 363–370.

    Article  Google Scholar 

  • Doody, J. S., James, H., Colyvas, K., McHenry, C. R., & Clulow, S. (2015). Deep nesting in a lizard, déjà vu devil’s corkscrew: first helical reptile burrow and deepest vertebrate nest. Biological Journal of the Linnean Society, 116, 13–26.

    Article  Google Scholar 

  • Doonan, T. J., & Stout, I. J. (1994). Effects of gopher tortoise (Gopherus polyphemus) body size on burrow structure. The American Midland Naturalist, 131, 273–280.

    Article  Google Scholar 

  • Droser, M. L., & Bottjer, D. J. (1986). A semiquantitative field classification of ichnofabric. Journal of Sedimentary Petrology, 56, 558–559.

    Article  Google Scholar 

  • Dzenowski, N., & Hembree, D. I. (2014). Quantifying vertebrate biogenic structures using modern analogs: the neoichnology of ambystomatid salamanders. In D. I. Hembree, B. F. Platt & J. J. Smith (Eds.), Experimental approaches to understanding fossil organisms: Lessons from the living (pp. 305–342). Dordrecht: Springer.

    Google Scholar 

  • Ekdale, A. A. (1985). Paleoecology of the marine endobenthos. Palaeogeography, Palaeoclimatology, Palaeoecology, 50, 63–81.

    Article  Google Scholar 

  • Ekdale, A. A., & Berger, W. H. (1978). Deep-sea ichnofacies: modern organism traces on land and in pelagic carbonates of the western equatorial Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 23, 263–278.

    Article  Google Scholar 

  • Ekdale, A. A., Bromley, R. G., & Pemberton, S. G. (1984). Ichnology, trace fossils in sedimentology and stratigraphy. Society of Economic Paleontologists and Mineralogists, Short Course Notes, 15.

    Google Scholar 

  • Elmes, G. W. (1991). Ant colonies and environmental disturbance. In P. S. Meadows & A. Meadows (Eds.), The environmental impact of burrowing animals and animal burrows: Symposia of the Zoological Society of London, 63 (pp. 15–32). Oxford: Clarendon Press.

    Google Scholar 

  • Farrow, G. E. (1975). Techniques for the study of fossil and recent traces. In R. W. Frey (Ed.), The study of trace fossils: A synthesis of principles, problems, and procedures in ichnology (pp. 537–554). Berlin: Springer.

    Chapter  Google Scholar 

  • Fluegeman, R. H. (2003). Late Eocene-early Oligocene benthic foraminifera in the Gulf Coastal Plain: regional vs. global influences. In D. R. Prothero, L. C. Ivany & E. A. Nesbitt (Eds.), From greenhouse to icehouse: The marine Eocene-Oligocene transition (pp. 282–293). New York: Columbia University Press.

    Google Scholar 

  • Frakes, L. A., Francis, J. E., & Syktus, J. I. (1992). Climate modes of the Phanerozoic: The history of the Earth’s climate over the past 600 million years. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Frey, R. W. (1968). The Lebensspuren of some common marine invertebrates near Beaufort, North Carolina. 1, Pelecypod burrows. Journal of Paleontology, 42, 570–574.

    Google Scholar 

  • Frey, R. W. (1970). The Lebensspuren of some common marine invertebrates near Beaufort, North Carolina. 2, Anemone burrows. Journal of Paleontology, 44, 308–311.

    Google Scholar 

  • Frey, R. W. (1973). Concepts in the study of biogenic sedimentary structures. Journal of Sedimentary Petrology, 43, 6–19.

    Google Scholar 

  • Frey, R. W. (1975). The realm of ichnology, its strengths and limitations. In R. W. Frey (Ed.), The study of trace fossils: A synthesis of principles, problems, and procedures in ichnology (pp. 13–38). Berlin: Springer.

    Chapter  Google Scholar 

  • Frey, R. W. (1978). Behavioral and ecological implications of trace fossils. In P. B. Bassan (Ed.), Trace fossil concepts (pp. 43–66). Tulsa: Society of Economic Paleontologists and Mineralogists, Short Course Notes, 5.

    Google Scholar 

  • Frey, R. W., & Pemberton, S. G. (1985). Biogenic structures in outcrops and cores. I. Approaches to ichnology. Bulletin of Canadian Petroleum Geology, 33, 72–115.

    Google Scholar 

  • Frey, R. W., & Pemberton, S. G. (1987). The Psilonichnus ichnocoenose and its relationship to adjacent marine and nonmarine ichnocoenoses along the Georgia coast. Bulletin of Canadian Petroleum Geology, 13, 333–357.

    Google Scholar 

  • Frey, R. W., Howard, J. D., & Pryor, W. A. (1978). Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23, 199–229.

    Article  Google Scholar 

  • Frey, R. W., Curran, H. A., & Pemberton, S. G. (1984). Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. Journal of Paleontology, 58, 333–350.

    Google Scholar 

  • Galbreath, E. C. (1953). A contribution to the Tertiary geology and paleontology of northeastern Colorado. University of Kansas Paleontological Contributions, Vertebrata, 4.

    Google Scholar 

  • Genise, J. F., & Bown, T. M. (1994). New Miocene scarabeid and hymenopterous nests and early Miocene (Santacrucian) paleoenvironments, Patagonian Argentina. Ichnos, 3, 107–111.

    Article  Google Scholar 

  • Genise, J. F. Bellosi, E. S., & Gonzalez, M. G. (2004). An approach to the description and interpretation of ichnofabrics in palaeosols. In D. McIlroy (Ed.), The applications of ichnology to palaeoenvironmental and stratigraphic analysis (pp. 355–382). London: The Geological Society of London, Special Publication, 228.

    Google Scholar 

  • Genise, J. F., Cantil, L. F., Dinghi, P. A., Sánchez, M. V., & Sarzetti, L. (2013). The aestivation chamber of the giant earthworm Glossoscolex bergi (Glossoscolecidae) in the subtropical rainforest of Misiones (Argentina). Ichnos, 20, 1161119.

    Article  Google Scholar 

  • Genise, J. F., Melchor, R. N., Bellosi, E. S., Gonzalez, M. G., & Krause, M. (2007). New insect pupation chambers (pupichnia) from the Upper Cretaceous of Patagonia, Argentina. Cretaceous Research, 28, 545–559.

    Article  Google Scholar 

  • Gingras, M. K., Pickerill, R. K., & Pemberton, S. G. (2002a). Resin casts of modern burrows provide analogs for composite trace fossils. PALAIOS, 17, 206–211.

    Article  Google Scholar 

  • Gingras, M. K., Macmillian, B., Balcom, B. J., Saunders, T., & Pemberton, S. G. (2002b). Using magnetic resonance imaging and petrographic techniques to understand the textural attributes and porosity distribution in Macaronichnus-burrowed sandstone. Journal of Sedimentary Research, 72, 552–558.

    Article  Google Scholar 

  • Gingras, M. K., MacEachern, J. A., & Pickerill, R. K. (2004). Modern perspectives on the Teredolites ichnofacies: observations from Willapa Bay, Washington. PALAIOS, 19, 79–88.

    Article  Google Scholar 

  • Gingras, M. K., Bann, K. L, MacEachern, J. A., Waldron, J., & Pemberton, S. G. (2007a). A conceptual framework for the application of trace fossils. In J. A. MacEachern, K. L. Bann, M. K. Gingras & S. G. Pemberton (Eds.), Applied Ichnology (pp. 1–26). Tulsa: Society for Sedimentary Geology.

    Google Scholar 

  • Gingras, M. K., Lalond, S. V., Amskold, L., & Konhauser, K. O. (2007b). Wintering chironomids mine oxygen. PALAIOS, 22, 433–438.

    Google Scholar 

  • Glinski, J., & Lipiec, J. (1990). Soil physical conditions and plant roots. Boca Raton: CRC Press Inc.

    Google Scholar 

  • Gobetz, K. E. (2005). Claw impressions in the walls of modern mole (Scalopus aquaticus) tunnels as a means to identify fossil burrows and interpret digging movements. Ichnos, 12, 227–231.

    Article  Google Scholar 

  • Halfen, A. F., & Hasiotis, S. T. (2010). Neoichnological study of the traces and burrowing behaviors of the western harvester ant Pognomyrmex occidentalis (Insecta: Hymenoptera: Formicidea): paleopedogenic and paleoecologic implications. PALAIOS, 25, 703–720.

    Article  Google Scholar 

  • Halffter, G., & Matthews, E. G. (1966). The natural history of dung beetles of the subfamily Scarabaeninae (Coleoptera, Scarabaenidae). Folia Entomologica Mexicana, 12/13, 1–312.

    Google Scholar 

  • Hasiotis, S. T. (2002). Continental trace fossils. Tulsa: Society for Sedimentary Geology.

    Google Scholar 

  • Hasiotis, S. T. (2003). Complex ichnofossils of solitary and social soil organisms: understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 259–320.

    Article  Google Scholar 

  • Hasiotis, S. T. (2004). Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sedimentary Geology, 167, 177–268.

    Article  Google Scholar 

  • Hasiotis, S. T. (2007). Continental ichnology: fundamental processes and controls on trace fossil distribution. In W. Miller III (Ed.), Trace fossils: Concepts, problems, prospects (pp. 268–284). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Hasiotis, S. T., & Bown, T. M. (1992). Invertebrate trace fossils: the backbone of continental ichnology. In C. Maples & R. West (Eds.), Trace fossils: Their paleobiological aspects (pp. 64–104). Paleontological Society Short Course, Number 5.

    Google Scholar 

  • Hasiotis, S. T., Kraus, M. J., & Demko, T. M. (2007). Climatic controls on continental trace fossils. In W. Miller III (Ed.), Trace fossils: Concepts, problems, prospects (pp. 166–189). Amsterdam: Elsevier.

    Google Scholar 

  • Hembree, D. I. (2009). Neoichnology of burrowing millipedes: linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils. PALAIOS, 24, 425–439.

    Article  Google Scholar 

  • Hembree, D. I. (2013). Neoichnology of the whip scorpion Mastigoproctus giganteus: complex burrows of predatory terrestrial arthropods. PALAIOS, 28, 141–162.

    Article  Google Scholar 

  • Hembree, D. I. (2014). Large, complex burrows of terrestrial invertebrates: neoichnology of Pandinus imperator. In D. I. Hembree, B. F. Platt & J. J. Smith (Eds.), Experimental approaches to understanding fossil organisms: Lessons from the living (pp. 229–263). Dordrecht: Springer.

    Google Scholar 

  • Hembree, D. I., & Hasiotis, S. T. (2006). The identification and interpretation of reptile ichnofossils in paleosols through modern studies. Journal of Sedimentary Research, 76, 575–588.

    Article  Google Scholar 

  • Hembree, D. I., & Hasiotis, S. T. (2007a). Paleosols and ichnofossils of the White River Formation of Colorado: insight into soil ecosystems of the North American Midcontinent during the Eocene-Oligocene transition. PALAIOS, 22, 123–142.

    Article  Google Scholar 

  • Hembree, D. I., & Hasiotis, S. T. (2007b). Biogenic structures produced by sand-swimming snakes: a modern analog for interpreting continental ichnofossils. Journal of Sedimentary Research, 77, 389–397.

    Article  Google Scholar 

  • Hembree, D. I., & Hasiotis, S. T. (2008). Miocene vertebrate and invertebrate burrows defining compound paleosols in the Pawnee Creek Formation, Colorado, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 349–365.

    Article  Google Scholar 

  • Hembree, D. I., Johnson, L. M., & Tenwalde, R. W. (2012). Neoichnology of the desert scorpion Hadrurus arizonensis: burrows to biogenic cross lamination. Palaeontologica Electronica, 15, 1–34.

    Google Scholar 

  • Hickman, C. S. (2003). Evidence for abrupt Eocene-Oligocene molluscan faunal change in the Pacific Northwest. In D. R. Prothero, L. C. Ivany & E. A. Nesbitt (Eds.), From greenhouse to icehouse: The marine Eocene-Oligocene transition (pp. 71–87). New York: Columbia University Press.

    Google Scholar 

  • Hils, J. M., & Hembree, D. I. (2015). Neoichnology of the burrowing spiders Gorgyrella inermis (Mygalomorphae: Idiopidae) and Hogna lenta (Araneomorphae: Lycosidae). Palaeontologica Electronica, 18, 1–62.

    Google Scholar 

  • Hole, F. D. (1981). Effects of animals on soil. Geoderma, 25, 75–112.

    Article  Google Scholar 

  • Howard, J. D. (1978). Sedimentology and trace fossils. In P. B. Basan (Ed.), Trace fossil concepts (pp. 11–42). Society for Sedimentary Geology Short Course No. 5.

    Google Scholar 

  • Hunt, A. P., Chin, K., & Lockley, M. G. (1994). The paleobiology of vertebrate coprolites. In S. K. Donovan (Ed.), The paleobiology of trace fossils (pp. 221–240). Baltimore: John Hopkins University Press.

    Google Scholar 

  • Hutchinson, J. H. (1992). Western North American reptile and amphibian record across the Eocene/Oligocene boundary and its climatic implications. In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 451–463). Princeton: Princeton University Press.

    Google Scholar 

  • Ivany, L. C., Lohmann, K. C., & Patterson, W. P. (2003). Paleogene temperature history of the U.S. Gulf Coast Plain inferred from ∂18 O of fossil otoliths. In D. R. Prothero, L. C. Ivany & E. A. Nesbitt (Eds.), From greenhouse to icehouse: The marine Eocene-Oligocene transition (pp. 232–251). New York: Columbia University Press.

    Google Scholar 

  • Jackson, T. P. (2000). Adaptation to living in an open arid environment: lessons from the burrow structure of the two southern African whistling rats, Parotomys brantsii and P. littledalei. Journal of Arid Environments, 46, 345–355.

    Article  Google Scholar 

  • Johnson, L. M., & Hembree, D. I. (2015). Understanding anuran burrows: neoichnology of the Eastern spadefoot toad, Scaphiopus holbrooki. Palaeontologica Electronica, 18, 1–29.

    Google Scholar 

  • Kanazawa, K. (1992). Adaptation of test shape for burrowing and locomotion in spatangoid echinoids. Palaeontology, 35, 733–750.

    Google Scholar 

  • Kinlaw, A. (1999). A review of burrowing by semi-fossorial vertebrates in arid environments. Journal of Arid Environments, 41, 127–145.

    Article  Google Scholar 

  • Kinlaw, A. E., & Grasmueck, M. (2012). Evidence for and geomorphologic consequences of a reptilian ecosystem engineer: the burrowing cascade initiated by the gopher tortoise. Geomorphology, 157–158, 108–121.

    Article  Google Scholar 

  • Knaust, D. (2012a). Methodology and techniques. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments (pp. 245–271). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Knaust, D. (2012b). Trace-fossil systematics. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments (pp. 79–102). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Krapovickas, V. (2012). Deposits of the Santa Cruz Formation (late early Miocene): paleohydrologic and paleoclimatic significance. In S. F. Vizcaíno, R. F. Kay & M. S. Bargo (Eds.), Early Miocene paleobiology in Patagonia: High-latitude paleocommunities of the Santa Cruz Formation (pp. 91–103). Cambridge: Cambridge University Press.

    Google Scholar 

  • Krapovickas, V., Ciccioli, P. L., Mángano, M. G., Marsicano, C. A., & Limarino, C. O. (2009). Paleobiology and paleoecology of an arid-semiarid Miocene South American ichnofauna in anastomosed fluvial deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 284, 129–152.

    Article  Google Scholar 

  • Kraus, M. J. (1997). Lower Eocene alluvial paleosols: pedogenic development, stratigraphic relationships, and paleosol/landscape associations. Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 387–406.

    Article  Google Scholar 

  • Kraus, M. J. (1999). Paleosols in clastic sedimentary rocks: their geologic applications. Earth Science Reviews, 47, 41–70.

    Article  Google Scholar 

  • Kraus, M. J., & Hasiotis, S. T. (2006). Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming. Journal of Sedimentary Research, 76, 633–646.

    Article  Google Scholar 

  • Lavelle, P., & Spain, A. (2001). Soil ecology. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Lawfield, A. M. W., & Pickerell, R. K. (2006). A novel contemporary fluvial ichnocoenose: unionid bivalves and the Scoyenia-Mermia ichnofacies transition. PALAIOS, 21, 391–396.

    Article  Google Scholar 

  • Lee, K. E. (1985). Earthworms: Their ecology and relationships with soils and land use. Orlando: Academic Press.

    Google Scholar 

  • Leopold, E. B., & Denton, M. F. (1987). Comparative age of grassland and steppe east and west of the northern Rocky Mountains. Annals of the Missouri Botanical Gardens, 74, 841–867.

    Article  Google Scholar 

  • Leopold, E. B., Liu, G., & Clay-Poole, S. (1992). Low-biomass vegetation in the Oligocene? In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 399–420). Princeton: Princeton University Press.

    Google Scholar 

  • MacEachern, J. A., Bann, K. L., Pemberton, S. G., & Gingras, M. K. (2007a). The ichnofacies paradigm: high-resolution paleoenvironmental interpretation of the rock record. In J. A. MacEachern, K. L. Bann, M. K. Gingras & S. G. Pemberton (Eds.), Applied Ichnology (pp. 27–64). Tulsa: Society for Sedimentary Geology.

    Google Scholar 

  • MacEachern, J. A., Pemberton, S. G., Bann, K. L., & Gingras, M. K. (2007b). Departures from the archetypal ichnofacies: effective recognition of physico-chemical stresses in the rock record. In J. A. MacEachern, K. L. Bann, M. K. Gingras & S. G. Pemberton (Eds.), Applied Ichnology (pp. 65–93). Tulsa: Society for Sedimentary Geology.

    Google Scholar 

  • Melchor, R. N., Genise, J. F., & Miquel, S. E. (2002). Ichnology, sedimentology and paleontology of Eocene calcareous paleosols from a palustrine sequence, Argentina. PALAIOS, 17, 16–35.

    Article  Google Scholar 

  • Melchor, R. N., Genise, J. F., Umazano, A. M., & Superina, M. (2012). Pink fairy armadillo meniscate burrows and ichnofabrics from Miocene and Holocene interdune deposits of Argentina: palaeoenvironmental and palaeoecological significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352, 149–170.

    Article  Google Scholar 

  • Mikuś, P., & Uchman, A. (2013). Beetle burrows with a terminal chamber: a contribution to the knowledge of the trace fossil Macanopsis in continental sediments. PALAIOS, 28, 403–413.

    Article  Google Scholar 

  • Miller, K. G. (1992). Middle Eocene to Oligocene stable isotopes, climate, and deep-water history: the Terminal Eocene Event? In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 160–177). Princeton: Princeton University Press.

    Google Scholar 

  • Miller, K. G., Fairbanks, R. G., & Mountain, G. S. (1987). Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2, 1–19.

    Article  Google Scholar 

  • Mora, P., Miambi, E., Jiménez, J. J., Decaëns, T., & Rouland, C. (2005). Functional complement of biogenic structures produced by earthworms, termites, and ants in the neotropical savannas. Soil Biology and Biochemistry, 37, 1043–1048.

    Article  Google Scholar 

  • M’rabet, S. M., Henaut, Y., Sepulveda, A., Rojo, R., Calme, S., & Geissen, V. (2007). Soil preference and burrow structure of an endangered tarantula, Brachypelma vagans (Mygalomorphae: Theraphosidae). Journal of Natural History, 41, 1025–1033.

    Article  Google Scholar 

  • Mueller, P., & McCann, T. (2014). Ichnology of the Miocene Jaraba Formation, Almazan Basin, NE Spain–morphological characteristics and paleoenvironmental implications of distinct continental trace fossils. Neues Jahrbuch für Geologie und Paläontologie, 274, 55–71.

    Article  Google Scholar 

  • Myers, J. A. (2003). Terrestrial Eocene-Oligocene vegetation and climate in the Pacific Northwest. In D. R. Prothero, L. C. Ivany & E. A. Nesbitt (Eds.), From greenhouse to icehouse: The marine Eocene-Oligocene transition (pp. 171–188). New York: Columbia University Press.

    Google Scholar 

  • Needham, S. J., Worden, R. H., & McIlroy, D. (2005). Experimental production of clay rims by macrobiotic sediment ingestion and excretion processes. Journal of Sedimentary Research, 75, 1028–1037.

    Article  Google Scholar 

  • Neto de Carvalho, C., Baucon, A., & Canilho, S. (2015). ‘Meniscate burrow’ ichnoguild from the alluvial fan deposits of Sarzedas Basin (upper Miocene, Portugal). In D. McIlroy (Ed.), Ichnology: papers from ICHNIA III (pp. 51–61). Geological Association of Canada, Miscellaneous Publications 9.

    Google Scholar 

  • O’Geen, A. T., & Busacca, A. J. (2001). Faunal burrows as indicators of paleo-vegetation in eastern Washington, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 169, 23–37.

    Article  Google Scholar 

  • O’Geen, A. T., McDaniel, P. A., & Busacca, A. J. (2002). Cicada burrows as indicators of paleosols in the inland Pacific Northwest. Soil Science Society of America Journal, 66, 1584–1586.

    Google Scholar 

  • Oleinik, A. E., & Marincovich Jr., L. (2003). Biotic response to the Eocene-Oligocene transition. In D. R. Prothero, L. C. Ivany & E. A. Nesbitt (Eds.) From greenhouse to icehouse: The marine Eocene-Oligocene transition (pp. 36–56). New York: Columbia University Press.

    Google Scholar 

  • Osgood, R. G., Jr. (1975). The paleontological significance of trace fossils. In R. W. Frey (Ed.), The study of trace fossils: A synthesis of principles, problems, and procedures in ichnology (pp. 87–108). Berlin: Springer.

    Chapter  Google Scholar 

  • Pemberton, S. G., & Frey, R. W. (1985). The Glossifungites ichnofacies: modern examples from the Georgia coast, U.S.A. In H. A. Curran (Ed.), Biogenic structures: Their use in interpreting depositional environments (pp. 273–259). Society of Economic Paleontologists and Mineralogists, Special Publication 35.

    Google Scholar 

  • Pemberton, S. G., Spila, M., Pulham, A. J., Saunders, T., MacEachern, J. A., Robbins, D., & Sinclair, I. K. (2001). Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon reservoirs, Jeanne d’Arc basin. Newfoundland: Geological Association of Canada, Short Course Notes, 15.

    Google Scholar 

  • Platt, B. F., & Hasiotis, S. T. (2012). Empirical determination of physical controls on megafaunal footprint formation through neoichnological experiments with elephants. PALAIOS, 27, 725–737.

    Article  Google Scholar 

  • Platt, B. F., Hasiotis, S. T., & Hirmas, D. R. (2010). Use of low-cost multistripe laser triangulation (MLT) scanning technology for three-dimensional, quantitative paleoichnological and neoichnological studies. Journal of Sedimentary Research, 80, 590–610.

    Article  Google Scholar 

  • Prothero, D. R., & Berggren, W. A. (1992). Eocene-Oligocene climatic and biotic evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Prothero, D. R., & Whittlesey, K. E. (1998). Magnetic stratigraphy and biostratigraphy of the Orellan and Whitneyan land-mammal ages in the White River Group. In D. O. Terry Jr., H. E. LaGarry & R. M. Hunt (Eds.), Depositional environments, lithostratigraphy, and biostratigraphy of the White River and Arikaree Groups (late Eocene to early Miocene North America) (pp. 39–61). Geological Society of America, Special Paper, 325.

    Google Scholar 

  • Prothero, D. R., Ivany, L. C., & Nesbitt, E. A. (2003). From greenhouse to icehouse: The marine Eocene-Oligocene transition. New York: Columbia University Press.

    Google Scholar 

  • Ratcliffe, B. C., & Fagerstron, J. A. (1980). Invertebrate lebensspuren of Holocene floodplains: their morphology, origin, and paleoecological significance. Journal of Paleontology, 54, 614–630.

    Google Scholar 

  • Reynolds, T. D., & Wakkinen, W. L. (1987). Characteristics of the burrows of four species of rodents in undisturbed soils in southeastern Idaho. The American Midland Naturalist, 118, 245–250.

    Article  Google Scholar 

  • Retallack, G. J. (1983). Late Eocene and Oligocene paleosols from Badlands National Park, South Dakota (Vol. 193). Boulder: Geological Society of America, Special Paper.

    Google Scholar 

  • Retallack, G. J. (1984). Trace fossils of burrowing beetles and bees in an Oligocene paleosol, Badlands National Park, South Dakota. Journal of Paleontology, 58, 571–592.

    Google Scholar 

  • Retallack, G. J. (1992). Paleosols and changes in climate and vegetation across the Eocene/Oligocene boundary. In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 382–398). Princeton: Princeton University Press.

    Google Scholar 

  • Retallack, G. J. (2001a). Cenozoic expansion of grasslands and global climatic cooling. Journal of Geology, 109, 407–426.

    Article  Google Scholar 

  • Retallack, G. J. (2001b). Soils of the past. Oxford: Blackwell.

    Book  Google Scholar 

  • Retallack, G. J. (2004). Late Oligocene bunch grassland and early Miocene sod grassland paleosols from central Oregon, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 207, 203–237.

    Article  Google Scholar 

  • Retallack, G. J., Bestland, E. A., & Fremd, T. J. (2000). Eocene and Oligocene paleosols of central Oregon (Vol. 344). Boulder: Geological Society of America, Special Paper.

    Google Scholar 

  • Retallack, G. J., Orr, W. N., Prothero, D. R., Duncan, R. A., Kester, P. R., & Ambers, C. P. (2004). Eocene-Oligocene extinction and paleoclimatic change near Eugene, Oregon. Geological Society of America Bulletin, 116, 817–839.

    Article  Google Scholar 

  • Rindsberg, A. K. (2012). Ichnotaxonomy: finding patterns in a welter of information. In D. Knaust & R. G. Bromley (Eds.), Trace fossils as indicators of sedimentary environments (pp. 45–78). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Rodríguez-Tovar, F. J. (2007). Substrate firmness controlling nesting behavior of Bembix oculata (Hymenoptera, Bembicinae). In R. G. Bromley, L. A. Buatois, M. G. Mángano, J. F. Genise & R. N. Melchor (Eds.), Sediment-organism interactions: A multifaceted ichnology (pp. 353–359). Tulsa: Society for Sedimentary Geology.

    Google Scholar 

  • Sakagami, S. F., & Michener, C. D. (1962). The nest architecture of the sweat bees (Halictinae): A comparative study of behavior. Lawrence: University of Kansas Press.

    Google Scholar 

  • Sánchez, M. V., González, M. G., & Genise, J. F. (2010). Phytolith analysis of Coprinisphaera, unlocking dung beetle behaviour, herbivore diets and palaeoenvironments along the middle Eocene-early Miocene of Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology, 285, 224–236.

    Article  Google Scholar 

  • Sarzetti, L. C., Genise, J. F., & Sanchez, M. V. (2014). Nest architecture of Oxaea austere (Andrenidae, Oxaeinae) and its significance for the interpretation of Uruguayan fossil bee cells. Journal of Hymenoptera Research, 39, 59–70.

    Article  Google Scholar 

  • Schäfer, W. (1972). Ecology and palaeoecology of marine environments. Edinburgh: Oliver and Boyd.

    Google Scholar 

  • Schaetzl, R., & Anderson, S. (2009). Soils: Genesis and geomorphology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Seeland, D. (1985). Oligocene paleogeography of the northern Great Plains and adjacent mountains. In R. M. Flores & S. S. Kaplan (Eds.), Cenozoic paleogeography of the west-central United States (pp. 187–205). Denver: Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists.

    Google Scholar 

  • Seilacher, A. (1953). Studien zur Palichnologie. I. Über die Methoden der Palichnologie. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 96, 421–452.

    Google Scholar 

  • Seilacher, A. (1964). Biogenic sedimentary structures. In J. Imbire & N. Newell (Eds.), Approaches to paleoecology (pp. 296–316). New York: Wiley.

    Google Scholar 

  • Seilacher, A. (1967). Bathymetry of trace fossils. Marine Geology, 5, 413–428.

    Article  Google Scholar 

  • Seilacher, A. (1978). Use of trace fossil assemblages for recognizing depositional environments. In P. B. Basan (Ed.), Trace fossil concepts (pp. 167–181). Tulsa: Society of Economic Paleontologists and Mineralogists.

    Google Scholar 

  • Seilacher, A. (1986). Evolution of behavior as expressed in marine trace fossils. In M. H. G. Nitecki & J. A. Kitchell (Eds.), Evolution of animal behavior: Palaeontological and field approaches (pp. 62–87). New York: Oxford University Press.

    Google Scholar 

  • Seilacher, A. (2007). Trace fossil analysis. Berlin: Springer.

    Google Scholar 

  • Seilacher, A., & Seilacher, E. (1994). Bivalvian trace fossils: a lesson from actuo-paleontology. Courier Forschungsinstitut Senckenberg, 169, 5–15.

    Google Scholar 

  • Shorthouse, D. J., & Marples, T. G. (1980). Observations on the burrow and associated behavior of the arid-zone scorpion Urodacus yaschenkoi (Birula). Australian Journal of Zoology, 28, 581–590.

    Article  Google Scholar 

  • Smith, A. B., & Crimes, T. P. (1983). Trace fossils formed by heart urchins–a study of Scolicia and related traces. Lethaia, 16, 79–92.

    Article  Google Scholar 

  • Smith, J. J., & Hasiotis, S. T. (2008). Traces and burrowing behaviors of the cicada nymph Cicadetta calliope: neoichnology and paleoecological significance of extant soil-dwelling insects. PALAIOS, 23, 503–513.

    Article  Google Scholar 

  • Smith, J. J., Hasiotis, S. T., Kraus, M. J., & Woody, D. T. (2008a). Relationship of floodplain ichnocoenoses to paleopedology, paleohydrology, and paleoclimate in the Willwood Formation, Wyoming, during the Paleocene-Eocene Thermal Maximum. PALAIOS, 23, 683–699.

    Article  Google Scholar 

  • Smith, J. J., Hasiotis, S. T., Woody, D. T., & Kraus, M. (2008b). Paleoclimatic implications of crayfish-mediated prismatic structures in paleosols of the Paleogene Willwood Formation, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research, 78, 323–334.

    Article  Google Scholar 

  • Stucky, R. K. (1992). Mammalian faunas in North America of Bridgerian to Early Arikareean “ages” (Eocene to Oligocene). In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 464–493). New Jersey: Princeton University Press.

    Google Scholar 

  • Sudd, J. H. (1967). An introduction to the behavior of ants. London: Edward Arnold.

    Google Scholar 

  • Sullivan, R. M., & Holman, J. A. (1996). Squamata. In D. R. Prothero & R. J. Emry (Eds.), The terrestrial Eocene-Oligocene transition in North America (pp. 354–372). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Swinehart, J. B., Souders, V. L., Degraw, H. M., & Diffendal, R. F. (1985). Cenozoic paleogeography of western Nebraska. In R. M. Flores & S. S. Kaplan (Eds.), Cenozoic paleogeography of the west-central United States (pp. 209–229). Denver: Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists.

    Google Scholar 

  • Taylor, A. M., & Goldring, R. (1993). Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society of London, 150, 141–148.

    Article  Google Scholar 

  • Taylor, A., Goldring, R., & Gowland, S. (2003). Analysis and application of ichnofabrics. Earth-Science Reviews, 60, 227–259.

    Article  Google Scholar 

  • Tschinkel, W. R. (2003). Subterranean ant nests: trace fossils past and future. Palaeogeography, Palaeoclimatology, Palaeoecology, 192, 321–333.

    Article  Google Scholar 

  • Uchman, A., & Pervesler, P. (2006). Surface lebensspuren produced by amphipods and isopods (crustaceans) from the Isonzo delta tidal flat, Italy. PALAIOS, 21, 384–390.

    Article  Google Scholar 

  • van Donselaar-ten Bokkel Huinink, W. A. E. (1966). Structure, root systems, and periodicity of savanna plants and vegetation in northern Surinam. Amsterdam: North-Holland Publishing Company.

    Google Scholar 

  • Villani, M. G., Allee, L. L., Diaz, A., & Robbins, P. S. (1999). Adaptive strategies of edaphic arthropods. Annual Review of Entomology, 44, 233–256.

    Article  Google Scholar 

  • Weaver, J. E. (1919). The ecological relations of roots. Washington: Carnegie Institution of Washington Publication.

    Book  Google Scholar 

  • Williams, S. C. (1966). Burrowing activities of the scorpion Anuroctonus phaeodactylus (Wood) (Scorpionida: Vaejovidae). Proceedings of the California Academy of Sciences, 34, 419–428.

    Google Scholar 

  • Willis, E. R., & Roth, L. M. (1962). Soil and moisture relations of Scaptocoris divergins Troeschner (Hemiptera: Cynidae). Annals of the Entomological Society of America, 55, 21–32.

    Article  Google Scholar 

  • Wolfe, J. A. (1992). Climatic, floristic, and vegetational changes across the Eocene/Oligocene boundary in North America. In D. R. Prothero & W. A. Berggren (Eds.), Eocene-Oligocene climatic and biotic evolution (pp. 421–436). New Jersey: Princeton University Press.

    Google Scholar 

  • Yancy, T. E., Elsik, W. C., & Sancay, R. H. (2003). The palynological record of late Eocene climate change, northwest Gulf of Mexico. In D. R. Prothero, L. C. Ivany & E. A. Nesbitt (Eds.), From greenhouse to icehouse: The marine Eocene-Oligocene transition (pp. 252–268). New York: Columbia University Press.

    Google Scholar 

  • Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 689–693.

    Google Scholar 

Download references

Acknowledgments

I thank Andy Rindsberg and three anonymous reviewers for their helpful comments and suggestions that greatly improved this chapter. I also thank the editors for their invitation to contribute a chapter to this volume.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hembree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hembree, D. (2018). The Role of Continental Trace Fossils in Cenozoic Paleoenvironmental and Paleoecological Reconstructions. In: Croft, D., Su, D., Simpson, S. (eds) Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-94265-0_10

Download citation

Publish with us

Policies and ethics