Skip to main content

Free Energy of Topologically Massive Gravity and Flat Space Holography

  • Conference paper
  • First Online:
2nd Karl Schwarzschild Meeting on Gravitational Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 208))

Abstract

We calculate the free energy from the on-shell action for topologically massive gravity with negative and vanishing cosmological constant, thereby providing a first principles derivation of the free energy of Bañados–Teitelboim–Zanelli black holes and flat space cosmologies. We summarize related recent checks of flat space holography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We stress that for finite \(\mu \) entropy (10.13) does not obey the Bekenstein–Hawking area law. Nevertheless, it is compatible with the Cardy formula in the presence of a gravitational anomaly, i.e., the left- and right-moving central charges are not equal, \(c-\bar{c} = 3/(\mu G)\) [20].

References

  1. G. ’t Hooft, Dimensional reduction in quantum gravity, in Salamfestschrift (World Scientific, 1993), arXiv:gr-qc/9310026; L. Susskind, The world as a hologram, J. Math. Phys. 36, 6377–6396 (1995), arXiv:hep-th/9409089

  2. J.M. Maldacena, The large \(N\) limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231–252 (1998), arXiv:hep-th/9711200

    Article  ADS  MathSciNet  Google Scholar 

  3. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B428, 105–114 (1998), arXiv:hep-th/9802109. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2, 253–291 (1998), arXiv:hep-th/9802150

    Article  ADS  MathSciNet  Google Scholar 

  4. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2, 505–532 (1998), arXiv:hep-th/9803131

    Article  MathSciNet  Google Scholar 

  5. V. Balasubramanian, P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208, 413–428 (1999), arXiv:hep-th/9902121

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Henningson, K. Skenderis, The holographic Weyl anomaly, JHEP 07, 023 (1998), arXiv:hep-th/9806087

    Article  MathSciNet  Google Scholar 

  7. S. de Haro, S.N. Solodukhin, K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217, 595–622 (2001), arXiv:hep-th/0002230

  8. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity, Phys. Rep. 323, 183–386 (2000), arXiv:hep-th/9905111

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Polchinski, S matrices from AdS space-time, arXiv:hep-th/9901076

  10. L. Susskind, Holography in the flat space limit, arXiv:hep-th/9901079

  11. S.B. Giddings, Flat space scattering and bulk locality in the AdS / CFT correspondence, Phys.Rev. D61, 106008 (2000), arXiv:hep-th/9907129

  12. A. Bagchi, S. Detournay, D. Grumiller, Flat-space chiral gravity, Phys. Rev. Lett. 109, 151301 (2012), arXiv:1208.1658

  13. S. Deser, R. Jackiw, S. Templeton, Three-dimensional massive gauge theories. Phys. Rev. Lett. 48, 975–978 (1982)

    Article  ADS  Google Scholar 

  14. H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller, N. Johansson, Conformal Chern-Simons holography - lock, stock and barrel, Phys.Rev. D85, 064033 (2012), arXiv:1110.5644

  15. M. Bertin, S. Ertl, H. Ghorbani, D. Grumiller, N. Johansson, D. Vassilevich, Lobachevsky holography in conformal Chern-Simons gravity, JHEP 1306, 015 (2013), arXiv:1212.3335

  16. G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP 1210, 095 (2012), arXiv:1208.4371; A. Bagchi, S. Detournay, R. Fareghbal, J. Simon, Holography of 3d flat cosmological horizons, Phys. Rev. Lett. 110, 141302 (2013), arXiv:1208.4372

  17. A. Bagchi, Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories, Phys. Rev. Lett. 105, 171601 (2010), arXiv:1006.3354

  18. S. Detournay, D. Grumiller, F. Schöller, J. Simon, Variational principle and 1-point functions in 3-dimensional flat space Einstein gravity, Phys. Rev. D89, 084061 (2014), arXiv:1402.3687

  19. M. Guica, K. Skenderis, M. Taylor, B.C. van Rees, Holography for Schrodinger backgrounds, JHEP 1102, 056 (2011), arXiv:1008.1991

  20. P. Kraus, F. Larsen, Holographic gravitational anomalies, JHEP 01, 022 (2006), arXiv:hep-th/0508218

    Article  MathSciNet  Google Scholar 

  21. S.N. Solodukhin, Holography with gravitational Chern-Simons term, Phys. Rev. D74, 024015 (2006), arXiv:hep-th/0509148

  22. Y. Tachikawa, Black hole entropy in the presence of Chern-Simons terms, Class. Quantum Gravity 24, 737–744 (2007), arXiv:hep-th/0611141

    Article  ADS  MathSciNet  Google Scholar 

  23. W. Merbis, Chern-Simons-like theories of gravity, Ph.D. thesis, Groningen University, 2014, arXiv:1411.6888

  24. M. Banados, C. Teitelboim, J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69, 1849 (1992), arXiv:hep-th/9204099; M. Banados, M. Henneaux, C. Teitelboim, J. Zanelli, Geometry of the (2\(+\)1) black hole, Phys. Rev. D48, 1506 (1993) Erratum: [Phys. Rev. D88, 069902 (2013)], arXiv:gr-qc/9302012

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Banados, F. Mendez, A note on covariant action integrals in three-dimensions, Phys. Rev. D58, 104014 (1998), arXiv:hep-th/9806065

  26. P. Mora, R. Olea, R. Troncoso, J. Zanelli, Finite action principle for Chern-Simons AdS gravity, JHEP 06, 036 (2004), arXiv:hep-th/0405267

  27. O. Miskovic, R. Olea, On boundary conditions in three-dimensional AdS gravity, Phys. Lett. B640, 101–107 (2006), arXiv:hep-th/0603092

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Gary, D. Grumiller, M. Riegler, J. Rosseel, Flat space (higher spin) gravity with chemical potentials, JHEP 1501, 152 (2015), arXiv:1411.3728

  29. A. Bagchi, S. Detournay, D. Grumiller, J. Simon, Cosmic evolution from phase transition of 3-dimensional flat space, Phys. Rev. Lett. 111, 181301 (2013), arXiv:1305.2919

  30. R. Caldeira Costa, Aspects of the zero \(\Lambda \) limit in the AdS/CFT correspondence, Phys. Rev. D90(10), 104018 (2014), arXiv:1311.7339

  31. R. Fareghbal, A. Naseh, Flat-space energy-momentum tensor from BMS/GCA correspondence, JHEP 1403, 005 (2014), arXiv:1312.2109

  32. G. Barnich, G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quantum Gravity 24, F15–F23 (2007), arXiv:gr-qc/0610130

    Article  MathSciNet  Google Scholar 

  33. A. Bagchi, D. Grumiller, W. Merbis, Stress tensor correlators in three-dimensional gravity, arXiv:1507.05620

  34. J.H. Horne, E. Witten, Conformal gravity in three-dimensions as a gauge theory. Phys. Rev. Lett. 62, 501–504 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Belavin, A.M. Polyakov, A. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  36. S. Ryu, T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96, 181602 (2006), arXiv:hep-th/0603001

  37. C. Holzhey, F. Larsen, F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B424, 443–467 (1994), arXiv:hep-th/9403108

    Article  ADS  MathSciNet  Google Scholar 

  38. G. Vidal, J. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett. 90, 227902 (2003), arXiv:quant-ph/0211074

  39. P. Calabrese, J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406, P06002 (2004), arXiv:hep-th/0405152

    Article  MathSciNet  Google Scholar 

  40. A. Bagchi, R. Basu, D. Grumiller, M. Riegler, Entanglement entropy in Galilean conformal field theories and flat holography, Phys. Rev. Lett. 114(11), 111602 (2015), arXiv:1410.4089

  41. A. Castro, S. Detournay, N. Iqbal, E. Perlmutter, Holographic entanglement entropy and gravitational anomalies, JHEP 1407, 114 (2014), arXiv:1405.2792

  42. S.M. Hosseini, A. Veliz-Osorio, Gravitational anomalies, entanglement entropy, and flat-space holography, arXiv:1507.06625

Download references

Acknowledgements

We thank Arjun Bagchi for collaboration on n-point correlation functions in flat space holography. DG additionally thanks Arjun Bagchi, Stephane Detournay, Max Riegler, Jan Rosseel and Joan Simon for a wonderful long-term collaboration on numerous aspects of flat space holography.

DG was supported by projects of the Austrian Science Fund (FWF) Y 435-N16, I 952-N16 and I 1030-N27, and by the program Science without Borders, project CNPq-401180/2014-0. WM was supported by the FWF project P 27182-N27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Grumiller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grumiller, D., Merbis, W. (2018). Free Energy of Topologically Massive Gravity and Flat Space Holography. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 2nd Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-94256-8_10

Download citation

Publish with us

Policies and ethics