Advertisement

Latent Heat Loss of a Virtual Thermal Manikin for Evaluating the Thermal Performance of Bicycle Helmets

  • Shriram MukunthanEmail author
  • Jochen Vleugels
  • Toon Huysmans
  • Guido De Bruyne
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 780)

Abstract

Thermal performance of three bicycle helmets for latent heat loss was evaluated through a virtual testing methodology using Computational fluid dynamics (CFD) simulations. The virtual thermal manikin was prescribed with a constant sweat rate of 2 g/h and a constant sweat film thickness of 0.3 mm. The simulations were carried out at 6 m/s until convergence was achieved. The results from steady state simulations show heat loss of 158 W from manikin without helmet and approximately 135 W with helmets. However, the thermal performance of helmets with a sweating manikin has been reduced from 89–93% to 84–87%. These results imply that evaporative/latent heat loss plays a significant role in thermal performance of helmets. Therefore, thermal performance tests for helmets should also include testing of helmets for evaporative heat loss.

Keywords

Thermal manikin Evaporative heat transfer Convective heat transfer Cooling efficiency Turbulence models CFD Thermal performance 

References

  1. 1.
    Fife, D., Barancik, J.I., Chatterjee, B.F.: North-Eastern Ohio Trauma study: II, injury rates by age, sex, and cause. Am. J. Publ. Health 74, 473–478 (1984)CrossRefGoogle Scholar
  2. 2.
    Wood, T., Milne, P.: Head injuries to pedal cyclists and the promotion of helmet use in Victoria. Aust. Accid. Anal. Prev. 20, 177–185 (1988)CrossRefGoogle Scholar
  3. 3.
    Thompson, R.S., Rivara, F.P., Thompson, D.C.: A case control study of the effectiveness of bicycle safety helmets. N. Engl. J. Med. 320, 1361–1367 (1989)CrossRefGoogle Scholar
  4. 4.
    Attewell, R.G., Glase, K., McFadden, M.: Bicycle helmet efficacy: a meta-analysis. Accid. Anal. Prev. 33(3), 345–352 (2001)CrossRefGoogle Scholar
  5. 5.
    Olivier, J., Creighton, P.: Bicycle injuries and helmet use: a systematic review and meta-analysis. Int. J. Epidemiol. 46, 278–292 (2017)Google Scholar
  6. 6.
    Sacks, J.J., Kresnow, M., Houston, B., Russell, J.: Bicycle helmet use among American children. Inj. Prev. 2, 258–262 (1996)CrossRefGoogle Scholar
  7. 7.
    Villamor, E., Hammer, S., Martinez-Olaizola, A.: Barriers to bicycle helmet use among Dutch pediatricians. Child Care Health Dev. 34, 743–747 (2008)CrossRefGoogle Scholar
  8. 8.
    Bogerd, C.C., Aerts, J.M., Annaheim, S., Bröde, P., De Bruyne, G., Flouris, A.D., Kuklane, K., Mayor, T.S., Rossi, R.M.: Thermal effects of headgear: state-of-the-art and way forward. Extrem. Physiol. Med. 4(1), A71 (2015)CrossRefGoogle Scholar
  9. 9.
    Servadei, F., Begliomini, C., Gardini, E., Giustini, M., Taggi, F., Kraus, J.: Effect of Italy’s motorcycle helmet law on traumatic brain injuries. Inj. Prev. 9, 257–260 (2003)CrossRefGoogle Scholar
  10. 10.
    Orsi, C., Stendardo, A., Marinoni, A., Gilchrist, M.D., Otte, D., Chliaoutakis, J., Lajunen, T., Özkan, T., Pereira, J.D., Tzamalouka, G., Morandi, A.: Motorcycle riders’ perception of helmet use: complaints and dissatisfaction. Accid. Anal. Prev. 44, 111–117 (2012)CrossRefGoogle Scholar
  11. 11.
    Papadakaki, M., Tzamalouka, G., Orsi, C.: Barriers and facilitators of helmet use in a Greek sample of motorcycle riders: which evidence? Transp. Res. F Traffic Psychol. Behav. 18, 189–198 (2013)CrossRefGoogle Scholar
  12. 12.
    Lehmuskallio, E., Lindholm, H., Koskenvuo, K., Sarna, S., Friberg, O., Viljanen, A.: Frostbite of the face and ears: epidemiological study of risk factors in Finnish conscripts. BMJ 311, 1661–1663 (1995)CrossRefGoogle Scholar
  13. 13.
    Zhang, H., Arens, E., Huizenga, C., Han, T.: Thermal sensation and comfort models for non-uniform and transient environments, part III: whole-body sensation and comfort. Build. Environ. 45, 399–410 (2010)CrossRefGoogle Scholar
  14. 14.
    Brühwiler, P.A., Ducas, C., Huber, R., Bishop, P.A.: Bicycle helmet ventilation and comfort angle dependence. Eur. J. Appl. Physiol. 92, 698–701 (2004)CrossRefGoogle Scholar
  15. 15.
    Liu, X., Holmer, I.: Evaporative heat transfer characteristics of industrial safety helmets. Appl. Ergon. 26, 135–140 (1995)CrossRefGoogle Scholar
  16. 16.
    De Bruyne, G., Aerts, J.M., Vander Sloten, J., Goffin, J., Verpoest, I., Berckmans, D.: Quantification of local ventilation efficiency under bicycle helmets. Int. J. Ind. Ergon. 42, 278–286 (2012)CrossRefGoogle Scholar
  17. 17.
    Nadel, E.R., Mitchell, J.W., Stolwijk, J.A.J.: Control of local and total sweating during exercise transients. Int. J. Biometeorol. 15, 201–206 (1971)CrossRefGoogle Scholar
  18. 18.
    De Bruyne, G., Aerts, J.M., Van der Perre, G., Goffin, J., Verpoest, I., Berckmans, D.: Spatial differences in sensible and latent heat losses under a bicycle helmet. Eur. J. Appl. Physiol. 104, 719–726 (2008)CrossRefGoogle Scholar
  19. 19.
    De Bruyne, G., Aerts, J.M., Vander Sloten, J., Goffin, J., Verpoest, I., Berckmans, D.: Transient sweat response of the human head during cycling. Int. J. Ind. Ergon. 40, 406–413 (2010)CrossRefGoogle Scholar
  20. 20.
    Taylor, N.A.S., Machado-Moreira, C.A.: Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extrem. Physiol. Med. 2, 4 (2013)CrossRefGoogle Scholar
  21. 21.
    Bain, A., Deren, T., Jay, O.: Describing individual variation in local sweating during exercise in a temperate environment. Eur. J. Appl. Physiol. 111, 1599–1607 (2011)CrossRefGoogle Scholar
  22. 22.
    Brühwiler, P.A.: Heated, perspiring manikin headform for the measurement of headgear ventilation characteristics. Meas. Sci. Technol. 14, 217–227 (2003)CrossRefGoogle Scholar
  23. 23.
    Brühwiler, P.A.: Radiant heat transfer of bicycle helmets and visors. J. Sports Sci. 26, 1025–1031 (2008)CrossRefGoogle Scholar
  24. 24.
    Bogerd, C.P., Brühwiler, P.A.: The role of head tilt, hair and wind speed on forced convective heat loss through full-face motorcycle helmets: a thermal manikin study. Int. J. Ind. Ergon. 38, 346–353 (2008)CrossRefGoogle Scholar
  25. 25.
    Blocken, B., Defraeye, T., Koninckx, E., Carmeliet, J., Hespel, P.: CFD simulations of the aerodynamic drag of two drafting cyclists. Comput. Fluids 71, 435–445 (2013)CrossRefGoogle Scholar
  26. 26.
    Pinnoji, P.K., Haider, Z., Mahajan, P.: Design of ventilated helmets: computational fluid and impact dynamics studies. Int. J. Crashworthiness 13, 265–278 (2008)CrossRefGoogle Scholar
  27. 27.
    Stolwijk, J.A.: A Mathematical Model of Physiological Temperature Regulation in Man, Washington, USA (1971)Google Scholar
  28. 28.
    Fiala, D., Psikuta, A., Jendritzky, G., Paulke, S., Nelson, D.A., van Marken Lichtenbelt, W.D., Frijns, A.J.H.: Physiological modeling for technical, clinical and research applications. Front. Biosci. S2, 939–968 (2010)CrossRefGoogle Scholar
  29. 29.
    Mukunthan, S., Kuklane, K., Huysmans, T., De Bruyne, G.: A comparison between physical and virtual experiments of convective heat transfer between head and bicycle helmet. In: Proceedings of AHFE, pp. 517–527 (2017)Google Scholar
  30. 30.
    Blatteis, C., Boulant, J., Cabanac, M., Cannon, B., Freedman, R., Gordon, C.J., Hales, J.R.S., Horowitz, M., Iriki, M., Janský, L., Jessen, C., Kaciuba-Uscilko, H., Kanosue, K., Kluger, M.J., Laburn, H.P., Nielsen-Johannsen, B., Mercer, J.B., Mitchell, D., Simon, E., Shibata, M., Szekely, M., Szelenyi, Z., Werner, J., Kozyreva, T.: Glossary of terms for thermal physiology. Jpn. J. Physiol. 51, 245–280 (2001)Google Scholar
  31. 31.
    Gavhed, D., Mäkinen, T., Holmér, I., Rintämaki, H.: Face temperature and cardio-respiratory responses to wind in thermoneutral and cool subjects exposed to −10 ℃. Eur. J. Appl. Physiol. 83, 449–456 (2000)CrossRefGoogle Scholar
  32. 32.
    Danckaers, F., Lacko, D., Verwulgen, S., De Bruyne, G., Huysmans, T., Sijbers, J.: A combined statistical shape model of the scalp and skull of the human head. In: Proceedings of AHFE, pp. 538–548 (2017)Google Scholar
  33. 33.
    Rasch, W., Cabanac, M.: Selective brain cooling is affected by wearing headgear during exercise. J. Appl. Physiol. 74, 1229–1233 (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Shriram Mukunthan
    • 1
    Email author
  • Jochen Vleugels
    • 1
  • Toon Huysmans
    • 2
    • 3
  • Guido De Bruyne
    • 1
    • 4
  1. 1.Product Development, Faculty of Design SciencesUniversity of AntwerpAntwerpBelgium
  2. 2.Vision Lab, Department of PhysicsUniversity of Antwerp (CDE)AntwerpBelgium
  3. 3.Applied Ergonomics and Design Department of Industrial DesignDelft University of TechnologyDelftThe Netherlands
  4. 4.Lazer Sport NVAntwerpBelgium

Personalised recommendations