Advertisement

Approaches to Study Spine Biomechanics: A Literature Review

  • Jazmin Cruz
  • James YangEmail author
  • Yujiang Xiang
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 780)

Abstract

A large population will likely experience lower back pain during their lifetime. Severe cases of lower back pain can sometimes be caused by back conditions or diseases, eventually being alleviated through surgical procedure. Skilled surgeons can make educated decisions on the best procedure for their patients, but the development of a spine model that can estimate biomechanical properties of the spine could aid in surgical decision-making. This paper discusses the current state of the art of four approaches used to study spine biomechanics: in vivo experimentation, in vitro cadaveric testing, finite element analysis, and musculoskeletal modeling. It is concluded that using a combination of these methods can lead to more accurate spine models that could possibly lead to clinical use.

Keywords

Musculoskeletal modeling Finite element analysis Digital human modeling Human spine 

Notes

Acknowledgement

This research is supported by projects from NSF (Award #1703093) and the Texas Tech University Presidential Graduate Fellowship.

References

  1. 1.
    Woolf, A.D., Pfleger, B.: Burden of major musculoskeletal conditions. Bull. World Health Organ. 81(9), 646–656 (2003)Google Scholar
  2. 2.
    Smit, T.H.: The use of a quadruped as an in vivo model for the study of the spine – biomechanical considerations. Eur. Spine J. 11(2), 137–144 (2002)CrossRefGoogle Scholar
  3. 3.
    Rollin, B.E.: Toxicology and new social ethics for animals. Toxicol. Pathol. 31(1_suppl.), 128–131 (2003)CrossRefGoogle Scholar
  4. 4.
    Costs of Animal and Non-Animal Testing : Humane Society International. https://www.hsi.org/issues/chemical_product_testing/facts/time_and_cost.html?, https://www.google.com/. Accessed 27 Feb 2018
  5. 5.
    Liu, Z., et al.: Sagittal plane rotation center of lower lumbar spine during a dynamic weight-lifting activity. J. Biomech. 49(3), 371–375 (2016)CrossRefGoogle Scholar
  6. 6.
    Wang, S., Xia, Q., Passias, P., Wood, K., Li, G.: Measurement of geometric deformation of lumbar intervertebral discs under in-vivo weightbearing condition. J. Biomech. 42(6), 705–711 (2009)CrossRefGoogle Scholar
  7. 7.
    Wilke, H.-J., Neef, P., Hinz, B., Seidel, H., Claes, L.: Intradiscal pressure together with anthropometric data – a data set for the validation of models. Clin. Biomech. 16(1), S111–S126 (2001)CrossRefGoogle Scholar
  8. 8.
    Dreischarf, M., et al.: In vivo implant forces acting on a vertebral body replacement during upper body flexion. J. Biomech. 48(4), 560–565 (2015)CrossRefGoogle Scholar
  9. 9.
    Rohlmann, A., Zander, T., Graichen, F., Bergmann, G.: Lifting up and laying down a weight causes high spinal loads. J. Biomech. 46(3), 511–514 (2013)CrossRefGoogle Scholar
  10. 10.
    Rozumalski, A., Schwartz, M.H., Wervey, R., Swanson, A., Dykes, D.C., Novacheck, T.: The in vivo three-dimensional motion of the human lumbar spine during gait. Gait Posture 29(1), 165 (2009)CrossRefGoogle Scholar
  11. 11.
    Wilke, H.J., Mathes, B., Midderhoff, S., Graf, N.: Development of a scoliotic spine model for biomechanical in vitro studies. Clin. Biomech. 30(2), 182–187 (2015)CrossRefGoogle Scholar
  12. 12.
    Lubelski, D., Healy, A.T., Mageswaran, P., Benzel, E.C., Mroz, T.E.: Biomechanics of the lower thoracic spine after decompression and fusion: a cadaveric analysis. Spine J. 14(9), 2216–2223 (2014)CrossRefGoogle Scholar
  13. 13.
    Doulgeris, J.J., et al.: Axial rotation mechanics in a cadaveric lumbar spine model: a biomechanical analysis. Spine J. 14(7), 1272–1279 (2014)CrossRefGoogle Scholar
  14. 14.
    Guo, S., et al.: A biomechanical stability study of extraforaminal lumbar interbody fusion on the cadaveric lumbar spine specimens. PLoS One 11(12), e0168498 (2016)CrossRefGoogle Scholar
  15. 15.
    Narici, M.: Human skeletal muscle architecture studied in vivo by non-invasive imaging techniques: functional significance and applications. J. Electromyogr. Kinesiol. 9(2), 97–103 (1999)CrossRefGoogle Scholar
  16. 16.
    Wang, S., et al.: A combined numerical and experimental technique for estimation of the forces and moments in the lumbar intervertebral disc. Comput. Methods Biomech. Biomed. Eng. 16(12), 1278–1286 (2013)CrossRefGoogle Scholar
  17. 17.
    Zhu, R., et al.: The effects of muscle weakness on degenerative spondylolisthesis: a finite element study. Clin. Biomech. 41, 34–38 (2017)CrossRefGoogle Scholar
  18. 18.
    Fan, W., Guo, L.X.: Influence of different frequencies of axial cyclic loading on time-domain vibration response of the lumbar spine: a finite element study. Comput. Biol. Med. 86, 75–81 (2017)CrossRefGoogle Scholar
  19. 19.
    Kang, K.T., Koh, Y.G., Son, J., Yeom, J.S., Park, J.H., Kim, H.J.: Biomechanical evaluation of pedicle screw fixation system in spinal adjacent levels using polyetheretherketone, carbon-fiber-reinforced polyetheretherketone, and traditional titanium as rod materials. Compos. Part B Eng. 130, 248–256 (2017)CrossRefGoogle Scholar
  20. 20.
    Xu, M., Yang, J., Lieberman, I.H., Haddas, R.: Lumbar spine finite element model for healthy subjects: development and validation. Comput. Methods Biomech. Biomed. Eng. 20(1), 1–15 (2017)CrossRefGoogle Scholar
  21. 21.
    Zander, T., Dreischarf, M., Timm, A.-K., Baumann, W.W., Schmidt, H.: Impact of material and morphological parameters on the mechanical response of the lumbar spine – a finite element sensitivity study. J. Biomech. 53, 185–190 (2017)CrossRefGoogle Scholar
  22. 22.
    Xu, M., Yang, J., Lieberman, I., Haddas, R.: Finite element method-based study for effect of adult degenerative scoliosis on the spinal vibration characteristics. Comput. Biol. Med. 84, 53–58 (2017)CrossRefGoogle Scholar
  23. 23.
    Wang, L., Zhang, B., Chen, S., Lu, X., Li, Z.-Y., Guo, Q.: A validated finite element analysis of facet joint stress in degenerative lumbar scoliosis. World Neurosurg. 95, 126–133 (2016)CrossRefGoogle Scholar
  24. 24.
    Niemeyer, F., Wilke, H.J., Schmidt, H.: Geometry strongly influences the response of numerical models of the lumbar spine-a probabilistic finite element analysis. J. Biomech. 45(8), 1414–1423 (2012)CrossRefGoogle Scholar
  25. 25.
    Schmidt, H., Heuer, F., Drumm, J., Klezl, Z., Claes, L., Wilke, H.-J.: Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin. Biomech. 22(4), 377–384 (2007)CrossRefGoogle Scholar
  26. 26.
    Schmidt, H., et al.: Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin. Biomech. 21(4), 337–344 (2006)CrossRefGoogle Scholar
  27. 27.
    Shirazi-Adl, A., Ahmed, A.M., Shrivastava, S.C.: A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J. Biomech. 19(4), 331–350 (1986)CrossRefGoogle Scholar
  28. 28.
    Zander, T., Rohlmann, A., Bergmann, G.: Influence of different artificial disc kinematics on spine biomechanics. Clin. Biomech. 24(2), 135–142 (2009)CrossRefGoogle Scholar
  29. 29.
    Xiao, Z., Wang, L., Gong, H., Zhu, D.: Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis. Biomed. Eng. Online 11(1), 31 (2012)CrossRefGoogle Scholar
  30. 30.
    Delp, S.L., et al.: OpenSim: open source to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)CrossRefGoogle Scholar
  31. 31.
    Bassani, T., Stucovitz, E., Qian, Z., Briguglio, M., Galbusera, F.: Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J. Biomech. 58, 89–96 (2017)CrossRefGoogle Scholar
  32. 32.
    Putzer, M., Ehrlich, I., Rasmussen, J., Gebbeken, N., Dendorfer, S.: Sensitivity of lumbar spine loading to anatomical parameters. J. Biomech. 49(6), 953–958 (2016)CrossRefGoogle Scholar
  33. 33.
    Christophy, M., Senan, N.A.F., Lotz, J.C., O’Reilly, O.M.: A musculoskeletal model for the lumbar spine. Biomech. Model. Mechanobiol. 11(1–2), 19–34 (2012)CrossRefGoogle Scholar
  34. 34.
    Bruno, A.G., Bouxsein, M.L., Anderson, D.E.: Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage. J. Biomech. Eng. 137(8), 81003 (2015)CrossRefGoogle Scholar
  35. 35.
    Kuai, S., et al.: Influences of lumbar disc herniation on the kinematics in multi-segmental spine, pelvis, and lower extremities during five activities of daily living. BMC Musculoskelet. Disord. 18(1), 216 (2017)CrossRefGoogle Scholar
  36. 36.
    de Zee, M., Hansen, L., Wong, C., Rasmussen, J., Simonsen, E.B.: A generic detailed rigid-body lumbar spine model. J. Biomech. 40(6), 1219–1227 (2007)CrossRefGoogle Scholar
  37. 37.
    Kim, Y., Ta, D., Jung, M., Koo, S.: A musculoskeletal lumbar and thoracic model for calculation of joint kinetics in the spine. J. Mech. Sci. Technol. 30(6), 2891–2897 (2016)CrossRefGoogle Scholar
  38. 38.
    Raabe, M.E., Chaudhari, A.M.W.: An investigation of jogging biomechanics using the full-body lumbar spine model: model development and validation. J. Biomech. 49(7), 1238–1243 (2016)CrossRefGoogle Scholar
  39. 39.
    Zhu, R., Zander, T., Dreischarf, M., Duda, G.N., Rohlmann, A., Schmidt, H.: Considerations when loading spinal finite element models with predicted muscle forces from inverse static analyses. J. Biomech. 46(7), 1376–1378 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Human-Centric Design Research Lab, Department of Mechanical EngineeringTexas Tech UniversityLubbockUSA
  2. 2.Department of Mechanical EngineeringUniversity of Alaska-FairbanksFairbanksUSA

Personalised recommendations