Advertisement

Challenges with Developing Driving Simulation Systems for Robotic Vehicles

  • Kristin E. SchaeferEmail author
  • Ralph W. Brewer
  • Brandon S. Perelman
  • E. Ray Pursel
  • Eduardo Cerame
  • Kim Drnec
  • Victor Paul
  • Benjamin Haynes
  • Daniel Donavanik
  • Gregory Gremillion
  • Jason S. Metcalfe
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 780)

Abstract

There are a number of reasons to use computer-based simulation in human-robot interaction research. Most predominant is the assessment of humanin-the-loop interactions for robotic technologies that do not yet exist, are in prototype development, or are in early test and evaluation stages of development. In these cases, simulation can provide insight into how the human may interact with the real world robotic vehicle. However, there are a number of challenges to designing and developing these simulations so that findings translate to interaction with real-world systems. This work specifically looks at the incorporation of human factors into driving simulations for robotic military vehicles. Three use cases address a number of these challenges.

Keywords

Autonomy Driving simulation Human-robot interaction 

Notes

Acknowledgments

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

References

  1. 1.
    Kaptein, N., Theeuwes, J., Van Der Horst, R.: Driving simulator validity: some considerations. Transp. Res. Rec.: J. Trans. Res. Board. 1550, 30–36 (1996)CrossRefGoogle Scholar
  2. 2.
    Mottern, E., Putney, J., Barghout, J., Straub, E.: Moving technology forward by putting robots to work on military installations: autonomous warrior transport on-base (AWTO). In: NDIA Ground Vehicle Systems Engineering and Technology Symposium, Novi, MI (2015)Google Scholar
  3. 3.
    Schaefer, K.E., Brewer, R.W.: A guide for developing human-robot interaction experiments in the robotic interactive visualization and experimentation technology (RIVET) simulation (ARL-TR-7683). US Army Research Laboratory, Aberdeen Proving Ground, MD (2016)Google Scholar
  4. 4.
    Schaefer, K.E., Scribner, D.N.: Individual differences, trust, and vehicle autonomy: a pilot study. Hum. Factors Ergon. Soc. 59(1), 786–790 (2015). Los Angeles, CACrossRefGoogle Scholar
  5. 5.
    Schaefer, K.E., Straub, E.R.: Will passengers trust driverless vehicles? Removing the steering wheel and pedals. In: CogSIMA, pp. 159–165. IEEE, San Diego (2016)Google Scholar
  6. 6.
    Schaefer, K.E., Brewer, R.W., Putney, J., Mottern, E., Barghout, J., Straub, E.R.: Relinquishing manual control: collaboration requires the capability to understand robot intent. In: Collaboration Technologies and Systems, pp. 359–366. IEEE, Orlando (2016)Google Scholar
  7. 7.
    Chen, J.Y.C., Procci, K., Boyce, M., Wright, J., Garcia, A., Barnes, M.: Situation awareness based agent transparency (ARL-TR-6905). US Army Research Laboratory, Aberdeen Proving Ground, MD (2014)Google Scholar
  8. 8.
    Schaefer, K.E., Brewer, R.W., Pursel, E.R., Zimmerman, A., Cerame, E.: Advancements made to the Wingman software-in-the-loop (SIL) simulation: how to operate the SIL (ARL-TR-8254). US Army Research Laboratory, Aberdeen Proving Ground, MD (2017)Google Scholar
  9. 9.
    Piekarski, B., Sadler, B., Young, S., Nothwang, W., Rao, R.: Research and vision for intelligent systems for 2025 and beyond. Small Wars J. http://smallwarsjournal.com/jrnl/art/research-and-vision-for-intelligent-systems-for-2025-and-beyond
  10. 10.
    Marathe, A.R., Metcalfe, J.S., Lance, B.J., Lukos, J.R., Jangraw, D., Lai, K.-T., Touryan, J., Stump, E., Sadler, B.M., Nothwang, W., McDowell, K.: The privileged sensing framework: a principled approach to improved human-autonomy integration. Theor. Issues Ergon. Sci. 19(3), 283–320 (2018)CrossRefGoogle Scholar
  11. 11.
    Metcalfe, J.S., Marathe, A.R., Haynes, B., Paul, V.J., Gremillion, G.M., Drnec, K., Atwater, C., Estepp, J.R., Lukos, J.R., Carter, E.C., Nothwang, W.D.: Building a framework to manage trust in automation. In: SPIE 10194, Micro-and Nanotechnology Sensors, Systems, and Applications IX, Baltimore, MD (2017)Google Scholar
  12. 12.
    Drnec, K., Metcalfe, J.S.: Paradigm development for identifying and validating indicators of trust in automation in the operational environment of human automation integration. In: Augmented Cognition, pp. 157–167. Springer, Cham (2016)Google Scholar
  13. 13.
    Nothwang, W., Gremillion, G., Donavanik, D., Haynes, B., Atwater, C., Canady, J., Metcalfe, J., Marathe, A.: Multi-sensor fusion architecture for human-autonomy teaming. In: Resilience Week, pp. 166–171. IEEE, Chicago (2016)Google Scholar
  14. 14.
    Truong, N., Paul, V., Shvartsman, A.: Integration of the CAT crewstation with the ride motion simulator (RMS). SAE World Congress & Exhibition, SAE Technical Paper 200601-1171 (2006)Google Scholar
  15. 15.
    Basten, U., Biele, G., Heekeren, H.R., Fiebach, C.J.: How the brain integrates costs and benefits during decision making. Natl. Acad. Sci. 107(50), 21767–21772 (2010)CrossRefGoogle Scholar
  16. 16.
    Drnec, K., Marathe, A.R., Lukos, J.R., Metcalfe, J.S.: From trust in automation to decision neuroscience: applying cognitive neuroscience methods to understand and improve interaction decisions involved in human automation interaction. Front. Hum. Neurosci. 10(290), 1–14 (2016)Google Scholar
  17. 17.
    Donavanik, D., Canady, K., Gremillion, G.M., Groves, P., Nothwang, W.D., Atwater, C., Fernandez, R., Haynes, B., Marathe, A.R., Metcalfe, J.: Data processing architectures for human machine fusion. In: Intelligent Virtual Agents, Physiologically Aware Virtual Agents Workshop, Los Angeles, CA (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature (outside the USA) 2019

Authors and Affiliations

  • Kristin E. Schaefer
    • 1
    Email author
  • Ralph W. Brewer
    • 1
  • Brandon S. Perelman
    • 1
  • E. Ray Pursel
    • 3
  • Eduardo Cerame
    • 4
  • Kim Drnec
    • 1
  • Victor Paul
    • 4
  • Benjamin Haynes
    • 4
  • Daniel Donavanik
    • 2
  • Gregory Gremillion
    • 2
  • Jason S. Metcalfe
    • 1
  1. 1.United States Army Research LaboratoryAberdeen Proving GroundUSA
  2. 2.United States Army Research LaboratoryAdelphiUSA
  3. 3.Naval Surface Warfare CenterDahlgrenUSA
  4. 4.United States Army TARDECWarrenUSA

Personalised recommendations