Advertisement

Translating Driving Research from Simulation to Interstate Driving with Realistic Traffic and Passenger Interactions

  • Jean M. VettelEmail author
  • Nina Lauharatanahirun
  • Nick Wasylyshyn
  • Heather Roy
  • Robert Fernandez
  • Nicole Cooper
  • Alexandra Paul
  • Matthew Brook O’Donnell
  • Tony Johnson
  • Jason Metcalfe
  • Emily B. Falk
  • Javier O. Garcia
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 780)

Abstract

In this driving study, participants were assigned to a driver-passenger dyad and performed two drives along Interstate-95 in normal traffic conditions. During the driving session, the driver had to safely navigate the route while listening and discussing news stories that were relayed by the passenger. The driver then performed a set of memory tasks to evaluate how well they retained information from the discussion in a multitask context. We report preliminary analyses that examined subjective factors which may influence success in social communication, including trait and state similarity derived from questionnaires as well as physiological synchrony from implicit state measurements derived from brain activity data. Although this dataset is still in collection, these initial findings suggest potential metrics that capture the contextual complexity in naturalistic, multitask environments, providing a rich opportunity to study how successful communication reflects shared social and emotional experiences.

Keywords

Interstate driving Social network structure State questionnaires EEG Neural synchrony Communication Individual differences 

References

  1. 1.
    McKenzie, B.: Who drives to work? Commuting by automobile in the United States: 2013. American Community Survey Reports (2015)Google Scholar
  2. 2.
    Triplett, T., Santos, R., Rosebloom, S., Tefft, B.: American Driving Survey: 2014–2015. AAA Foundation for American Safety (2016)Google Scholar
  3. 3.
    Vahidi, A., Eskandarian, A.: Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Trans. Intell. Transp. Syst. 4(3), 143–153 (2003)CrossRefGoogle Scholar
  4. 4.
    Braitman, K.A., McCartt, A.T., Zuby, D.S., Singer, J.: Volvo and infiniti drivers experiences with select crash avoidance technologies. Traffic Inj. Prev. 11(3), 270–278 (2010)CrossRefGoogle Scholar
  5. 5.
    Xiao, L., Gao, F.: A comprehensive review of the development of adaptive cruise control systems. Veh. Syst. Dyn. 48(10), 1167–1192 (2010)CrossRefGoogle Scholar
  6. 6.
    Bansal, P., Kockelman, K.: Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies. Transp. Res. Part A: Policy Pract. 95, 49–63 (2017)Google Scholar
  7. 7.
    Fagnant, D.J., Kockelman, K.: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp. Res. Part A: Policy Pract. 77, 167–181 (2015)Google Scholar
  8. 8.
    Milakis, D., van Arem, B., van Wee, B.: Policy and society related implications of automated driving: a review of literature and directions for future research. J. Intell. Transp. Syst. 21(4), 324–348 (2017)CrossRefGoogle Scholar
  9. 9.
    Reimer, B.: Driver assistance systems and the transition to automated vehicles: a path to increase older adult safety and mobility? Publ. Policy Aging Rep. 24(1), 27–31 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Medeiros-Ward, N., Cooper, J.N., Strayer, D.L.: Hierarchical control and driving. J. Exp. Psychol. Gen. 143(3), 953–958 (2014)CrossRefGoogle Scholar
  11. 11.
    Hari, R., Himberg, T., Nummenmaa, L., Hämäläinen, M., Parkkonen, L.: Synchrony of brains and bodies during implicit interpersonal interaction. Trends Cogn. Sci. 17(3), 105–106 (2013)CrossRefGoogle Scholar
  12. 12.
    Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., Garnero, L.: Inter-brain synchronization during social interaction. PLoS ONE 5(8), e12166 (2010)CrossRefGoogle Scholar
  13. 13.
    Klimesch, W., Sauseng, P., Hanslmayr, S., Gruber, W., Freunberger, R.: Event-related phase reorganization may explain evoked neural dynamics. Neurosci. Biobehav. Rev. 31(7), 1003–1016 (2007)CrossRefGoogle Scholar
  14. 14.
    Babiloni, F., Cincotti, F., Mattia, D., Mattiocco, M., Fallani, F.D.V., Tocci, A., Bianchi, L., Marciani, M.G., Astolfi, L.: Hypermethods for EEG hyperscanning. In: Engineering in Medicine and Biology Society (2006)Google Scholar
  15. 15.
    Tognoli, E., Lagarde, J., DeGuzman, G.C., Kelso, J.A.S.: The phi complex as a neuromarker of human social coordination. Proc. Natl. Acad. Sci. 104(19), 8190–8195 (2007)CrossRefGoogle Scholar
  16. 16.
    Lindenberger, U., Li, S.-C., Gruber, W., Müller, V.: Brains swinging in concert: cortical phase synchronization while playing guitar. BMC Neurosci. 10(1), 22 (2009)CrossRefGoogle Scholar
  17. 17.
    Wasylyshyn, N., Hemenway Falk, B., Garcia, J.O., Cascio, C.N., O’Donnell, M.B., Bingham, C.R., Simons-Morton, B., Vettel, J.M., Falk, E.B.: Global brain dynamics during social exclusion predict subsequent behavioral conformity. Soc. Cogn. Affect. Neurosci. 13(2), 182–191 (2018)CrossRefGoogle Scholar
  18. 18.
    Schmälzle, R., O’Donnell, M.B., Garcia, J.O., Cascio, C.N., Bayer, J., Bassett, D.S., Vettel, J.M., Falk, E.B.: Brain connectivity dynamics during social interaction reflect social network structure. Proc. Natl. Acad. Sci. 114(20), 5135–5138 (2017)CrossRefGoogle Scholar
  19. 19.
    O’Donnell, M.B., Falk, E.B.: Big data under the microscope and brains in social context: integrating methods from computational social science and neuroscience. Ann. Am. Acad. Polit. Soc. Sci. 659(1), 274–289 (2015)CrossRefGoogle Scholar
  20. 20.
    Cohen, S., Williamson, G.M.: Stress and infectious disease in humans. Psychol. Bull. 109(1), 5–24 (1988)CrossRefGoogle Scholar
  21. 21.
    Aitken, R.C.B.: Measurement of feelings using visual analogue scales. Proc. Roy. Soc. Med. 62(10), 989–993 (1969)Google Scholar
  22. 22.
    Bond, A., Lader, M.: The use of analogue scales in rating subjective feelings. Psychol. Psychother.: Theory Res. Pract. 47(3), 211–218 (1974)Google Scholar
  23. 23.
    McCormack, H.M., Horne, D.J., Sheather, S.: Clinical applications of visual analogue scales: a critical review. Psychol. Med. 18(4), 1007–1019 (1988)CrossRefGoogle Scholar
  24. 24.
    Wewers, M.E., Lowe, N.K.: A critical review of visual analogue scales in the measurement of clinical phenomena. Res. Nurs. Health 13(4), 227–236 (1990)CrossRefGoogle Scholar
  25. 25.
    Delorme, A., Makeig, S.: EEGlab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)CrossRefGoogle Scholar
  26. 26.
    Winkler, I., Haufe, S., Tangermann, M.: Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav. Brain Funct. 7(1), 30 (2011)CrossRefGoogle Scholar
  27. 27.
    Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., Robbins, K.A.: The prep pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinform. 9, 16 (2015)CrossRefGoogle Scholar
  28. 28.
    Garcia, J.O., Brooks, J., Kerick, S., Johnson, T., Mullen, T.R., Vettel, J.M.: Estimating direction in brain-behavior interactions: proactive and reactive brain states in driving. NeuroImage 150, 239–249 (2017)CrossRefGoogle Scholar
  29. 29.
    Jensen, O., Mazaheri, A.: Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front. Hum. Neurosci. 4, 186 (2010)CrossRefGoogle Scholar
  30. 30.
    Higgins, E.T., Echterhoff, G., Crespillo, R., Kopietz, R.: Effects of communication on social knowledge: sharing reality with individual versus group audiences. Jpn. Psychol. Res. 49(2), 89–99 (2007)CrossRefGoogle Scholar
  31. 31.
    Higgins, E.T., Pittman, T.S.: Motives of the human animal: comprehending, managing, and sharing inner states. Annu. Rev. Psychol. 59, 385 (2008)CrossRefGoogle Scholar
  32. 32.
    McLellan, E., MacQueen, K.M., Neidig, J.L.: Beyond the qualitative interview: data preparation and transcription. Field Methods 15(1), 63–84 (2003)CrossRefGoogle Scholar
  33. 33.
    Joshi, A.K.: Natural language processing. Science 253(5025), 1242–1249 (1991)CrossRefGoogle Scholar
  34. 34.
    Chowdhury, G.G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37(1), 51–89 (2003)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Pickering, M.J., Garrod, S.: An integrated theory of language production and comprehension. Behav. Brain Sci. 36(4), 329–347 (2013)CrossRefGoogle Scholar
  36. 36.
    Buck, R.W., Virginia, S.J., Miller, R.E., Caul, W.F.: Communication of affect through facial expressions in humans. J. Pers. Soc. Psychol. 23(3), 362–371 (1972)CrossRefGoogle Scholar
  37. 37.
    Cacioppo, J.T., Petty, R.E., Losch, M.E., Kim, H.S.: Electromyographic activity over facial muscle regions can differentiate the valence and intensity of affective reactions. J. Pers. Soc. Psychol. 50(2), 260–268 (1986)CrossRefGoogle Scholar
  38. 38.
    Cacioppo, J.T., Bush, L.K., Tassinary, L.G.: Microexpressive facial actions as a function of affective stimuli: replication and extension. Pers. Soc. Psychol. Bull. 18(5), 515–526 (1992)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature (outside the USA) 2019

Authors and Affiliations

  • Jean M. Vettel
    • 1
    • 2
    • 3
    Email author
  • Nina Lauharatanahirun
    • 1
    • 3
  • Nick Wasylyshyn
    • 1
    • 3
  • Heather Roy
    • 1
  • Robert Fernandez
    • 4
  • Nicole Cooper
    • 3
  • Alexandra Paul
    • 3
  • Matthew Brook O’Donnell
    • 3
  • Tony Johnson
    • 4
  • Jason Metcalfe
    • 1
  • Emily B. Falk
    • 3
  • Javier O. Garcia
    • 1
    • 3
  1. 1.US Army Research LaboratoryAdelphiUSA
  2. 2.University of California, Santa BarbaraSanta BarbaraUSA
  3. 3.University of PennsylvaniaPhiladelphiaUSA
  4. 4.DCS CorporationAlexandriaUSA

Personalised recommendations