Lecture Notes on Bihamiltonian Structures and Their Central Invariants

Part of the Trends in Mathematics book series (TM)


In these lecture notes, we give an introduction to the classification theorem of semisimple bihamiltonian structures, with as much details as possible. The equivalence classes of this classification problem are characterized by the so-called central invariants. In the last section, two examples are given to illuminate the applications of central invariants in cohomological field theories.


  1. 1.
    Carlet, G., Posthuma, H., Shadrin, S.: Bihamiltonian cohomology of KdV brackets. Commun. Math. Phys. 341(3), 805–819 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Carlet, G., Posthuma, H., Shadrin, S.: Deformations of semisimple Poisson pencils of hydrodynamic type are unobstructed. J. Diff. Geom. 108(1), 63–89 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, M., Liu, S.-Q., Zhang, Y.: A two-component generalization of the Camassa-Holm equation and its solutions. Lett. Math. Phys. 75, 1–15 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, M., Liu, S.-Q., Zhang, Y.: Hamiltonian structures and their reciprocal transformations for the r-KdV-CH hierarchy. J. Geom. Phys. 59, 1227–1243 (2009) (preprint). arXiv: 0809.0397Google Scholar
  5. 5.
    De Sole, A., Kac, V.G.: Essential variational Poisson cohomology. Commun. Math. Phys. 313(3), 837–864 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    De Sole, A., Kac, V.G.: The variational Poisson cohomology. Jpn. J. Math. 8(1), 1–145 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dubrovin, B.: Flat pencils of metrics and Frobenius manifolds. In: Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), pp. 47–72. World Science Publishing, River Edge (1998)Google Scholar
  8. 8.
    Dubrovin, B.: Gromov-Witten invariants and integrable hierarchies of topological type. In: Topology, Geometry, Integrable Systems, and Mathematical Physics. Amer. Math. Soc. Transl. Ser. 2, vol. 234. Adv. Math. Sci., vol. 67, pp. 141–171. Amer. Math. Soc., Providence, RI (2014)Google Scholar
  9. 9.
    Dubrovin, B.A., Novikov, S.P.: Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov-Whitham averaging method. (Russian) Dokl. Akad. Nauk SSSR 270(4), 781–785 (1983)Google Scholar
  10. 10.
    Dubrovin, B., Zhang, Y.: Bi-Hamiltonian hierarchies in 2D topological field theory at one-loop approximation. Commun. Math. Phys. 198(2), 311–361 (1998)CrossRefGoogle Scholar
  11. 11.
    Dubrovin, B., Zhang, Y.: Frobenius manifolds and Virasoro constraints. Selecta Math. (N.S.) 5(4), 423–466 (1999)Google Scholar
  12. 12.
    Dubrovin, B., Zhang, Y.: Virasoro symmetries of the extended Toda hierarchy. Commun. Math. Phys. 250(1), 161–193 (2004)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants (2001, preprint). arXiv: math/0108160Google Scholar
  14. 14.
    Dubrovin, B., Liu, S.-Q., Zhang, Y.: On Hamiltonian perturbations of hyperbolic systems of conservation laws. I. Quasi-triviality of bi-Hamiltonian perturbations. Commun. Pure Appl. Math. 59(4), 559–615 (2006)CrossRefGoogle Scholar
  15. 15.
    Dubrovin, B., Liu, S.-Q., Zhang, Y.: Frobenius manifolds and central invariants for the Drinfeld-Sokolov bi-Hamiltonian structures. Adv. Math. 219(3), 780–837 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dubrovin, B., Liu, S.-Q., Zhang, Y.: Bihamiltonian Cohomologies and Integrable Hierarchies II: The General Case.
  17. 17.
    Eguchi, T., Hori, K., Xiong, C.-S.: Quantum cohomology and Virasoro algebra. Phys. Lett. B 402(1–2), 71–80 (1997)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. (2) 178(1), 1–106 (2013)Google Scholar
  19. 19.
    Fan, H., Jarvis, T., Ruan, Y.: The Witten equation and its virtual fundamental cycle (2011, preprint). arXiv: 0712.4025Google Scholar
  20. 20.
    Ferapontov, E.V.: Compatible Poisson brackets of hydrodynamic type. Kowalevski workshop on mathematical methods of regular dynamics (Leeds, 2000). J. Phys. A 34(11), 2377–2388 (2001)Google Scholar
  21. 21.
    Frenkel, E., Givental, A., Milanov, T.: Soliton equations, vertex operators, and simple singularities. Funct. Anal. Other Math. 3(1), 47–63 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Getzler, E.: The Virasoro Conjecture for Gromov-Witten invariants. In: Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998). Contemporary Mathematics, vol. 241, pp. 147–176. American Mathematical Society, Providence (1999)Google Scholar
  23. 23.
    Getzler, E.: The Toda conjecture. Symplectic geometry and mirror symmetry (Seoul, 2000), pp. 51–79. World Scientific Publishing, River Edge (2001)Google Scholar
  24. 24.
    Getzler, E.: A Darboux theorem for Hamiltonian operators in the formal calculus of variations. Duke Math. J. 111(3), 535–560 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Givental, A.B.: Gromov-Witten invariants and quantization of quadratic Hamiltonians. Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. Mosc. Math. J. 1(4), 551–568, 645 (2001)Google Scholar
  26. 26.
    Givental, A.B., Milanov, T.E.: Simple singularities and integrable hierarchies. In: The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 173–201. Birkhäuser, Boston (2005)Google Scholar
  27. 27.
    Liu, S.-Q., Zhang, Y.: Deformations of semisimple bihamiltonian structures of hydrodynamic type. J. Geom. Phys. 54(4), 427–453 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Liu, S.-Q., Zhang, Y.: Jacobi structures of evolutionary partial differential equations. Adv. Math. 227(1), 73–130 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liu, S.-Q., Zhang, Y.: Bihamiltonian cohomologies and integrable hierarchies I: a special case. Commun. Math. Phys. 324(3), 897–935 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Liu, S.-Q., Ruan, Y., Zhang, Y.: BCFG Drinfeld-Sokolov hierarchies and FJRW-theory. Invent. Math. 201(2), 711–772 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Nijenhuis, A., Richardson, R.W. Jr.: Deformations of Lie algebra structures. J. Math. Mech. 17 89–105 (1967)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Okounkov, A., Pandharipande, R.: The equivariant Gromov-Witten theory of \(\mathbb {P}^1\). Ann. Math. (2) 163(2), 561–605 (2006)Google Scholar
  33. 33.
    Wu, C.-Z.: A remark on Kac-Wakimoto hierarchies of D-type. J. Phys. A 43(3), 035201, 8 pp. (2010)Google Scholar
  34. 34.
    Wu, C.-Z.: Tau functions and Virasoro symmetries for Drinfeld-Sokolov hierarchies. Adv. Math. 306, 603–652 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zhang, Y.: On the \(\mathbb {C}\mathbb {P}^1\) topological sigma model and the Toda lattice hierarchy. J. Geom. Phys. 40(3–4), 215–232 (2002)Google Scholar
  36. 36.
    Zhang, Y.: Deformations of the bihamiltonian structures on the loop space of Frobenius manifolds. Recent advances in integrable systems (Kowloon, 2000). J. Nonlinear Math. Phys. 9(suppl. 1), 243–257 (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations