The Total Ancestor Potential in Singularity Theory

Part of the Trends in Mathematics book series (TM)


This is an extended version of a long lecture given on the workshop “Pedagogical workshop on B-model” held at the University of Michigan, Ann Arbor on 3–7 March 2014. The main goal is to prove that the total ancestor potential in singularity theory depends analytically on the deformation parameters.

2000 Mathematics Subject Classification

14D05 14N35 17B69 



I am thankful to Y. Ruan for organizing the workshop and creating an inspiring environment. This work is supported by JSPS Grant-In-Aid 26800003 and by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan.


  1. 1.
    Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps. Vol. II. Monodromy and Asymptotics of Integrals. Monographs in Mathematics, vol. 83, Birkhäuser, Boston (1988)Google Scholar
  2. 2.
    Bakalov, B., Milanov, T.: W-constraints for the total descendant potential of a simple singularity. Comps. Math. 149, 840–888 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bouchard, V., Eynard, B.: Think globally, compute locally. J. High Energy Phys. 2013(2), 143 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993). Lecture Notes in Mathematics, vol. 1620, pp. 120–348. Springer, Berlin (1996)Google Scholar
  5. 5.
    Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, 295 pp. A new 2005 version of arXiv:math/0108160v1Google Scholar
  6. 6.
    Dunnin–Barkowski, P., Orantin, N., Shadrin, S., Spitz, L.: Identification of the Givental formula with the spectral curve topological recursion procedure. Commun. Math. Phys. 328(2), 669–700 (2014)Google Scholar
  7. 7.
    Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry, and quantum singularity theory. Ann. Math. 178(2), 1–106 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Givental, A.: Semisimple Frobenius structures at higher genus. Int. Math. Res. Not. 2001(23), 1265–1286 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Givental, A.: Gromov–Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J. 1, 551–568 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Givental, A.: A n−1 singularities and nKdV Hierarchies. Mosc. Math. J. 3(2), 475–505 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hertling, C.: Frobenius Manifolds and Moduli Spaces for Singularities. Cambridge Tracts in Mathematics, vol. 151, x+270 pp. Cambridge University Press, Cambridge (2002)Google Scholar
  12. 12.
    Kac, V., Schwarz, A.: Geometric interpretation of the partition function of 2D gravity. Phys. Lett. B 257, 329–334 (1991)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Li, C., Li, S., Saito, K., Shen, Y.: Mirror symmetry for exceptional unimodular singularities. J. Eur. Math. Soc. 19(4), 1189–1229 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, S.-Q., Ruan, Y., Zhang, Y.: BCFG Drinfeld–Sokolov hierarchies and FJRW-theory. Invent. Math. 201(2), 711–772 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Milanov, T.: The Eynard–Orantin recursion for the total ancestor potential. Duke Math. J. 163(9), 1795–1824 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Milanov, T.: Analyticity of the total ancestor potential in singularity theory. Adv. Math. 255(2), 217–241 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Saito, K.: On periods of primitive integrals I. RIMS (1982, preprint)Google Scholar
  19. 19.
    Saito, K.: On a linear structure of the quotient variety by a finite reflection group. Publ. RIMS Kyoto Univ. 29, 535–579 (1993)CrossRefGoogle Scholar
  20. 20.
    Saito, K., Takahashi, A.: From primitive forms to Frobenius manifolds. Proc. Sympos. Pure Math. 78, 31–48 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Teleman, C.: The structure of 2D semi-simple field theories. Invent. Math. 188(3), 525–588 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in Differential Geometry, pp. 243–310, Lehigh University, Bethlehem (1991)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Kavli IPMU (WPI)The University of TokyoKashiwaJapan

Personalised recommendations