Skip to main content

Cracks in Saturated Porous Media: Desiccation Cracks, Hydraulic Fracturing, and Microseismicity

  • Chapter
  • First Online:
  • 521 Accesses

Abstract

Desiccation of fluid-infiltrated porous media is a highly non-homogeneous process that in most cases is bound to generate cracks. Under sufficiently slow crack propagation in an elastic fluid-saturated porous medium, the tip of a steadily running crack is drained. On the other hand, the tip of steadily running cracks that propagate fast enough in regard to the local diffusivity and length scale is not drained. In fact, the pressure there is negative and large. During soil and gel desiccation, the suction increases in time close to the evaporation surface. The developments of cracks due to desiccation, on one side, and hydraulic fracturing, on another side, are both considered in fluid-saturated porous solids. While elements of fracture mechanics of brittle elastic solids with and without cohesive zone are exposed, focus is on the enhancement of geothermal reservoirs via hydraulic fracturing, rather than on petroleum engineering. The microseismic effects resulting from fluid injection into, or extraction from, rock formations during waste water disposal, geothermal operations, and carbon dioxide sequestration are reviewed. Simplified models defining the motions of the free surface resulting from these operations are developed using the Mindlin solution for a half-space and illustrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As the main focus in Sects. 8.1 and 8.2 of this chapter is on soils, emphasis is laid on the Terzaghi’s effective stress. The Biot’s effective stress for unsaturated rocks is obtained by introducing the Biot’s coefficient \(\kappa \), namely along Loret and Khalili (2000):

    figure a
  2. 2.

    The relations below are worth recording:

    $$\frac{\cos \phi }{1+\sin \phi } =\frac{1-\sin \phi }{\cos \phi } =\tan \left( \frac{\pi }{4}-\frac{\phi }{2}\right) , \quad \frac{1-\sin \phi }{1+\sin \phi }=\tan ^2\left( \frac{\pi }{4}-\frac{\phi }{2}\right) .$$
  3. 3.

    In fact, the Coulomb criterion applies in arbitrary directions, that is, on arbitrary planes of normal direction \(\mathbf{n}=(n_1,n_2,n_3)\). Component representation is easier when the working axes are the principal directions of the stress (or equivalently effective stress). The effective traction \( {\varvec{\sigma }}'\cdot \mathbf{n}=\sigma '\,\mathbf{n} + \tau \,\mathbf{n}^\perp \) is uniquely decomposed along the normal \(\mathbf{n}\) and along an orthogonal direction \(\mathbf{n}^\perp \) that is defined by this relation (\(\mathbf{n}\) and \(\mathbf{n}^\perp \) are unit vectors). Then, \(\sigma '=\mathbf{n}\cdot {\varvec{\sigma }}'\cdot \mathbf{n}\), \(\tau =\mathbf{n}^\perp \cdot {\varvec{\sigma }}'\cdot \mathbf{n}\), \(( {\varvec{\sigma }}'\cdot \mathbf{n})^2=(\sigma ')^2+\tau ^2\), and componentwise,

    figure b

    The shear stress \(\tau \) is by definition insensitive to isotropic variations of the stress.

  4. 4.

    The failure pressure is equal to \((1+\sin \phi )/(1+(2\,\kappa -1)\,\sin \phi )\,u_{ts}\ge u_{ts}\) according to the Coulomb criterion.

  5. 5.

    For a curve \(\mathbf{U}(\theta )\) parameterized by the scalar \(\theta \), the radius of curvature \(\rho (\theta )\) is equal to \(|\mathbf{U}'|^3/|\mathbf{U}'\wedge \mathbf{U}'' |\) with \((\cdot )'=d(\cdot )/d\theta \). For an ellipse \(\mathbf{U}=(r_{ix}\,\cos \theta ,r_{iy}\,\sin \theta )\), the radius of curvature \(\rho (\theta )\) is equal to \((r_{ix}^3\,\sin ^3\theta +r_{iy}^3\,\cos ^3\theta ))/(r_{ix}\,r_{iy})\), that is, to \(r_{iy}^2/r_{ix}\) at \(\theta =0^{\circ }\).

  6. 6.

    This analysis was an exercise taught to the students of the Ecole Nationale des Techniques Avancées (School for Ocean Engineering), Paris, France, as I was a teaching assistant of Professor André Zaoui.

  7. 7.
    figure c
  8. 8.

    The integrals \(\displaystyle \int _0^s\,\frac{du}{\sqrt{\ell ^2-u^2}}=\arcsin \Big (\frac{s}{\ell }\Big )\) and \(\displaystyle \int _s^{\ell }\,\frac{du}{\sqrt{u^2-s^2}}=\mathrm{arccosh}\Bigg (\frac{\ell }{s}\Bigg )\) for \(s<\ell \) are worth recording.

  9. 9.

    The inversion of the order of integration in the second line of (8.5.12) can be checked by drawing two sketches in the axes \((\xi ,s)\) showing that the domains of integration are identical to the first line.

  10. 10.

    The basic tool of an analytical treatment of fracture mechanics is the complex analysis. A sufficient introduction is found in, e.g. Kanninen and Popelar (1985). The starting point is to define two complex potentials \(\phi \) and \(\psi \) of the complex variable \(z=x+i\,y\) that are analytical except on the crack line \(x>0\), \(y=0\). The displacement components \(u_x\) and \(u_y\),

    figure j

    and stress components,

    figure k

    derive from these potentials. Actually, attention is restricted to the x-axis and to a close neighborhood of the crack tip. A solution with a vanishing shear stress is obtained by setting \(\psi (z)=\phi (z)-z\,\phi '(z)\) and requiring \(\phi \) to be a real function. The second equation (8.5.37) becomes elusive. To leading order, \(\phi (z)\) is sought as a monomial\(\frac{A}{2\,\alpha }\)\(\,z^\alpha \) with A real. Equation (8.5.36) then provides the displacement discontinuity (aperture) across the crack axis \(z=|x|\,e^{\pm i\,\pi }\), and the first Equation (8.5.36) yields the pressure.

  11. 11.

    The earthquakes of the largest magnitude are expected to take place along the boundaries of the continental plates. Earthquakes along intra-continental faults like the San Andreas Fault in California and the North Anatolian Fault in Turkey do not reach magnitudes larger than 8, but they are dangerous because they concern densely populated areas and their hypocenter is located at shallow depth. Late 1811 and early 1812, several earthquakes struck the New Madrid area, at the boundary between Arkansas and Missouri, with a magnitude estimated to 7.5–7.7.

  12. 12.

    The Gutenberg–Richter rule states that the decimal logarithm of the number of events N per unit time with magnitude larger than M is, in a given volume, an affine function of the latter, \(\log ( N\ \mathrm{of\ magnitude}\, > M ) = a - b\,M\). The parameter a depends on the volume of interest, while the parameter b indicates the influence of the magnitude: values larger than 1 are associated with a large number of small events.

  13. 13.

    The seismographic network of the Lamont Doherty Earth Observatory (LDEO) records earthquakes of magnitude 2 and above over the Marcellus Shale of the Appalachian Basin. The UK network for the North Sea has threshold 2 and did not detect events from the Sleipner field. A magnitude 1 event has been recorded from the In Salah test field.

  14. 14.

    Indeed, consider the diffusion equation \(\partial u/\partial t \ -\ D\ \partial ^2 u/\partial x^2=0\) for the unknown function \(u=u(x,t)\), with x space, t time, and \(D>0\) [m\(^2\)/s] diffusivity. Scaling the space by the length L implies the scaled time \(t\,D/L^2\). The diffusion front reaches the position \(x=L\) at a characteristic time \(t=L^2/D\). Conversely, at time t, the diffusion front is located at the characteristic position \(x=\sqrt{D\,t}\). A number of field examples are documented in Shapiro (2015).

  15. 15.

    Their analysis of fluid diffusion is curious: their diffusivity defined by their equations 10 and 11 would tend to infinity for a soil. In contrast, the hydraulic diffusivity of the rock, Equation (9.5.8) in Loret and Simões (2016), tends to the value \(2\,G\,(1-\nu )/(1-2\,\nu )\times k_\mathrm{in}/\eta _\mathrm{w}\), Eq. (7.5.17) in LS, with \(G\) shear modulus, \(\nu \) drained Poisson’s ratio, \(k_\mathrm{in}\) permeability, \(\eta _\mathrm{w}\) dynamic viscosity of water that applies to a porous medium with incompressible water and solid grains. For a soil, the undrained Poisson’s ratio tends to 1/2, Eq. (7.4.44) in LS.

  16. 16.

    Quite generally, the diffusions of temperature and fluid are endowed with distinct time scales, and a thermal recorder and a pressure recorder placed inside the rock formation would take note of their respective information at different times. These time scales depend on the constitutive parameters. Often, the fluid flow is faster and the thermal signal is late. However, the thermal signal can trigger a pore pressure raise only if the two time scales are not too far apart. Therefore, an attempt to explain the events after shut-in as induced by thermomechanical coupling associated with this slower thermal diffusion is not convincing.

  17. 17.

    It might be worth to provide the rationale behind this procedure which has been extensively used in the modeling of heterogeneous engineering materials and living tissues. Indeed, the inclusion \(\Omega \) is cut from the medium, subjected to the eigenstrain, replaced at its original position and glued to the medium. The strain which is imposed to the inclusion is viewed as an eigenstrain by requesting (8.7.49). The formalism used here considers linear elasticity so that superimposing the initial geostatic stresses is not an issue. In the presence of nonlinear constitutive responses, the inclusion analysis should be viewed as incremental.

References

  • Abé, H., Mura, T., & Keer, L. M. (1976a). Growth-rate of a penny-shaped crack in hydraulic fracturing of rocks. Journal of Geophysical Research, 81(35), 5335–5340.

    Article  Google Scholar 

  • Abé, H., Keer, L. M., & Mura, T. (1976b). Growth-rate of a penny-shaped crack in hydraulic fracturing of rocks, 2. Journal of Geophysical Research, 81(35), 6292–6298.

    Article  Google Scholar 

  • Abou-Sayed, A. S., Brechtel, C. B., & Clifton, R. J. (1978). In situ stress determination by hydrofracturing: A fracture mechanics approach. Journal of Geophysical Research, 83(B6), 2851–2862.

    Article  Google Scholar 

  • Albaric, J., Oye, V., Langet, N., Hasting, M., Lecomte, I., Iranpour, K., et al. (2014). Monitoring of induced seismicity during the first geothermal reservoir stimulation at Paralana, Australia. Geothermics, 52, 120–131.

    Article  Google Scholar 

  • Atkinson, B. K. (1984). Subcritical crack growth in geological materials. Journal of Geophysical Research, 89(B6), 4077–4114.

    Google Scholar 

  • Atkinson, B. K. (1987). In Atkinson, B. K. (Ed.), Fracture mechanics of rock. Orlando: Academic Press.

    Google Scholar 

  • Atkinson, C., & Craster, R. V. (1991). Plane strain fracture in poroelastic media. Proceedings Royal Society London, A, 434, 605–633.

    Article  MathSciNet  Google Scholar 

  • Atkinson, C., & Craster, R. V. (1992). Fracture in fully coupled dynamic thermo-elasticity. Journal of the Mechanics and Physics of Solids, 40(7), 1415–1432.

    Article  Google Scholar 

  • Barani, O. R., Khoei, A. R., & Mofid, M. (2011). Modeling of cohesive crack growth in partially saturated porous media; a study on the permeability of cohesive fracture. International Journal of Fracture, 167(1), 15–31.

    Article  Google Scholar 

  • Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances Applied Mechanics, 7, 55–129.

    Google Scholar 

  • Baumgärtner, J. Jung, R. Gérard, A. Baria, R., & Garnish, J. (1996, January 22–24). The European HDR project at Soultz-sous-Forêts: Stimulation of the second deep well and first circulation experiments. In Proceedings of the 21th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.

    Google Scholar 

  • Bazant, Z. P., & Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle materials. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Berge, P. A., Wang, H. F., & Bonner, B. P. (1993). Pore pressure buildup coefficient in synthetic and natural sandstones. International Journal of Rock Mechanics Mining Sciences, 30(7), 1135–1141.

    Article  Google Scholar 

  • Boone, T. J., & Ingraffea, A. R. (1990). A numerical procedure for simulation of hydraulically driven fracture propagation in poroelastic media. International Journal for Numerical Analytical Methods Geomechanics, 14(1), 27–47.

    Article  Google Scholar 

  • Broek, D. (1986). Elementary engineering fracture mechanics. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Bruno, M. S., & Nakagawa, F. M. (1991). Pore pressure influence on tensile fracture propagation in sedimentary rock. International Journal of Rock Mechanics Mining Sciences, 28(4), 261–273.

    Article  Google Scholar 

  • Bruno, M. S., Dorfmann, A. Lao, K., & Honeger, C. (2001, July 7–10). Coupled particle and fluid flow modeling of fracture and slurry injection in weakly consolidated granular media. Proceedings of the 38th U.S. Symposium on Rock Mechanics (USRMS), Washington D.C, Swets & Zeitlinger Lisse.

    Google Scholar 

  • Bui, H. D. (2006). Fracture mechanics: Inverse problems and solutions. Dordrecht: Springer. ISBN 978-1-4020-4837-1. Errata on the web site. http://hdbui.blogspot.com.

  • Bui, H. D., & Parnes, R. (1982). A reexamination of the pressure at the tip of a fluid-filled crack. International Journal of Engineering Science, 20(11), 1215–1220.

    Article  Google Scholar 

  • Bunger, A. P., Detournay, E., & Jeffrey, R. G. (2005). Crack tip behavior in near-surface fluid-driven fracture experiments. Compte Rendus Mécanique, 333, 299–304.

    Article  Google Scholar 

  • Camacho, G. T., & Ortiz, M. (1996). Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures, 33(20–22), 2899–2938.

    Article  Google Scholar 

  • Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids. Oxford: Clarendon Press.

    Google Scholar 

  • Cleary, M. P. (1976). Fundamental solutions for fluid-saturated porous media and application to localized rupture phenomena. Thesis in partial fulfilment of Ph.D. requirements, Brown University Rep. No. GA-43380 to NSF, 1975.

    Google Scholar 

  • Cleary, M. P. (1977). Fundamental solutions for a fluid-saturated porous solid. International Journal of Solids and Structures, 13, 785–806.

    Article  MathSciNet  Google Scholar 

  • Cleary, M. P. (1978). Moving singularities in elasto-diffusive solids with applications to fracture propagation. International Journal of Solids and Structures, 14, 81–97.

    Article  Google Scholar 

  • Cleary, M. P. (1979, June 4–6). Rate and structure sensitivity in hydraulic fracturing of fluid-saturated porous formations. Proceedings 20th US Rock Mechanics Symposium, Austin, Texas, USA.

    Google Scholar 

  • Cohen, S. C. (1996). Convenient formulas for determining dip-slip fault parameters from geophysical observables. Bulletin Seismological Society America, 86(5), 1642–1644.

    Google Scholar 

  • Creager, M., & Paris, P. C. (1967). Elastic field equations for blunt cracks with reference to stress corrosion cracking. International Journal of Fracture, 3(4), 247–252.

    Google Scholar 

  • Deichmann, N., Kraft, T., & Evans, K. (2014). Identification of faults activated during the stimulation of the Basel geothermal project from cluster analysis and focal mechanisms of the larger magnitude events. Geothermics, 52, 84–97.

    Article  Google Scholar 

  • Delaney, P. T., & McTigue, D. F. (1994). Volume of magma accumulation or withdrawal estimated from surface uplift or subsidence, with application to the 1960 collapse of Kilauea Volcano. Bulletin of Volcanology, 56(6–7), 417–424.

    Article  Google Scholar 

  • Desroches, J., Detournay, E., Lenoach, B., Papanastasiou, P., Pearson, J. R. A., Thiercelin, M., et al. (1994). The crack tip region in hydraulic fracturing. Proceedings Royal Society London, A, 447, 39–48.

    Article  Google Scholar 

  • Detournay, E. (2004). Propagation regimes of fluid-driven fractures in impermeable rocks. International Journal of Geomechanics, 4(1), 35–45.

    Article  Google Scholar 

  • di Maio, C. (1996). Exposure of bentonite to salt solution: osmotic and mechanical effects. Géotechnique, 46(4), 695–707.

    Article  Google Scholar 

  • Dorbath, L., Cuenot, N., Genter, A., & Frogneux, M. (2009). Seismic response of the fractured and faulted granite of Soultz-sous-Forêts (France) to 5 km deep massive water injections. Geophysical Journal International, 177, 653–675.

    Article  Google Scholar 

  • Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100–104.

    Article  Google Scholar 

  • Ellsworth, W. L. (2013, July 12). Injection-induced earthquakes. Science, 341(6142). https://doi.org/10.1126/science.1225942.

    Article  Google Scholar 

  • Engelder, T., & Lacazette, A. (1990). Natural hydraulic fracturing. In N. Barton & O. Stephansson (Eds.), Rock joints. Rotterdam: A.A. Balkema.

    Google Scholar 

  • Evans, K. (2005). Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 2. Critical stress and fracture strength. Journal of Geophysical Research, Solid Earth, 110, B04204. https://doi.org/10.1029/2004JB003169.

  • Evans K., Valley B., Häring M., Hopkirk R., Baujard C., Kohl Th., Mégel Th., André, L. Portier, S., & Vuataz, F. (2009). Studies and support for the EGS reservoirs at Soultz-sous-Forêts. Technical Report, Center for Geothermal Research - CREGE, CHYN, University of Neuchâtel, Switzerland.

    Google Scholar 

  • Expert Team (2010, August 2009). Das seismische Ereignis bei Landau vom 15. Final report, Hannover, 29.10.2010, 54 pp. (in German).

    Google Scholar 

  • Fang, Y., den Hartog, S. A. M., Elsworth, D., Marone, C., & Cladouhos, T. (2016). Anomalous distribution of microearthquakes in the Newberry geothermal reservoir: Mechanisms and implications. Geothermics, 63, 62–73.

    Article  Google Scholar 

  • Fehler, M. C. (1987). Stress control of seismicity patterns observed during hydraulic fracturing experiments at the Fenton Hill hot dry rock geothermal energy site, New Mexico. Los Alamos release LA-UR-87-1223. Conference on Forced Flow through Fractured Rock Masses.

    Google Scholar 

  • Feraille-Fresnet, A., & Ehrlacher, A. (2000). Behaviour of a wet crack submitted to heating up to high temperature. Mechanics of Materials, 32(8), 471–484.

    Article  Google Scholar 

  • Feraille, A., Bui, H. D., & Ehrlacher, A. (2003). Hydrostatic interaction of a wetting fluid and a circular crack in an elastic material. Mechanics of Materials, 35, 581–586.

    Article  Google Scholar 

  • Fialko, Y., & Simons, M. (2000). Deformation and seismicity in the Coso geothermal area, Inyo County, California: observations and modeling using satellite radar interferometry. Journal of Geophysical Research, 105(B9), 21781–21793.

    Article  Google Scholar 

  • Fialko, Y., Khazan, Y., & Simons, M. (2001). Deformation due to a pressurized horizontal circular crack in an elastic half-space, with applications to volcano geodesy. Geophysical Journal International, 146, 181–190.

    Article  Google Scholar 

  • Fjaer, E., Holt, R. M., Horsrud, P., Raaen, A. M., & Risnes, R. (2008). Petroleum related rock mechanics (2nd ed.). Amsterdam: Elsevier B.V.

    Google Scholar 

  • Folger P. and Tiemann M. (2015, May 12). Human-induced earthquakes from deep-well injection: A brief overview. Congressional Research Service 7-5700. www.crs.govR43836

  • Frohlich, C. (2012). Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale, Texas. Proceedings National Academy Sciences USA, 109(35), 13934–13938.

    Article  Google Scholar 

  • Geertsma, J., & de Klerk, F. (1969). A rapid method of predicting width and extent of hydraulically induced fractures. Journal of Petroleum Technology, 21(12), 1571–1581. https://doi.org/10.2118/2458-PA (AIME 246).

    Article  Google Scholar 

  • Garagash, D. (2006). Plane-strain propagation of a fluid-driven fracture during injection and shut-in: Asymptotics of large toughness. Engineering Fracture Mechanics, 73, 456–481.

    Article  Google Scholar 

  • Garagash, D., & Detournay, E. (1997). An analysis of the influence of the pressurization rate on the borehole breakdown pressure. International Journal of Solids and Structures, 34(24), 3099–3118.

    Article  Google Scholar 

  • Goodarzi, S., Settari, A., Zoback, M., & Keith, D. M. (2010). Thermal effects on shear fracturing and injectivity during CO\(_2\) storage, Chap. 48. In A. P. Bunger, J. McLennan, & R. Jeffrey (Eds.), Effective and sustainable hydraulic fracturing. Rijeka: InTech. https://doi.org/10.5772/45724.

    Google Scholar 

  • Griffith, A. A. (1921). The phenomena of rupture and flow in solids. Philosophical Transactions Royal Society of London, A, 221, 163–198.

    Article  Google Scholar 

  • Griffith, A. A. (1924). The theory of rupture, 55–63, In C. B. Biezeno & J.M. Burgers (Eds.), Proceedings 1st International Congress Applied Mechanics. Delft: J. Waltman Jr.

    Google Scholar 

  • Grünthal, G. (2014). Induced seismicity related to geothermal projects versus natural tectonic earthquakes and other types of induced seismic events in Central Europe. Geothermics, 52, 22–35.

    Article  Google Scholar 

  • Hainzl, S., & Ogata, Y. (2005). Detecting fluid signals in seismicity data through statistical earthquake modeling. Journal of Geophysical Research, Solid Earth, 110(B5), B05S07. https://doi.org/10.1029/2004JB003247.

  • Häring, M. O., Schanz, U., Ladner, F., & Dyer, B. C. (2008). Characterization of the Basel 1 enhanced geothermal system. Geothermics, 37, 469–495.

    Article  Google Scholar 

  • Heffer, K. (2002). Geomechanical influences in water injection projects: An overview. Oil & Gas Science and Technology, 57(5), 415–422.

    Article  Google Scholar 

  • Henkensiefken, R., Bentz, D., Nantung, T., & Weiss, J. (2009). Volume change and cracking in internally cured mixtures made with saturated lightweight aggregate under sealed and unsealed conditions. Cement and Concrete Composites, 31, 427–437.

    Article  Google Scholar 

  • Huang, N. C., & Russell, S. G. (1985). Hydraulic fracturing of a saturated porous medium-I: General theory. Theoretical and Applied Fracture Mechanics, 4, 201–213; -II: Special cases. Theoretical and Applied Fracture Mechanics, 4, 215–222.

    Article  Google Scholar 

  • Irwin, G. R. (1957). Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 24, 361–364.

    Google Scholar 

  • Irwin, G. R. (1958). Fracture. In S. Flügge (Ed.), Handbuch der Physik (Vol. VI, pp. 551–590). Berlin: Springer.

    Google Scholar 

  • Irwin, G. R. (1962). Crack-extension force for a part-through crack in a plate. Journal of Applied Mechanics, 29(4), 651–654.

    Article  Google Scholar 

  • Jaeger, J. C., & Cook, N. G. W. (1979). Fundamentals of rock mechanics (3rd ed.). London: Chapman and Hall.

    Google Scholar 

  • Kanninen, M. F., & Popelar, C. H. (1985). Advanced fracture mechanics. New York: Oxford University Press.

    Google Scholar 

  • Khalili, N., & Khabbaz, M. H. (1998). A unique relationship for \(\chi \) for the determination of the shear strength of unsaturated soils. Géotechnique, 48(5), 681–687.

    Article  Google Scholar 

  • Khristianovic, S. A., & Zheltov, Y. P. (1955). Formation of vertical fractures by means of highly viscous liquid. Proceedings of the 4th World Petroleum Congress, Rome, Italy, Sect. II (pp. 579–586).

    Google Scholar 

  • Kim, K. H., Ree, J. H., Kim, Y. H., Kim, S., Kang, S. U., & Seo W. (2018). Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science. https://doi.org/10.1126/science.aat6081.

    Article  Google Scholar 

  • Kwiatek, G., Bulut, F., Bohnhoff, M., & Dresen, G. (2014). High-resolution analysis of seismicity induced at Berlín geothermal field, El Salvador. Geothermics, 52, 98–111.

    Article  Google Scholar 

  • Kwiatek, G., Bohnhoff, M., Dresen, G., Schulze, A., Schulte, T., Zimmermann, G., et al. (2010). Microseismicity induced during fluid-injection: a case study from the geothermal site at Groß Schönebeck, North German Basin. Acta Geophysica, 58(6), 995–1020.

    Article  Google Scholar 

  • Lawn, B. R. (1993). Fracture of brittle solids (2nd ed.). Cambridge Solid State Science Series. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lee, I. K., & Ingles, O. G. (1968). Strength and deformation of soils and rocks. In I. K. Lee (Ed.), Soil mechanics, selected topics, 4, 195–294. Sydney: Butterworths.

    Google Scholar 

  • Lee, F. H., Lo, K. W., & Lee, S. L. (1988). Tension crack developments in soils. Journal of Geotechnical Engineering, 114(8), 915–929.

    Article  Google Scholar 

  • Lenoach, B. (1995). The crack tip solution for hydraulic fracturing in a permeable solid. Journal of the Mechanics and Physics of Solids, 43(7), 1025–1043.

    Article  Google Scholar 

  • Lisowski, M. (2007). Analytical volcano deformation source models, Chap. 8. In M. Dzurisin (Ed.), Volcano deformation: New geodetic monitoring techniques. Chichester: Praxis Publishing Limited.

    Chapter  Google Scholar 

  • Loret, B., & Khalili, N. (2000). A three-phase model for unsaturated soils. International Journal for Numerical and Analytical Methods in Geomechanics, 24, 893–927.

    Article  Google Scholar 

  • Loret, B., & Khalili, N. (2002). An effective stress elastic-plastic model for unsaturated porous media. Mechanics of Materials, 34(2), 97–116.

    Article  Google Scholar 

  • Loret, B., & Prévost, J. H. (1991). Dynamic strain localization in fluid-saturated porous media. Journal of the Engineering Mechanics Division, Proceedings of the ASCE, 117(4), 907–922.

    Article  Google Scholar 

  • Loret, B., & Radi, E. (2001). The effects of inertia on crack growth in poro-elastic fluid-saturated media. Journal of the Mechanics and Physics of Solids, 49(5), 995–1020.

    Article  Google Scholar 

  • Loret, B., & Simões, M. F. (2016). Biomechanical aspects of soft tissues. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Madariaga, R., & Ruiz, S. (2017). Earthquake dynamics on circular faults: A review 1970–2015. Journal of Seismology, 20, 1059–1073. https://doi.org/10.1007/s10950-016-9590-8.

    Article  Google Scholar 

  • Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium. Englewood Cliffs: Prentice Hall Inc.

    Google Scholar 

  • Mansinha, L., & Smylie, D. E. (1971). The displacement fields of inclined faults. Bulletin Seismological Society America, 61(5), 1433–1440.

    Google Scholar 

  • Martin, P. A., Päivärinta, L., & Rempel, S. (1993). A normal crack in an elastic half-space with stress-free surface. Mathematical Methods Applied Sciences, 16, 563–579.

    Article  MathSciNet  Google Scholar 

  • McGarr, A. (2014). Maximum magnitude earthquakes induced by fluid injection. Journal of Geophysical Research, Solid Earth, 119, 1008–1019. https://doi.org/10.1002/2013JB010597.

    Google Scholar 

  • McGarr, A., Simpson, D., & Seeber, L. (2002). Case histories of induced and triggered seismicity. International Handbook of Earthquake and Engineering Seismology (Vol. 81A, pp. 647–661). San Francisco: Academic Press.

    Google Scholar 

  • McTigue, D. F. (1986). Thermoelastic response of fluid-saturated porous rock. Journal of Geophysical Research, 91(B9), 9533–9542.

    Article  Google Scholar 

  • McTigue, D. F. (1987). Elastic stress and deformation near a finite spherical magma body: Resolution of the point source paradox. Journal of Geophysical Research, 92(B12), 12931–12940.

    Article  Google Scholar 

  • Mindlin, R. D. (1936). Force at a point in the interior of a semi-infinite solid. Physics, 7, 195–202.

    Article  Google Scholar 

  • Mindlin, R. D. (1953, April). Force at a point in the interior of a semi-infinite solid. Proceedings 1st Midwestern Conference Solid Mechanics, Urbana, IL (pp. 56–59).

    Google Scholar 

  • Mogi, K. (1958). Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bulletin Earthquake Research Institute, University of Tokyo, 36, 99–134.

    Google Scholar 

  • Morris, P. H., Graham, J., & Williams, D. J. (1992). Cracking in drying soils. Canadian Geotechnical Journal, 29(2), 263–277.

    Article  Google Scholar 

  • Mukuhira, Y., Dinske, C., Asanuma, H., Ito, T., & Häring, M. O. (2017). Pore pressure behavior at the shut-in phase and causality of large induced seismicity at Basel, Switzerland. Journal of Geophysical Research, Solid Earth, 122, 411–435. https://doi.org/10.1002/2016JB013338.

    Google Scholar 

  • Mura, T. (1987). Micromechanics of defects in solids (2 revised ed.). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Murakami, Y. (1986). Stress Intensity Factors Handbook. Amsterdam: Pergamon.

    Google Scholar 

  • Nordgren, R. P. (1972). Propagation of a vertical hydraulic fracture. Society of Petroleum Engineers Journal, 12(04), 306–314, SPE-3009-PA. https://doi.org/10.2118/3009-PA (AIME 253).

    Article  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin Seismological Society America, 75(4), 1135–1154.

    Google Scholar 

  • Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin Seismological Society America, 82(2), 1018–1040.

    Google Scholar 

  • Onuma, T., & Ohkawa, S. (2009). Detection of surface deformation related with CO\(_2\) injection by DInSAR at In Salah, Algeria. Energy Procedia, 1(1), 2177–2184.

    Article  Google Scholar 

  • Ortiz, M., & Suresh, S. (1993). Statistical properties of residual stresses and intergranular fracture in ceramic materials. Journal of Applied Mechanics, 60(1), 77–84.

    Article  Google Scholar 

  • Ouchterlony, F. (1990). Fracture toughness testing of rock with core based specimens. Engineering Fracture Mechanics, 35(1/2/3), 351–366.

    Article  Google Scholar 

  • Pacala, S., & Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305, 968–972.

    Article  Google Scholar 

  • Palmer, A. C., & Rice, J. R. (1973). The growth of slip surfaces in the progressive failure of over-consolidated clay. Proceedings Royal Society London, A, 332, 527–548.

    Article  Google Scholar 

  • Paris, P. C., & Sih, G. C. (1965). Stress analysis of cracks. In Fracture toughness testing and its applications, (pp. 30–81). ASTM STP 381, American Society of Testing Materials. Philadelphia: ASTM International.

    Google Scholar 

  • Perkins, T. K., & Kern, L. R. (1961). Widths of hydraulic fractures. Journal of Petroleum Technology, 13, 937–949 (AIME 222).

    Article  Google Scholar 

  • Peron, H., Hueckel, T., Laloui, L., & Hu, L. B. (2009). Fundamentals of desiccation craking of fine-grained soils: Experimental characterisation and mechanisms identification. Canadian Geotechnical Journal, 46, 1177–1201.

    Article  Google Scholar 

  • Phillips, W. S., Rutledge, J. T., House, L. S., & Fehler, M. C. (2002). Induced microearthquake patterns in hydrocarbon and geothermal reservoirs: Six case studies. Pure and Applied Geophysics, 159, 345–369.

    Article  Google Scholar 

  • Pine, R. J., Ledingham, P., & Merrifield, C. M. (1983). In-situ stress measurement in the Carnmenellis granite II. Hydrofracture tests at Rosemanowes Quarry to depths of 2000 m. International Journal of Rock Mechanics and Mining Sciences, 20(2), 63–72.

    Article  Google Scholar 

  • Radi, E., & Loret, B. (2007). Mode II intersonic crack propagation in poroelastic media. International Journal of Fracture, 147(1–4), 235–267.

    Google Scholar 

  • Radi, E., Bigoni, D., & Loret, B. (2002). Steady crack growth in elastic-plastic fluid-saturated porous media. International Journal of Plasticity, 18, 345–358.

    Article  Google Scholar 

  • Réthoré, J., de Borst, R., & Abellan, M. A. (2008). A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks. Computational Mechanics, 42, 227–238.

    Article  Google Scholar 

  • Rice, J. R. (1968a). A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35, 379–386.

    Article  Google Scholar 

  • Rice, J. R. (1968b). Mathematical analysis in the mechanics of fracture. In H. Liebowitz (Ed.), Fracture - an advanced treatise  3(2), 191–311. Mathematical fundamentals. New York: Academic Press.

    Google Scholar 

  • Rice, J. R., & Cleary, M. P. (1976). Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews Geophysics Space Physics, 14, 227–241.

    Article  Google Scholar 

  • Rice, J. R., & Simons, D. A. (1976). The stabilization of spreading shear faults by coupled deformation-diffusion effects in fluid-infiltrated porous materials. Journal of Geophysical Research, 81(29), 5322–5334.

    Article  Google Scholar 

  • Rooke, D. P., & Cartwright, D. J. (1976). Compendium of stress intensity factors. London: Her Majesty’s Stationery Office.

    Google Scholar 

  • Ruina, A. L. (1978). Influence of coupled deformation-diffusion effects on the retardation of hydraulic fracture. M.S. thesis, 41 pp. Division of Engineering, Brown University, RI, USA.

    Google Scholar 

  • Rummel F. (1987). Fracture mechanics approach to hydraulic fracturing stress measurements (Chap. 6), 217–240. In Atkinson, B. K. (Ed.), Fracture mechanics of rock. Orlando: Academic Press.

    Chapter  Google Scholar 

  • Rutqvist, J., Vasco, D. W., & Myer, L. (2009). Coupled reservoir-geomechanical analysis of CO\(_2\) injection at In Salah, Algeria. Energy Procedia, 1, 1847–1854.

    Article  Google Scholar 

  • Savitski, A. A., & Detournay, E. (2002). Propagation of a penny-shaped fluid-driven fracture in an impermeable rock: Asymptotic solutions. International Journal of Solids and Structures, 39, 6311–6337.

    Article  Google Scholar 

  • Scherer, G. W. (1986). Drying gels I. General theory. Journal of Non-crystalline Solids, 87, 199–225.

    Article  Google Scholar 

  • Scherer, G. W. (1989). Drying gels. VIII. Revision and review. Journal of Non-crystalline Solids, 109, 171–182.

    Article  Google Scholar 

  • Scherer, G. W. (1992). Crack-tip stress in gels. Journal of Non-crystalline Solids, 144, 210–216.

    Article  Google Scholar 

  • Scherer, G. W., & Smith, D. M. (1995). Cavitation during drying of a gel. Journal of Non-crystalline Solids, 189, 197–211.

    Article  Google Scholar 

  • Schmitt, D. R., & Zoback, M. D. (1989). Poroelastic effects in the determination of maximum horizontal principal stress in hydraulic fracturing tests - a proposed breakdown equation employing a modified effective stress relation for tensile failure. International Journal of Rock Mechanics and Mining Sciences, 26(6), 499–506.

    Article  Google Scholar 

  • Segall, P. (1989). Earthquakes triggered by fluid extraction. Geology, 17(10), 942–946.

    Article  Google Scholar 

  • Shapiro, S. A. (2015). Fluid-induced seismicity. UK: Cambridge University Press.

    Google Scholar 

  • Sih, G. C. (1973). Handbook of stress intensity factors. Bethlehem: Lehigh University, Institute of Fracture and Solid Mechanics.

    Google Scholar 

  • Simoni, L., & Secchi, S. (2003). Cohesive fracture mechanics for a multi-phase porous medium. Engineering Computations, 20, 675–698.

    Article  Google Scholar 

  • Sneddon, I. N. (1946). The distribution of stress in the neighbourhood of a crack in an elastic solid. Proceedings Royal Society London, A, 187, 229–260.

    Article  MathSciNet  Google Scholar 

  • Sneddon, I. N., & Lowengrub, M. (1969). Crack problems in the classical theory of elasticity. New York: Wiley.

    Google Scholar 

  • Teatini, P., Gambolati, G., Ferronato, M., Settari, A., & Walters, D. (2011). Land uplift due to subsurface fluid injection. Journal of Geodynamics, 51, 1–16.

    Article  Google Scholar 

  • Verdon, J. P. & Kendall, J. M. (2013, November 26–28). Earthquakes induced by fluid injection - implications for secure CO\(_2\) storage. International Workshop on Geomechanics and Energy - The Ground as Energy Source and Storage. Lausanne, Switzerland.

    Google Scholar 

  • Wesson, R. & Nicholson, G. (1987) Earthquake hazard associated with deep well injection. Open-File Report 87-331, report to the U.S. Environmental Protection Agency prepared by the U.S. Geological Survey, 111 pp.

    Google Scholar 

  • Wright (2013). Terrain motion 2: Models and examples. Lecture, 4th advanced training course in land remote sensing. Retrieved June 15, 2017, from https://earth.esa.int/documents/10174/643007/D5T1a_2_WRIGHT_LTC2013.pdf.

  • Xu, X. P., & Needleman, A. (1994). Numerical simulation of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids, 42, 1397–1434.

    Article  Google Scholar 

  • Zang, A., Oye, V., Jousset, P., Deichmann, N., Gritto, R., McGarr, A., et al. (2014). Analysis of induced seismicity in geothermal reservoirs - an overview. Geothermics, 52, 6–21.

    Article  Google Scholar 

  • Zoback, M. D., & Gorelick, S. M. (2012). Earthquake triggering and large-scale geologic storage of carbon dioxide. Proceedings National Academy Sciences USA, 109(26), 10164–10168. https://doi.org/10.1073/pnas.1202473109.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Loret .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loret, B. (2019). Cracks in Saturated Porous Media: Desiccation Cracks, Hydraulic Fracturing, and Microseismicity. In: Fluid Injection in Deformable Geological Formations. Springer, Cham. https://doi.org/10.1007/978-3-319-94217-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94217-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94216-2

  • Online ISBN: 978-3-319-94217-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics