Skip to main content

Enhanced Geothermal Systems (EGS): Hydraulic Fracturing in a Thermo-Poroelastic Framework

  • Chapter
  • First Online:
Fluid Injection in Deformable Geological Formations

Abstract

Geothermal energy is the thermal energy stored in the earth. Favorable geological settings consist of deep granite covered by a layer of insulating sediments which minimizes heat loss over the time. The key problem stems from the fact that the rock formations which are candidates for geothermal exploitation are located at great depth and that, even if they are locally fractured, their permeability is very low, regarding their economic viability. Indeed, in order to extract the heat, the project consists in artificially fracturing the rock, and next in creating a closed loop. Once at ground level, hot water can be used to generate electricity, or else to feed heat circuits. Heat production is simulated in a thermo-poroelastic framework incorporating a crack propagation model to simulate hydrofracturing processes. Stimulation and circulation tests at the Soultz-sous-Forêts reservoir conducted in 1997 are run in a finite element setting with emphasis on the impedance and efficiency of Enhanced Geothermal Systems (EGSs). The particular configuration of a porous medium with two porosities and individual constituent temperatures is also shown to be relevant in the early times of the injection operations in EGS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Source: http://www.rte-france.com/sites/default/files/2015_annual_electricity_report.pdf.

  2. 2.

    Annual consumption per capita in France in 2015: 476 TWh/66 M \(\sim \) 7.2 MWh, equivalent to a power of 7.2/(365\(\times \)24) MWe \(=\) 0.82 kWe, equivalent to 0.82 MWe for 1000 people.

  3. 3.

    As a matter of comparison, the content of an Olympic swimming pool 50 m\(\times \)25 m\(\times \)2 m is equal to 2500 m\(^3\).

  4. 4.

    http://www.haute-sorne.ch/fr/Vivre/Geothermie/Geothermie-profonde-Haute-Sorne.html (last visit: August 25, 2017).

  5. 5.

    The radial component of the convective acceleration is equal to \(v_r\,\partial v_r/\partial r=(\phi /r)\partial (\phi /r)/\partial r\) with \(\phi =r\,v_r\). If \(\phi =\phi (z)\), this component simplifies to \(-\phi (z)^2/r^3\), and the radial equation becomes nonlinear.

  6. 6.

    The vertical geostatic stress accounts for the apparent mass density of the rock, say \(\rho =n_{r}\,\rho _{r}+n_{f}\,\rho _{f}\) where \(n_{k}\) and \(\rho _{k}\) are, respectively, the volume fraction and the mass density of the constituent k, namely rock or fluid. In contrast, the lithostatic stress which accounts only for the mass of the rock is calculated with the mass density \(\rho =n_{r}\,\rho _{r}\). Unless tectonic stresses have developed significantly in the zone, the horizontal stresses are often assumed to be equal and calculated assuming an isotropic elastic rock formation with drained Poisson’s ratio \(\nu \): under lateral confinement (zero horizontal strain), they scale with the vertical stress via a factor \(\nu /(1-\nu )\).

  7. 7.

    Compare with Fig. 7.26 where the maximum permeability enhancement was obtained at year 1 for the same injection pressure profile.

References

  • AbuAisha, M. (2014). Enhanced geothermal systems: Permeability stimulation through hydraulic fracturing in a thermo-poroelastic framework. Ph.D. thesis, Université de Grenoble, France (2014).

    Google Scholar 

  • AbuAisha, M., & Loret, B. (2016a). Influence of hydraulic fracturing on impedance and efficiency of thermal recovery from HDR reservoirs. Geomechanics for Energy and the Environment. https://doi.org/10.1016/j.gete.2016.02.001.

    Article  Google Scholar 

  • AbuAisha, M., & Loret, B. (2016b). Stabilization of forced heat convection: Applications to enhanced geothermal systems (EGS). Transport Porous Media. https://doi.org/10.1007/s11242-016-0642-x.

    Article  MathSciNet  Google Scholar 

  • AbuAisha, M., Loret, B., & Eaton, D. (2016). Enhanced geothermal systems (EGS): Hydraulic fracturing in a thermo-poroelastic framework. Journal of Petroleum Science and Engineering, 146, 1179–1191.

    Article  Google Scholar 

  • Anderson, D. N., & Lund, J. W. (1979). Direct utilization of geothermal energy: A technical handbook. In D. N. Anderson & J. W. Lund (Eds.), Geothermal Resources Council, Special report \({\rm n}^{\circ }8\) (250 pp.), Davis, CA, USA.

    Google Scholar 

  • Atkinson, B. K. (1991). Fracture mechanics of rock (2nd ed.). London: Academic Press Limited.

    Google Scholar 

  • Baisch, S., Weidler, R., Vörös, R., Wyborn, D., & de Graaf, L. (2006). Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin, Australia. Bulletin Seismological Society America, 96, 2242–2256.

    Article  Google Scholar 

  • Barenblatt, G. I., Zheltov, Y. P., & Kochina, I. N. (1960). Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. Journal of Applied Mathematics and Mechanics (PMM) (English Translation), 24(5), 1286–1303.

    Article  Google Scholar 

  • Bataillé, A., Genthon, P., Rabinowicz, M., & Fritz, B. (2006). Modeling the coupling between free and forced convection in a vertical permeable slot: Implications for the heat production of an Enhanced Geothermal System. Geothermics, 35, 654–682.

    Article  Google Scholar 

  • Baumgärtner J., Jung R., Gérard A., Baria R., & Garnish, J. (1996, January 22–24). The European HDR project at Soultz-sous-Forêts: Stimulation of the second deep well and first circulation experiments. Proceedings of the 21st Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California.

    Google Scholar 

  • Baumgärtner, J., Gérard, A., Baria, R., & Garnish, J. (2000, January 24–26). Progress at the European HDR project at Soultz-sous-Forêts: Preliminary results from the deepening of the well GPK2 to 5000 m. Proceedings of the 25th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California.

    Google Scholar 

  • Beardsmore, G. R. (2007). The burgeoning Australian geothermal energy industry. Geo-Heat Center Bulletin, 28(3), 20–26.

    Google Scholar 

  • Bertani, R. (2015, April 19–25). Geothermal Power Generation in the World 2010–2014 Update Report, 19 pp. Proceedings World Geothermal Congress 2015. Melbourne, Australia.

    Google Scholar 

  • Blaisonneau, A., Peter-Borie, M., & Gentier, S. (2013). Experimental study of the permeability evolution of a rock fracture under THMC conditions. In M. Kwasniewski & D. Lydzba (Eds.), Proceedings Rock Mechanics for Resources, Energy and Environment (pp. 217–222). London: Taylor & Francis Group. ISBN 978-1-138-00080-3.

    Chapter  Google Scholar 

  • Brown, D. W., Franke, P. R., Smith, M. C., & Wilson, M. G. (1987). Hot Dry Rock Geothermal Energy Development Program. Annual Report Fiscal Year 1985 LA-11101-HDR.

    Google Scholar 

  • Brown, D., & Duchane, D. (1999). Scientific progress on the Fenton Hill HDR project since 1983. Geothermics, 28, 591–601.

    Article  Google Scholar 

  • Brown, D. (2009, February 9–11). Hot dry rock geothermal energy: important lessons from Fenton Hill. In Proceedings of the 34th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California.

    Google Scholar 

  • Bruel, D. (1995). Modelling heat extraction from forced fluid flow through stimulated fractured rock masses: Evaluation of the Soultz-sous-Forêts site potential. Geothermics, 24(3), 439–450.

    Article  Google Scholar 

  • Bruel, D. (2002). Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir. Oil & Gas Science and Technology, 57(5), 459–470.

    Article  Google Scholar 

  • Chen, Y., Zhou, C., & Sheng, Y. (2007). Formulation of strain-dependent hydraulic conductivity for a fractured rock mass. The International Journal of Rock Mechanics and Mining Sciences, 44(7), 981–996.

    Article  Google Scholar 

  • Cheng, A. H.-D., Ghassemi, A., & Detournay, E. (2001). Integral equation solution of heat extraction from a fracture in hot dry rock. International Journal for Numerical Analytical Methods Geomechanics, 25, 1327–1338.

    Article  Google Scholar 

  • Duchane, D., & Brown, D. (2002, December 13–19). Hot Dry Rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico. Geo-Heat Center Bulletin.

    Google Scholar 

  • Elsworth, D., & Bai, M. (1992). Flow-deformation response of dual-porosity media. Journal of Geotechnical Engineering, 118(1), 107–124.

    Article  Google Scholar 

  • Evans, K., Genter, A., & Sausse, J. (2005). Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations. Journal of Geophysical Research, 110, B04203. https://doi.org/10.1029/2004JB003168.

  • Evans, K., Valley, B., Häring, M., Hopkirk, R., Baujard, C., & Kohl, Th., et al., (2009). Studies and support for the EGS reservoirs at Soultz-sous-Forêts. Technical report, Center for Geothermal Research, University of Neuchâtel, Switzerland.

    Google Scholar 

  • Fjaer, E., Holt, R. M., Horsrud, P., Raaen, A. M., & Risnes, R. (2008). Petroleum related rock mechanics (2nd ed.). Amsterdam: Elsevier B.V.

    Google Scholar 

  • Francke, H., & Thorade, M. (2010). Density and viscosity of brine: An overview from a process engineers perspective. Chemie der Erde, 70(S3), 23–32.

    Article  Google Scholar 

  • Fritz, B., Jacquot, E., Jacquemont, B., Baldeyrou-Bailly, A., Rosener, M., & Vidal, O. (2010). Geochemical modelling of fluid-rock interactions in the context of the Soultz-sous-Forêts geothermal system. Compte Rendus Geoscience, 342(7–8), 653–667.

    Article  Google Scholar 

  • Garcia-Gutiérrez, A., Espinosa–Paredes, G., & Amaro-Espejo, G. (2005, April 24–29). Effect of variable rheological properties of drilling muds and cements on the temperature distribution in geothermal wells. Proceedings of World Geothermal Congress 2005. Antalya, Turkey.

    Google Scholar 

  • Gelet, R. (2011, September). Thermo-hydro-mechanics of deformable porous media with double porosity and local thermal non-equilibrium. Ph.D. thesis, Université de Grenoble, France. https://tel.archives-ouvertes.fr/tel-00712459.

  • Gelet, R. M., Loret, B., & Khalili, N. (2012a). Thermal recovery from a fractured medium in local thermal non-equilibrium. International Journal for Numerical and Analytical Methods in Geomechanics, 37(15), 2471–2501.

    Article  Google Scholar 

  • Gelet, R., Loret, B., & Khalili, N. (2012b). A thermo-hydro-mechanical coupled model in local thermal non-equilibrium for fractured HDR reservoir with double porosity. Journal of Geophysical Research, Solid Earth, 117, B07205. https://doi.org/10.1029/2012JB009161.

    Article  Google Scholar 

  • Gelet, R., Loret, B., & Khalili, N. (2012c). Borehole stability analysis in a thermoporoelastic dual-porosity medium. International Journal of Rock Mechanics and Mining Sciences, 50, 65–76. https://doi.org/10.1016/j.ijrmms.2011.12.003.

    Article  Google Scholar 

  • Gérard, A., Genter, A., Kohl, Th., Lutz, Ph., Rose, P., & Rummel, F. (2006). The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forêts (Alsace, France). Geothermics, 35(5–6), 473–483.

    Article  Google Scholar 

  • Ghassemi, A., Tarasovs, S., & Cheng, A. H.-D. (2005). Integral equation solution of heat extraction-induced thermal stress in enhanced geothermal reservoirs. International Journal for Numerical and Analytical Methods in Geomechanics, 29, 829–844.

    Article  Google Scholar 

  • Ghassemi, A., Nygren, A., & Cheng, A. (2008). Effects of heat extraction on fracture aperture: A poro-thermoelastic analysis. Geothermics, 37, 525–539.

    Article  Google Scholar 

  • Grecksch G., Jung R., Tischner T., & Weidler, R. (2003). Hydraulic fracturing at the European HDR / HFR test site Soultz-sous-Forêts (France) - a conceptual model. Proceedings of the European Geothermal Conference. Leibniz Institute for Applied Geosciences GGA, Germany.

    Google Scholar 

  • Gringarten, A. C., Witherspoon, P. A., & Onishi, Y. (1975). Theory of heat extraction from fractured hot dry rock. Journal of Geophysical Research, 80(8), 1120–1124.

    Article  Google Scholar 

  • Häring, M. O., Schanz, U., Ladner, F., & Dyer, B. C. (2008). Characterization of the Basel 1 enhanced geothermal system. Geothermics, 37, 469–495.

    Article  Google Scholar 

  • Jiang, F. M., Luo, L., & Chen, J. L. (2013). A novel three-dimensional transient model for subsurface heat exchange in enhanced geothermal systems. International Communications in Heat and Mass Transfer, 41, 57–62.

    Article  Google Scholar 

  • Jupe, A. J., Bruel, D., Hicks, T., Hopkirk, R., Kappelmeyer, O., Kohl, T., et al. (1995). Modelling of a European prototype HDR reservoir. Geothermics, 24(3), 403–419.

    Article  Google Scholar 

  • Kagel, A., Bates, D., & Gawell, K. (2005, April 22). A guide to geothermal energy and the environment, Pennsylvania Ave. SE, Washington, DC: Geothermal Energy Association. Retrieved from August 16, 2017. http://www.charleswmoore.org/pdf/Environmental Guide.pdf.

  • Kaieda, H., Jones, R. H., Moriya, H., Sasaki, S., & Ushijima, K. (2000, May 28–June 10). Ogachi HDR reservoir evaluation by AE and geophysical methods. Proceedings World Geothermal Congress 2000 (pp. 3755–3760). Kyushu - Tohoku, Japan.

    Google Scholar 

  • Kaieda, H., Sasaki, S., & Wyborn, D. (2010, April 25–29). Comparison of characteristics of micro-earthquakes observed during hydraulic stimulation operations in Ogachi, Hijiori and Cooper Basin HDR Projects. Proceedings World Geothermal Congress 2010, 6 pp. Bali, Indonesia.

    Google Scholar 

  • Khalili, N., & Loret, B. (2001). An elasto-plastic model for non-isothermal analysis of flow and deformation in unsaturated porous media formulation. International Journal of Solids Structures, 38, 8305–8330.

    Article  Google Scholar 

  • Khalili, N., & Valliappan, S. (1996). Unified theory of flow and deformation in double porous media. European Journal of Mechanics, 15(2), 321–336.

    MATH  Google Scholar 

  • Klimczak, C., Schultz, R. A., Parashar, R., & Reeves, D. (2010). Cubic law with aperture-length correlation: Implications for network scale fluid flow. Hydrogeology Journal, 18(4), 851–862.

    Article  Google Scholar 

  • Kneafsey, T. J., Nakagawa, S., Dobson, P. F., & Kennedy, B. M. (2015, January 26–28). Fracture sustainability in EGS systems - results of laboratory studies. Proceedings of the Fourtieth Workshop on Geothermal Reservoir Engineering (pp. 676–684). Stanford University, Stanford, California.

    Google Scholar 

  • Kohl, Th., & Mégel, T. (2007). Predictive modeling of reservoir response to hydraulic stimulations at the European EGS site Soultz-sous-Forêts. International Journal of Rock Mechanics and Mining Sciences, 44(8), 1118–1131.

    Article  Google Scholar 

  • Kolditz, O. (1995). Modelling flow and heat transfer in fractured rocks: Dimensional effect of matrix heat diffusion. Geothermics, 24(3), 421–437.

    Article  Google Scholar 

  • Kolditz, O., & Clauser, C. (1998). Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to the hot dry rock site in Rosemanowes (U.K.). Geothermics, 27(1), 1–23.

    Article  Google Scholar 

  • Lee, S. H., & Ghassemi, A. (2010, February 1–3). Thermo-poroelastic analysis of injection-induced rock deformation and damage evolution. Proceedings of the Thirty-Fifth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University.

    Google Scholar 

  • Lee, S. H., & Ghassemi, A. (2011, January 31–February 03). Three-dimensional thermo-poro-mechanical modeling of reservoir stimulation and induced microseismicity in geothermal reservoir. Proceedings of the Thirty-Sixth Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California.

    Google Scholar 

  • Likhachev, E. R. (2003). Dependence of water viscosity on temperature and pressure. Technical Physics, 48(4), 514–515.

    Article  Google Scholar 

  • Loret, B., & Khalili, N. (2002). An effective stress elastic-plastic model for unsaturated soils. Mechanics of Materials, 34(2), 97–116.

    Article  Google Scholar 

  • Loret, B., & Simões, M. F. (2016). Biomechanical aspects of soft tissues. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  • Lund, J., Sanner, B., Rybach, L., Curtis, R., & Hellström, G. (2004). Geothermal (ground-source) heat pumps: A world overview. Geo-Heat Center Bulletin, 1–10.

    Google Scholar 

  • Lund, J. W. (2007). Characteristics, development and utilization of geothermal resources. Geo-Heat Center Bulletin, pp. 1–9.

    Google Scholar 

  • Lund, J. W., & Boyd, T. (2015, April 19–25). Direct utilization of geothermal energy 2015 worldwide review. In Proceedings of the World Geothermal Congress. Melbourne, Australia, 31 pp.

    Google Scholar 

  • McTigue, D. F. (1986). Thermoelastic response of fluid-saturated porous rock. Journal of Geophysical Research, 91(B9), 9533–9542.

    Article  Google Scholar 

  • Murphy, H. D., Lawton, R. G., Tester, J. W., Potter, R. M., Brown, D. W., & Aamodt, R. L. (1977). Preliminary assessment of a geothermal energy reservoir formed by hydraulic fracturing. Society of Petroleum Engineers Journal, 17, 317–326.

    Article  Google Scholar 

  • Murphy, H. D., Tester, J. W., Grigsby, C. O., & Potter, R. M. (1981). Energy extraction from fractured geothermal reservoirs in low-permeability crystalline rock. Journal of Geophysical Research, Solid Earth, 86(B8), 7145–7158.

    Article  Google Scholar 

  • Murphy, H., Brown, D., Jung, R., Matsunaga, I., & Parker, R. (1999). Hydraulics and well testing of engineered geothermal reservoirs. Geothermics, 28, 491–506.

    Article  Google Scholar 

  • Papanastasiou, P. (1999). The effective fracture toughness in hydraulic fracturing. International Journal of Fracture, 96, 127–147.

    Article  Google Scholar 

  • Papanastasiou, P., & Thiercelin, M. (1993). Influence of inelastic rock behaviour in hydraulic fracturing. International Journal of Rock Mechanics and Mining Sciences, 30(7), 1241–1247.

    Article  Google Scholar 

  • Rejeb, A., & Bruel, D. (2001). Hydromechanical effects of shaft sinking at the Sellafield site. International Journal of Rock Mechanics and Mining Sciences, 38(1), 17–29.

    Article  Google Scholar 

  • Richards, H. G., Parker, R. H., Green, A. S. P., Jones, R. H., Nicholls, J. D. M., Nicol, D. A. C., et al. (1994). The performance and characteristics of the experimental hot dry rock geothermal reservoir at Rosemanowes, Cornwall (1985–1988). Geothermics, 23(2), 73–109.

    Article  Google Scholar 

  • Santoyo, E., Santoyo-Gutiérrez, S., García, A., Espinosa, G., & Moya, S. L. (2001). Rheological property measurement of drilling fluids used in geothermal wells. Applied Thermal Engineering, 21, 283–302.

    Article  Google Scholar 

  • Schulze, O., Popp, T., & Kern, H. (2001). Development of damage and permeability in deforming rock salt. Engineering Geology, 61, 163–180.

    Article  Google Scholar 

  • Shao, J. F., Zhou, H., & Chau, K. T. (2005). Coupling between anisotropic damage and permeability variation in brittle rocks. International Journal for Numerical and Analytical Methods in Geomechanics, 29(12), 1231–1247.

    Article  Google Scholar 

  • Solberg, P., Lockner, D., & Byerlee, J. D. (1980). Hydraulic fracturing in granite under geothermal conditions. International Journal of Rock Mechanics and Mining Sciences, 17, 25–33.

    Article  Google Scholar 

  • Souley, M., Homand, F., Pepa, S., & Hoxha, D. (2002). Damage-induced permeability changes in granite: A case example at the URL in Canada. International Journal of Rock Mechanics and Mining Sciences, 38(2), 297–310.

    Article  Google Scholar 

  • Soultz-sous-Forêts project. (2006). The deep EGS (Enhanced Geothermal System) project at Soultz-sous-Forêts (Alsace, France). Geothermics, 35, 473–483.

    Article  Google Scholar 

  • Taron, J., & Elsworth, D. (2009). Thermal-hydrologic-mechanical-chemical processes in the evolution of engineered geothermal reservoirs. International Journal of Rock Mechanics and Mining Sciences, 46, 855–864.

    Article  Google Scholar 

  • Tenma, N., Yamaguchi, T., & Zyvoloski, G. (2008). The Hijiori Hot Dry Rock test site, Japan. Evaluation and optimization of heat extraction from a two-layered reservoir. Geothermics, 37, 19–52.

    Article  Google Scholar 

  • Tenzer, H. (2001). Development of hot dry rock technology. Geo-Heat Center Bulletin, 32, 14–22.

    Google Scholar 

  • Turcotte, D. L., & Schubert, G. (2002). Geodynamics (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Warren, J. E., & Root, P. J. (1963). The behavior of naturally fractured reservoirs. Society of Petroleum Engineers Journal, 3, 245–255.

    Article  Google Scholar 

  • Watanabe, N., Egawa, M., Sakaguchi, K., Ishibashi, T., & Tsuchiya, N. (2017). Hydraulic fracturing and permeability enhancement in granite from subcritical/brittle to supercritical/ductile conditions. Geophysical Research Letters, 44, 5468–5475. https://doi.org/10.1002/2017GL073898.

    Article  Google Scholar 

  • White, D. E. (1973). Characteristics of geothermal resources and problems of utilization. In P. Kruger & C. Otte (Eds.), Geothermal energy - resources, production, stimulation (pp. 69–94). Stanford: Stanford University Press.

    Google Scholar 

  • Xie, L., Min, K. B., & Song, Y. (2015). Observations of hydraulic stimulations in seven enhanced geothermal system projects. Renewable Energy, 79, 56–65.

    Article  Google Scholar 

  • Zhou, X. X., Ghassemi, A., & Cheng, A. H.-D. (2009). A three-dimensional integral equation model for calculating poro- and thermoelastic stresses induced by cold water injection into a geothermal reservoir. International Journal for Numerical and Analytical Methods in Geomechanics, 33(14), 1613–1640.

    Article  Google Scholar 

  • Zyvoloski, G. A., Aamodt, R. L., Aguilar, R. G., et al. (1981). Evaluation of the second hot dry rock geothermal energy reservoir: Results of Phase I, Run Segment 5, Technical Report LA-8940-HDR, 94 pp. Los Alamos: Los Alamos National Laboratory.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Loret .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loret, B. (2019). Enhanced Geothermal Systems (EGS): Hydraulic Fracturing in a Thermo-Poroelastic Framework. In: Fluid Injection in Deformable Geological Formations. Springer, Cham. https://doi.org/10.1007/978-3-319-94217-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94217-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94216-2

  • Online ISBN: 978-3-319-94217-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics