Advertisement

Automatic Camera Selection in the Context of Basketball Game

  • Florent LefèvreEmail author
  • Vincent Bombardier
  • Patrick Charpentier
  • Nicolas Krommenacker
  • Bertrand Petat
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10884)

Abstract

This article presents an automatic video editing method for video stream selection in a multi-camera environment. The specific context of this study is Basketball game recording and broadcasting. In order to offer the best view to spectator our method is based on action detection in order to select the right camera. We use an azimuth camera to detect the center of gravity of the players representing the action in the match. The effectiveness of our method has been tested by comparing the editing obtained with that carried out by a human operator.

Keywords

Automatic editing Detection Sports analysis 

References

  1. 1.
    Ariki, Y., Kubota, S., Kumano, M.: Automatic production system of soccer sports video by digital camera work based on situation recognition, pp. 851–860, December 2006Google Scholar
  2. 2.
    Carr, P., Mistry, M., Matthews, I.: Hybrid robotic/virtual pan-tilt-zom cameras for autonomous event recording. In: Proceedings of the 21st ACM International Conference on Multimedia, MM 2013, pp. 193–202. ACM, New York (2013).  https://doi.org/10.1145/2502081.2502086
  3. 3.
    Chen, F., Delannay, D., Vleeschouwer, C.D.: An autonomous framework to produce and distribute personalized team-sport video summaries: a basketball case study. IEEE Trans. Multimed. 13(6), 1381–1394 (2011)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Carr, P.: Mimicking human camera operators. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 215–222, January 2015Google Scholar
  5. 5.
    Chen, J., Carr, P.: Autonomous camera systems: a survey. In: Workshop on Intelligent Cinematography and Editing, pp. 18–22 (2014)Google Scholar
  6. 6.
    Daigo, S., Ozawa, S.: Automatic pan control system for broadcasting ball games based on audience’s face direction, p. 444. ACM Press (2004). http://portal.acm.org/citation.cfm?doid=1027527.1027634
  7. 7.
    Delannay, D., Danhier, N., Vleeschouwer, C.D.: Detection and recognition of sports (wo)men from multiple views. In: 2009 Third ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), pp. 1–7, August 2009Google Scholar
  8. 8.
    Fiorio, C., Gustedt, J.: Two linear time union-find strategies for image processing. Theoret. Comput. Sci. 154(2), 165–181 (1996). http://www.sciencedirect.com/science/article/pii/0304397594002622MathSciNetCrossRefGoogle Scholar
  9. 9.
    KaewTraKulPong, P., Bowden, R.: An improved adaptive background mixture model for real-time tracking with shadow detection. In: Remagnino, P., Jones, G.A., Paragios, N., Regazzoni, C.S. (eds.) Video-Based Surveillance Systems, pp. 135–144. Springer, Boston (2002).  https://doi.org/10.1007/978-1-4615-0913-4_11CrossRefGoogle Scholar
  10. 10.
    Ren, J., Xu, M., Orwell, J., Jones, G.A.: Multi-camera video surveillance for real-time analysis and reconstruction of soccer games. Mach. Vis. Appl. 21(6), 855–863 (2010).  https://doi.org/10.1007/s00138-009-0212-0CrossRefGoogle Scholar
  11. 11.
    Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27 (2006). http://dare.uva.nl/search?metis.record.id=263396CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Florent Lefèvre
    • 1
    • 2
    Email author
  • Vincent Bombardier
    • 1
  • Patrick Charpentier
    • 1
  • Nicolas Krommenacker
    • 1
  • Bertrand Petat
    • 2
  1. 1.Université de Lorraine, CNRS, CRANNancyFrance
  2. 2.CitizenCamMaxévilleFrance

Personalised recommendations