Image Segmentation and Object Extraction for Automatic Diatoms Classification

  • Emanuel Gutiérrez Lira
  • Fathallah NouboudEmail author
  • Alain Chalifour
  • Yvon Voisin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10884)


The diatoms are unicellular algae of great interest in paleontology, aquatic ecology, and forensic medicine, among others. Currently, there are more than 100 000 known species distributed in aquatic ecosystems. For that reason, there is a big interest in the automatic classification of diatom images, however, the preliminary process applied to isolate the diatom from the background is a complex task. In this paper, we propose a segmentation method and an object-extraction procedure to extract the diatom from the background. First, we binarize the image by searching the optimal threshold in the histogram based on its cumulative distribution function. Then we eliminate, under some spatial criteria, all regions other than those that could be part of the diatom. Afterwards, we construct the convex hull of all remaining components. Finally, from this first polygonal approximation, we construct the diatom contour by successive refinements of the convex hull shape.


Image segmentation Unimodal segmentation Object extraction Diatoms classification 


  1. 1.
    Siddour, A., Nouboud, F., Mammass, D., Chalifour, A., Campeau, S.: Classification des diatomées par les descripteurs de Fourier du contour. Spécial MCSEAI 2006, e-TI, Numéro 4 / Issue 4 (2007)Google Scholar
  2. 2.
    Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M.: Automatic segmentation of diatom images for classification. Microsc. Res. Tech. 65, 72–85 (2004)CrossRefGoogle Scholar
  3. 3.
    Álvarez, T., Martín, Y., Pérez, S., Santos, F., Tadeo, F., González, S., Arribas, J.L., Vega, P.: Classification of microorganisms using image processing techniques. In: Proceedings of International Conference on Image Processing (Greece), pp. 329–332 (2001)Google Scholar
  4. 4.
    Ciobanu, A., Shahbazkia, H., du Buf, H.: Contour profiling by dynamic ellipse fitting. In: Proceedings of 15th International Conference on Pattern Recognition, pp. 750–753 (2000)Google Scholar
  5. 5.
    Anjos, A., Shahbazkia, H.: Bi-level image thresholding - a fast method. In: Biosignals, pp. 70–76 (2008)Google Scholar
  6. 6.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)CrossRefGoogle Scholar
  7. 7.
    Rosin, P.L.: Unimodal thresholding. J. Pattern Recognit. Soc. 34, 2083–2096 (2001)CrossRefGoogle Scholar
  8. 8.
    Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emanuel Gutiérrez Lira
    • 1
  • Fathallah Nouboud
    • 1
    Email author
  • Alain Chalifour
    • 1
  • Yvon Voisin
    • 2
  1. 1.Université du Québec à Trois-RivièresTrois-RivièresCanada
  2. 2.Laboratoire Électronique, Informatique et Image, CNRS-UMR No. 5158, Université de Bourgognesite d’AuxerreFrance

Personalised recommendations