Advertisement

PDEs on Graphs for Image Reconstruction on Positron Emission Tomography

  • Abdelwahhab BoudjelalEmail author
  • Abderrahim Elmoataz
  • François Lozes
  • Zoubeida Messali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10884)

Abstract

A better quality of an image can be achieved through iterative image reconstruction for positron emission tomography (PET) as it employs spatial regularization that minimizes the difference of image intensity among adjacent pixels. In our previous works, we have proposed a simple method to solve PDEs on general images using the framework of PdEs (Partial difference Equations) on graphs. In this paper, we propose to apply morphological-based operators on graphs for processing of 2D PET images. We apply this approach for to remove noise from the raw projections data. The quality measurements and visual inspections show a significant improvement in image quality compared to conventional Algebraic Reconstruction Technique (ART).

Keywords

Image reconstruction PET Post-reconstruction ART algorithm PdE framework 

Notes

Acknowledgment

A. Emoataz is supported by the ANR SUMUM (ANR-17-CE38-0004).

References

  1. 1.
    Turkington, T.G.: Introduction to pet instrumentation. Journal of nuclear medicine technology 29(1), 4–11 (2001)Google Scholar
  2. 2.
    Hsieh, J., et al.: Computed tomography: principles, design, artifacts, and recent advances. SPIE Bellingham, WA (2009)Google Scholar
  3. 3.
    Fernandez, J.J.: Computational methods for electron tomography. Micron 43(10), 1010–1030 (2012)CrossRefGoogle Scholar
  4. 4.
    Natterer, F.: The mathematics of computerized tomography. Volume 32. Siam (1986)Google Scholar
  5. 5.
    Fessler, J.A.: Penalized weighted least-squares image reconstruction for positron emission tomography. IEEE transactions on medical imaging 13(2), 290–300 (1994)CrossRefGoogle Scholar
  6. 6.
    Anastasio, M.A., Zhang, J., Pan, X., Zou, Y., Ku, G., Wang, L.V.: Half-time image reconstruction in thermoacoustic tomography. IEEE transactions on medical imaging 24(2), 199–210 (2005)CrossRefGoogle Scholar
  7. 7.
    Boudjelal, A., Messali, Z., Elmoataz, A.: A novel kernel-based regularization technique for pet image reconstruction. Technologies 5(2), 37 (2017)CrossRefGoogle Scholar
  8. 8.
    Boudjelal, A., Messali, Z., Elmoataz, A., Attallah, B.: Improved simultaneous algebraic reconstruction technique algorithm for positron-emission tomography image reconstruction via minimizing the fast total variation. Journal of Medical Imaging and Radiation Sciences 48(4), 385–393 (2017)CrossRefGoogle Scholar
  9. 9.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the royal statistical society. Series B (methodological) (1977) 1–38Google Scholar
  10. 10.
    Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE transactions on medical imaging 1(2), 113–122 (1982)CrossRefGoogle Scholar
  11. 11.
    Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (art) for three-dimensional electron microscopy and x-ray photography. Journal of theoretical Biology 29(3), 471–481 (1970)CrossRefGoogle Scholar
  12. 12.
    Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing. IEEE T. Image. Process. 17(7), 1047–1060 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ta, V.T., Elmoataz, A., Lezoray, O.: Nonlocal pdes-based morphology on weighted graphs for image and data processing. IEEE T. Image. Process. 26(2), 1504–1516 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (sart): a superior implementation of the art algorithm. Ultrasonic imaging 6(1), 81–94 (1984)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Abdelwahhab Boudjelal
    • 1
    • 2
    Email author
  • Abderrahim Elmoataz
    • 1
  • François Lozes
    • 1
  • Zoubeida Messali
    • 2
  1. 1.Image Team, University of Caen Normandy and the ENSICAEN in the GREYC LaboratoryCaen CedexFrance
  2. 2.Electrical Engineering Laboratory LGE, M’sila UniversityM’silaAlgeria

Personalised recommendations