Editorial Image Retrieval Using Handcrafted and CNN Features

  • Claudia Companioni-BritoEmail author
  • Mohamed Elawady
  • Sule Yildirim
  • Jon Yngve Hardeberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10884)


Textual keywords have been used in the early stages for image retrieval systems. Due to the huge increase of image content, an image is efficiently used instead according to the time computation. Deciding powerful feature representations are the important factors for the retrieval performance of a content-based image retrieval (CBIR) system. In this work, we present a combined feature representation based on handcrafted and deep approaches, to categorize editorial images into six classes (athletics, football, indoor, outdoor, portrait, ski). The experimental results show the superior performance of the combined features among different editorial classes.


Image features Similarity CBIR CNN LBP BoVW 



I would like to thank NTB, the Norwegian news agency, for providing the dataset for research use, from the Scanpix database.


  1. 1.
    Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: state of the art and challenges. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2(1), 1–19 (2006)CrossRefGoogle Scholar
  2. 2.
    Wan, J., Wang, D., Hoi, S.C.H., Wu, P., Zhu, J., Zhang, Y., Li, J.: Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 157–166. ACM (2014)Google Scholar
  3. 3.
    Yue, J., Li, Z., Liu, L., Fu, Z.: Content-based image retrieval using color and texture fused features. Math. Comput. Modell. 54(3–4), 1121–1127 (2011)CrossRefGoogle Scholar
  4. 4.
    Jain, A.K., Vailaya, A.: Image retrieval using color and shape. Pattern Recogn. 29(8), 1233–1244 (1996)CrossRefGoogle Scholar
  5. 5.
    Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 524–531. IEEE (2005)Google Scholar
  6. 6.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  7. 7.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  8. 8.
    Zhou, W., Li, H., Tian, Q.: Recent advance in content-based image retrieval: a literature survey. arXiv preprint arXiv:1706.06064 (2017)
  9. 9.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  10. 10.
    Wu, G., Lu, W., Gao, G., Zhao, C., Liu, J.: Regional deep learning model for visual tracking. Neurocomputing 175, 310–323 (2016)CrossRefGoogle Scholar
  11. 11.
    Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241–257. Springer, Cham (2016). Scholar
  12. 12.
    Alzu’bi, A., Amira, A., Ramzan, N.: Content-based image retrieval with compact deep convolutional features. Neurocomputing 249, 95–105 (2017)CrossRefGoogle Scholar
  13. 13.
    Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). Scholar
  14. 14.
    Babenko, A., Lempitsky, V.: Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1269–1277 (2015)Google Scholar
  15. 15.
    Liu, H., Li, B., Lv, X., Huang, Y.: Image retrieval using fused deep convolutional features. Procedia Comput. Sci. 107, 749–754 (2017)CrossRefGoogle Scholar
  16. 16.
    Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)Google Scholar
  17. 17.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  18. 18.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)Google Scholar
  19. 19.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  20. 20.
    Athiwaratkun, B., Kang, K.: Feature representation in convolutional neural networks. arXiv preprint arXiv:1507.02313 (2015)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Claudia Companioni-Brito
    • 1
    Email author
  • Mohamed Elawady
    • 2
  • Sule Yildirim
    • 1
  • Jon Yngve Hardeberg
    • 1
  1. 1.NTNU - Norwegian University of Science and TechnologyGjøvikNorway
  2. 2.Université de Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR5516Saint-EtienneFrance

Personalised recommendations