Advertisement

Human Dendritic Cells Segmentation Based on K-Means and Active Contour

  • Marwa Braiki
  • Abdesslam BenzinouEmail author
  • Kamal Nasreddine
  • Aymen Mouelhi
  • Salam Labidi
  • Nolwenn Hymery
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10884)

Abstract

Dendritic cells play a fundamental role in the immune system. The analysis of these cells in vitro is a new evaluation technique of the effects of food contaminants on the immune responses. This analysis that remains purely visual is a laborious and time-consuming process. An automatic analysis of dendritic cells is suggested to analyze their morphological features and behavior. It can serve as an assessment tool for dendritic cells image analysis to facilitate the evaluation of toxic impact. The suggested method will help biological experts to avoid subjective analysis and to save time. In this paper, we propose an automated approach for segmentation of dendritic cells that could assist pathologists in their evaluation. First, after a preprocessing step, we use k-means clustering and mathematical morphology to detect the location of cells in microscopic images. Second, a region-based Chan-Vese active contour model is applied to get boundaries of the detected cells. Finally, a post processing stage based on shape information is used to improve the results in case of over-segmentation or sub-segmentation in order to select only regions of interest. A segmentation accuracy of 99.44% on a real dataset demonstrates the effectiveness of the proposed approach and its suitability for automated identification of dendritic cells.

Keywords

Dendritic cells Segmentation K-means Active contour 

References

  1. 1.
    Hymery, N., Sibiril, Y., Parent-Massin, D.: Improvement of human dendritic cell culture for immunotoxicological investigations. Cell Biol. Toxicol. 22, 243–255 (2006)CrossRefGoogle Scholar
  2. 2.
    Suberi, A.A.M., Zakaria, W.N.W., Tomari, R.: Dendritic cell recognition in computer aided system for cancer immunotherapy. Procedia Comput. Sci. 105, 177–182 (2016)CrossRefGoogle Scholar
  3. 3.
    Diaz, G., Manzanera, A.: Automatic analysis of microscopic images in hematological cytology applications. In: Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques (2009)Google Scholar
  4. 4.
    Bikhet, S.F., Darwish, A.M., Tolba, H.A., Shaheen, S.I.: Segmentation and classification of white blood cells. In: 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), vol. 6, pp. 2259–2261 (2000)Google Scholar
  5. 5.
    Belhomme, P., Elmoataz, A., Herlin, P., Bloyet, D.: Generalized region growing operator with optimal scanning: application to segmentation of breast cancer images. J. Microsc. 186, 41–50 (1997)CrossRefGoogle Scholar
  6. 6.
    Cloppet, F., Boucher, A.: Segmentation of complex nucleus configurations in biological images. Pattern Recogn. Lett. 31(8), 755–761 (2010)CrossRefGoogle Scholar
  7. 7.
    Pan, C., Fang, Y., Yan, X.G., Zheng, X.: Robust segmentation for low quality cell images from blood and bone marrow. Int. J. Control Autom. Syst. 4(5), 637–644 (2006)Google Scholar
  8. 8.
    Gautam, A., Bhadauria, H.S.: White blood nucleus extraction using K-mean clustering and mathematical morphing. In: Proceedings of the 5th IEEE International Conference on The Next Generation Information Technology Summit, Noida, India, pp. 549–554 (2014)Google Scholar
  9. 9.
    Theera-Umpon, N.: Patch-based white blood cell nucleus segmentation using fuzzy clustering. Ecti Trans. Electr. Eng. Electron. Commun. 3, 15–19 (2005)Google Scholar
  10. 10.
    Ko, B.C., Gim, J.W., Nam, J.Y.: Automatic white blood cell segmentation using stepwise merging rules and gradient vector flow snake. Micron 42(7), 695–705 (2011)CrossRefGoogle Scholar
  11. 11.
    Piuri, V., Scotti, F.: Morphological classification of blood leucocytes by microscope images. In: Proceedings of the IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (2004)Google Scholar
  12. 12.
    Weickert, J.: Multiscale texture enhancement. In: Hlaváč, V., Šára, R. (eds.) CAIP 1995. LNCS, vol. 970, pp. 230–237. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60268-2_301CrossRefGoogle Scholar
  13. 13.
    Weickert, J.: Coherence enhancing diffusion. Int. J. Comput. Vis. 31, 111–127 (1999)CrossRefGoogle Scholar
  14. 14.
    Weickert, J.: A review of nonlinear diffusion filtering. In: ter Haar Romeny, B., Florack, L., Koenderink, J., Viergever, M. (eds.) Scale-Space 1997. LNCS, vol. 1252, pp. 1–28. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63167-4_37CrossRefGoogle Scholar
  15. 15.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefGoogle Scholar
  16. 16.
    Braiki, M., Benzinou, A., Nasreddine, K., Labidi, S.: A comparative evaluation of segmentation methods for dendritic cells identification from microscopic images. In: IEEE International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), TunisiaGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marwa Braiki
    • 1
    • 3
  • Abdesslam Benzinou
    • 1
    Email author
  • Kamal Nasreddine
    • 1
  • Aymen Mouelhi
    • 2
  • Salam Labidi
    • 3
  • Nolwenn Hymery
    • 4
  1. 1.Univ Bretagne Loire, ENIB, UMR CNRS 6285 LabSTICCBrestFrance
  2. 2.UT, ENSIT, LR13ES03 (SIME)TunisTunisie
  3. 3.UTM, ISTMT, LR13ES07 (LRBTM)TunisTunisie
  4. 4.UBL, ESIAB, LUBEMPlouzanéFrance

Personalised recommendations