Advertisement

Analysis of Camera Pose Estimation Using 2D Scene Features for Augmented Reality Applications

  • Shabnam Meshkat AlsadatEmail author
  • Denis Laurendeau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10884)

Abstract

Augmented reality (AR) enables civil engineers and architects to visualize a representation of the structure that is going to be built at different stages of the construction. Overlaying a 3D model onto an image requires localizing the camera accurately in its environment. In this paper, we evaluate the camera pose estimation methods using circles and straight lines, as two of the common features visible in the architectural structures, by taking into account the relationship between the coordinates of the features in the 2D image and their corresponding positions in the 3D world. The proposed approach could be used for AR applications.

Keywords

Pose estimation Exterior calibration Augmented reality 

Notes

Acknowledgments

This research was supported by NSERC and Bentley Systems.

References

  1. 1.
    Chen, Q., Wu, H., Wada, T.: Camera calibration with two arbitrary coplanar circles. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 521–532. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24672-5_41CrossRefGoogle Scholar
  2. 2.
    Pagani, A., Kohler, J., Stricker, D.: Circular markers for camera pose estimation. In: Proceedings of the International Workshop on Image Analysis for Multimedia Interactive Services (2011)Google Scholar
  3. 3.
    Forsyth, D., Mundy, J., Zisserman, A., Coelho, C., Heller, A., Rothwell, C.: Invariant descriptors for 3D object recognition and pose. IEEE Trans. Pattern Anal. Mach. Intell. 13(10), 971–991 (1991)CrossRefGoogle Scholar
  4. 4.
    Rothwell, C., Zisserman, A., Marinos, C., Forsyth, D., Mundy, J.: Relative motion and pose from arbitrary plane curves. Image Vis. Comput. 10(4), 250–262 (1992)CrossRefGoogle Scholar
  5. 5.
    Zheng, Y., Liu, Y.: The projective equation of a circle and its application in camera calibration. In: International Conference on Pattern Recognition, Tampa, FL (2008)Google Scholar
  6. 6.
    Ansar, A., Daniilidis, K.: Linear pose estimation from points or lines. IEEE Pattern Anal. Mach. Intell. 25(5), 578–589 (2003)CrossRefGoogle Scholar
  7. 7.
    Pribyl, B., Zerncik, P., Cadik, M.: Absolute pose estimation from line correspondences using direct linear transformation. Comput. Vis. Image Underst. 161, 130–144 (2017)CrossRefGoogle Scholar
  8. 8.
    Ababsa, F., Mallem, M.: Robust camera pose estimation combining 2D/3D points and lines tracking. In: IEEE International Symposium on Industrial Electronics, Cambridge, UK (2008)Google Scholar
  9. 9.
    Vakhitov, A., Funke, J., Moreno-Noguer, F.: Accurate and linear time pose estimation from points and lines. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 583–599. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46478-7_36CrossRefGoogle Scholar
  10. 10.
    Zhang, L., Xu, C., Lee, K.-M., Koch, R.: Robust and efficient pose estimation from line correspondences. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 217–230. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37431-9_17CrossRefGoogle Scholar
  11. 11.
    Xu, C., Zhang, L., Cheng, L., Koch, R.: Pose estimation from line correspondences: a complete analysis and a series of solutions. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1209–1222 (2017)CrossRefGoogle Scholar
  12. 12.
    Ji, Q., Costa, M., Haralick, R., Shapiro, L.: A robust linear least-squares estimation of camera exterior orientation using multiple geometric features. J. Photogramm. Remote Sens. 55(2), 75–93 (2000)CrossRefGoogle Scholar
  13. 13.
    Phong, T.Q., Horaud, R., Yassine, A., Tao, P.D.: Object pose from 2-D to 3-D point and line correspondences. Int. J. Comput. Vis. 15(3), 225–243 (1995)CrossRefGoogle Scholar
  14. 14.
    Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)CrossRefGoogle Scholar
  15. 15.
    Ouellet, J.-N., Hebert, P.: A simple operator for very precise estimation of ellipses. In: Computer and Robot Vision (CRV), Montreal (2007)Google Scholar
  16. 16.
    Akinlar, C., Topal, C.: EDLines: a real-time line segment detector with a false detection control. Pattern Recogn. Lett. 32, 1633–1642 (2011)CrossRefGoogle Scholar
  17. 17.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra (1999)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université LavalQuebec CityCanada

Personalised recommendations