Advertisement

Multi-Pinhole Based X-Ray Fluorescence Computed Tomography: A Comparison with Single Pinhole Case

  • Tenta Sasaya
  • Naoki Sunaguchi
  • Seung-Jun Seo
  • Tsutomu Zeniya
  • Kazuyuki Hyodo
  • Jong-Ki Kim
  • Tetsuya YuasaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10884)

Abstract

An x-ray fluorescence computed tomography using a pinhole collimator (p-XFCT) for medical use depicts the 3-D distribution of imaging agent by collecting the x-ray fluorescence photons emitted from the imaging agent accumulated in an organ using a pinhole collimator and a 2-D detector. However, the number of the fluorescent x-ray photons are restricted by the pinhole, leading to acquisition of low S/N projections due to the photon starvation. Simultaneous acquisition of multiple projections using a multi-pinhole scheme overcomes the photon starvation. In this research, we clarified the measurement process and described the quantitative linear relationship between the quantities to be estimated and to be measured. We solved the multi-pinhole based XFCT (mp-XFCT) as a linear inverse problem regarding the described measurement process using ML-EM (maximum likelihood expectation-maximization) algorithm. We actually constructed an mp-XFCT imaging system at beamline AR-NE7A in KEK, and performed imaging experiment using a physical phantom to demonstrate the efficacy of mp-XFCT.

Keywords

X-ray fluorescence Computed tomography Pinhole Molecular imaging 

References

  1. 1.
    Cesareo, R., et al.: Nucl. Instrum. Meth. A 277, 559–672 (1989)CrossRefGoogle Scholar
  2. 2.
    Hogan, J.P., et al.: IEEE Trans. Nucl. Sci. 38, 1721–1727 (1991)CrossRefGoogle Scholar
  3. 3.
    Schroer, C.G.: Appl. Phys. Lett. 79, 1912–1914 (2001)CrossRefGoogle Scholar
  4. 4.
    Glosio, B., et al.: J. Appl. Phys. 94, 145–156 (2003)CrossRefGoogle Scholar
  5. 5.
    Rust, G.F., et al.: IEEE Trans. Nucl. Sci. 45, 75–88 (1998)CrossRefGoogle Scholar
  6. 6.
    Yuasa, T., et al.: IEEE Trans. Nucl. Sci. 44, 54–62 (1997)CrossRefGoogle Scholar
  7. 7.
    Yuasa, T., et al.: IEEE Trans. Nucl. Sci. 44, 1760–1769 (1997)CrossRefGoogle Scholar
  8. 8.
    Huo, Q., et al.: Opt. Lett. 33, 2494–2496 (2008)CrossRefGoogle Scholar
  9. 9.
    Huo, Q., et al.: X-Ray Spectrosc. 38, 439–445 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Takeda, T., et al.: J. Synchrotron Radiat. 16, 57–62 (2009)CrossRefGoogle Scholar
  11. 11.
    Lwin, T.T., et al.: J. Synchrotron Radiat. 14, 158–162 (2007)CrossRefGoogle Scholar
  12. 12.
    Lwin, T.T., et al.: J. Synchrotron Radiat. 15, 528–531 (2008)CrossRefGoogle Scholar
  13. 13.
    Sunaguchi, N., et al.: Opt. Comm. 297, 210–215 (2013)CrossRefGoogle Scholar
  14. 14.
    Bazalova-Carter, M., et al.: Radiother. Oncol. 15, S66–S57 (2015)CrossRefGoogle Scholar
  15. 15.
    Sasaya, T., et al.: Sci. Rep. 7, 44143 (2017)CrossRefGoogle Scholar
  16. 16.
    Sasaya, T., et al.: Sci. Rep. 7, 5742 (2017)CrossRefGoogle Scholar
  17. 17.
    Sasaya, T., et al.: Nucl. Instrum. Meth. A 886, 71–76 (2018)CrossRefGoogle Scholar
  18. 18.
    Lange, K., Garson, R.: J. Comput. Assist. Tomogr. 8, 306–316 (1984)Google Scholar
  19. 19.
    Shepp, L.A., Vardi, V.: IEEE Trans. Med. Imaging 1, 113–121 (1982)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tenta Sasaya
    • 1
  • Naoki Sunaguchi
    • 2
  • Seung-Jun Seo
    • 3
  • Tsutomu Zeniya
    • 4
  • Kazuyuki Hyodo
    • 5
  • Jong-Ki Kim
    • 3
  • Tetsuya Yuasa
    • 1
    Email author
  1. 1.Yamagata UniversityYonezawaJapan
  2. 2.Nagoya UniversityNagoyaJapan
  3. 3.Catholic University of DaeguDaeguKorea
  4. 4.Hirosaki UniversityHirosakiJapan
  5. 5.High Energy Accelerator OrganizationTsukubaJapan

Personalised recommendations