Review: Automatic Image Annotation for Semantic Image Retrieval

  • Hasna AbiouiEmail author
  • Ali Idarrou
  • Ali Bouzit
  • Driss Mammass
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10884)


Nowadays, the number of digital data sets grows exponentially. Hence, the need to conceive efficient and powerful image indexation and retrieval systems grows as well. Automatic image annotation was adopted by several research as the emerging trend in image retrieval area. Actually, it is considered as the best solution that combines the content-based techniques by using low-level image features and text-based techniques exploiting textual annotations, associated to the image. In this way, the semantic gap between low-level image features and high-level semantics will be reduced. This paper presents a review of image retrieval approaches, by focusing especially on the automatic image annotation methods, in order to analyse the impact of annotations and associating semantics to the visual data for an image retrieval process.


Image retrieval Automatic image annotation Semantic gap 


  1. 1.
    Mitran, M.: Annotation d’images via leur contexte spatio-temporel et les métadonnées du Web. Université de Toulouse, Université Toulouse III-Paul Sabatier (2014)Google Scholar
  2. 2.
    Islam, M.M., Zhang, D., Lu, G.: Automatic categorization of image regions using dominant colour based vector quantization. In: Proceedings of the Digital Image Computing: Techniques and Applications, pp. 191–198 (2008)Google Scholar
  3. 3.
    Ben Ismail, M.M.: A survey on content-based image retrieval. Int. J. Adv. Comput. Sci. Appl. 4(8) (2013)Google Scholar
  4. 4.
    Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  5. 5.
    Olszewska, J.I.: Semantic, automatic image annotation based on multi-layered active contours and decision trees. Int. J. Adv. Comput. Sci. Appl. 4(8), 201–208 (2013)Google Scholar
  6. 6.
    Enser, P.: Visual image retrieval: seeking the alliance of concept-based and content-based paradigms. J. Inf. Sci. 26(4), 199–210 (2000)CrossRefGoogle Scholar
  7. 7.
    Sakhare, S.V., Nasre, V.G.: Design of feature extraction in content based image retrieval (CBIR) using color and texture. Int. J. Comput. Sci. Inform. 1(II) (2011)Google Scholar
  8. 8.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recogn. 37(1), 1–19 (2004)CrossRefGoogle Scholar
  9. 9.
    Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8(6), 460–473 (1978)CrossRefGoogle Scholar
  10. 10.
    Westerveld, T.: Image retrieval: content versus context. In: Content-Based Multimedia Information Access, vol. 1, pp. 276–284 (2000)Google Scholar
  11. 11.
    Zhang, C., Chai, J.Y., Jin, R.: User term feedback in interactive text-based image retrieval. In: Proceedings of the 28th Annual International Conference on Research and Development in Information Retrieval, pp. 51–58 (2005)Google Scholar
  12. 12.
    Gouet-Brunet, V.: Recherche par contenu visuel dans les grandes collections d’images (2005)Google Scholar
  13. 13.
    Liu, H., Song, D., Rüger, S., Hu, R., Uren, V.: Comparing dissimilarity measures for content-based image retrieval. In: Li, H., Liu, T., Ma, W.-Y., Sakai, T., Wong, K.-F., Zhou, G. (eds.) AIRS 2008. LNCS, vol. 4993, pp. 44–50. Springer, Heidelberg (2008). Scholar
  14. 14.
    Khademi, S.M., Pakize, S.R., Tanoorje, M.A.: A review of methods for the automatic annotation and retrieval of medical images. Int. J. 4(7) (2014)Google Scholar
  15. 15.
    Pagare, R., Shinde, A.: A study on image annotation techniques. Int. J. Comput. Appl. 37(6), 42–45 (2012)Google Scholar
  16. 16.
    Bouyerbou, H., Oukid, S., Benblidia, N., Bechkoum, K.: Hybrid image representation methods for automatic image annotation: a survey. In: International Conference on Signals and Electronic Systems, pp. 1–6 (2012)Google Scholar
  17. 17.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  18. 18.
    Qi, X., Han, Y.: Incorporating multiple SVMs for automatic image annotation. Pattern Recogn. 40(2), 728–741 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cusano, C., Ciocca, G., Schettini, R.: Image annotation using SVM. In: Internet Imaging V, vol. 5304, pp. 330–339. International Society for Optics and Photonics (2003)Google Scholar
  20. 20.
    Goh, K.S., Chang, E.Y., Li, B.: Using one-class and two-class SVMs for multiclass image annotation. IEEE Trans. Knowl. Data Eng. 17(10), 1333–1346 (2005)CrossRefGoogle Scholar
  21. 21.
    Guo, Y.T., Luo, B.: An automatic image annotation method based on the mutual K-nearest neighbor graph. In: Proceedings of the 6th International Conference on Natural Computation, Yantai, Shandong, pp. 3562–3566. IEEE (2010)Google Scholar
  22. 22.
    Zhao, Y., Zhao, Y., Zhu, Z., Pan, J.-S.: A novel image annotation scheme based on neural network. In: Proceedings of the 8th International Conference on Intelligent Systems Design and Applications, pp. 644–647 (2008)Google Scholar
  23. 23.
    Patil, M.P.: Automatic image annotation using decision trees and rough sets. Int. J. Comput. Sci. Appl. 11(2), 38–49 (2014)Google Scholar
  24. 24.
    Olaode, A.A., Naghdy, G., Todd, C.A.: Unsupervised image classification by probabilistic latent semantic analysis for the annotation of images. In: International Conference on Digital Image Computing: Techniques and Applications (2014)Google Scholar
  25. 25.
    Wang, X.-J., Zhang, L., Jing, F., Ma, W.-Y.: AnnoSearch: image auto-annotation by search. In: Proceedings of the CVPR06, vol. 2, pp. 1483–1490 (2006)Google Scholar
  26. 26.
    Barai, S., Cardenas, A.F.: Image annotation system using visual and textual features. In: Proceedings of the 16th International Conference on Distributed Multi-media Systems, pp. 289–296 (2010)Google Scholar
  27. 27.
    Verbeek, J., Guillaumin, M., Mensink, T., Schmid, C.: Image annotation with tag- prop on the MIRFLICKR set. In: Proceedings of the International Conference on Multimedia Information Retrieval, pp. 537–546 (2010)Google Scholar
  28. 28.
    Jin, Y., Khan, L., Wang, L., Awad, M.: Image annotations by combining multiple evidence and Wordnet. In: Proceedings of the ACM Multimedia (2005)Google Scholar
  29. 29.
    Jaouachi, R., Torjmen, M., Hernandez, N., Haemmerlé, O., Jemaa, M.B.: Vers une annotation semantique des images web fondee sur des patrons RDF (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hasna Abioui
    • 1
    Email author
  • Ali Idarrou
    • 1
  • Ali Bouzit
    • 1
  • Driss Mammass
    • 1
  1. 1.IRF-SIC LaboratoryIbn Zohr UniversityAgadirMorocco

Personalised recommendations