An Objective Evaluation of Edge Detection Methods Based on Oriented Half Kernels

  • Baptiste MagnierEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10884)


Easy to use, oriented half kernels are reliable in image analysis. These thin filters, rotated in all the desired directions are useful to detect edges, or extract precisely their orientations, even concerning highly noisy images. Usually, the filtering process corresponds to convolutions with Gaussians and their derivatives. Other filters exist and can be implemented in order to build half kernels. However, functions used for the smoothing and derivative parts have not been studied in depth. The goal of this paper is to evaluate different types of half filters as a function of the noise level. The studied kernels have the same spatial support, enabling easier comparisons. To address the robustness of the studied filters against noise, the image quality is gradually worsened. Then, their performances are compared through objective evaluations of both segmentation and gradient direction.


Edge detection Half kernels Gradient direction Evaluation 


  1. 1.
    Abdulrahman, H., Magnier, B., Montesinos, P.: From contours to ground truth: how to evaluate edge detectors by filtering. J. WSCG 25(2), 133–142 (2017)Google Scholar
  2. 2.
    Abdulrahman, H., Magnier, B., Montesinos, P.: A new objective supervised edge detection assessment using hysteresis thresholds. In: International Workshop on Brain-Inspired Computer Vision, held as part of ICIAP, pp. 3–14 (2017)CrossRefGoogle Scholar
  3. 3.
    Abdulrahman, H., Magnier, B., Montesinos, P.: Oriented asymmetric kernels for corner detection. In: IEEE EUSIPCO, pp. 778–782 (2017)Google Scholar
  4. 4.
    Bourennane, E., Gouton, P., Paindavoine, M., Truchetet, F.: Generalization of Canny-Deriche filter for detection of noisy exponential edge. Sig. Process. 82(10), 1317–1328 (2002)CrossRefGoogle Scholar
  5. 5.
    Canny, J.F.: A computational approach to edge detection. IEEE TPAMI 8(6), 679–698 (1986)CrossRefGoogle Scholar
  6. 6.
    Deriche, R.: Using Canny’s criteria to derive a recursively implemented optimal edge detector. Int. J. Comput. Vis. 1, 167–187 (1987)CrossRefGoogle Scholar
  7. 7.
    Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching, In: 12th IAPR International Conference on Pattern Recognition, vol. 1, pp. 566–568 (1994)Google Scholar
  8. 8.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE TPAMI 13, 89–906 (1991)CrossRefGoogle Scholar
  9. 9.
    Geusebroek, J.-M., Smeulders, A.W.M., van de Weijer, J.: Fast anisotropic gauss filtering. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 99–112. Springer, Heidelberg (2002). Scholar
  10. 10.
    Jacob, M., Unser, M.: Design of steerable filters for feature detection using Canny-like criteria. IEEE TPAMI 26(8), 1007–1019 (2004)CrossRefGoogle Scholar
  11. 11.
    Köthe, U.: Reliable low-level image analysis. Habilitation thesis (2007)Google Scholar
  12. 12.
    Laligant, O., Truchetet, F., Meriaudeau, F.: Regularization preserving localization of close edges. IEEE Sig. Process. Letters 14(3), 185–188 (2007)CrossRefGoogle Scholar
  13. 13.
    Magnier, B., Montesinos, P., Diep, D.: Texture removal by pixel classification using a rotating filter. In: IEEE ICASSP, pp. 1097–1100 (2011)Google Scholar
  14. 14.
    Magnier, B., Montesinos, P.: Evolution of image regularization with PDEs toward a new anisotropic smoothing based on half kernels. In: IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, p. 86550M (2013)Google Scholar
  15. 15.
    Magnier, B., Montesinos, P., Diep, D.: Fast anisotropic edge detection using gamma correction in color images. In: IEEE ISPA, pp. 212–217 (2011)Google Scholar
  16. 16.
    Michelet, F., Da Costa, J.-P., Lavialle, O., Berthoumieu, Y., Baylou, P., Germain, C.: Estimating local multiple orientations. Sig. Process. 87(7), 1655–1669 (2007)CrossRefGoogle Scholar
  17. 17.
    Montesinos, P., Magnier, B.: A new perceptual edge detector in color images. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2010. LNCS, vol. 6474, pp. 209–220. Springer, Heidelberg (2010). Scholar
  18. 18.
    Mühlich, M., Friedrich, D., Aach, T.: Design and implementation of multisteerable matched filters. IEEE TPAMI 34(2), 279–291 (2012)CrossRefGoogle Scholar
  19. 19.
    Papari, G., Petkov, N.: Edge and line oriented contour detection: state of the art. Image Vis. Comput. 29(2), 79–103 (2011)CrossRefGoogle Scholar
  20. 20.
    Perona, P.: Steerable-scalable kernels for edge detection and junction analysis. IVC 10(10), 663–672 (1992)CrossRefGoogle Scholar
  21. 21.
    Prewitt, J.M.S.: Object enhancement and extraction. In: Lipkin, B., Rosenfeld, A. (eds.) Picture Processing and Psychopictorics. Academic Press, New York (1970)Google Scholar
  22. 22.
    Püspöki, Z., Storath, M., Sage, D., Unser, M.: Transforms and operators for directional bioimage analysis: a survey. In: De Vos, W.H., Munck, S., Timmermans, J.-P. (eds.) Focus on Bio-Image Informatics. AAECB, vol. 219, pp. 69–93. Springer, Cham (2016). Scholar
  23. 23.
    Simoncelli, E.P., Farid, H.: Steerable wedge filters for local orientation analysis. IEEE TIP 5(9), 1377–1382 (1996). CiteseerGoogle Scholar
  24. 24.
    Shen, J., Castan, S.: An optimal linear operator for edge detection. IEEE CVPR 86, 109–114 (1986)Google Scholar
  25. 25.
    Venkatrayappa, D., Montesinos, P., Diep, D., Magnier, B.: A novel image descriptor based on anisotropic filtering. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 161–173. Springer, Cham (2015). Scholar
  26. 26.
    Ziou, D., Tabbone, S.: Edge detection techniques: an overview. Int. J. Pattern Recogn. Image Anal. 8(4), 537–559 (1998)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IMT Mines d’Alès, LGI2PAlèsFrance

Personalised recommendations