Advertisement

An Image Processing Method Based on Features Selection for Crop Plants and Weeds Discrimination Using RGB Images

  • Ali Ahmad
  • Rémy Guyonneau
  • Franck Mercier
  • Étienne BelinEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10884)

Abstract

In the context of computer vision applied to precision agriculture, this paper presents an imaging system based on shape and intensity features, extracted from RGB images, for the discrimination between crop plants and weeds. A segmentation method with many constraints to overcome light acquisition conditions is used and coupled with morphological filtering suitable for denoising segmented images. A SVMs classifier based on a polynomial kernel function is implemented and a k-folds cross validation process is used to evaluate the performance of the SVMs classifier usable in 2 different configurations. On a training dataset, these 2 configurations are evaluated for the performance of classification in terms of true and false positive rates, according to ROC curves and area under curves. On a test dataset, these 2 configurations are exploited, giving both a relevant classification rate.

Keywords

Computer vision RGB images Features selection Precision agriculture 

Notes

Acknowledgement

This work received support from the Fonds Unique Interministériel (FUI) in the framework of the project PUMAGri.

References

  1. 1.
    Slaughter, D., Giles, D., Downey, D.: Autonomous robotic weed control systems: a review. Comput. Electron. Agric. 6, 63–78 (2008)CrossRefGoogle Scholar
  2. 2.
    Belin, E., Rousseau, D., Boureau, T., Caffier, V.: Thermography versus chlorophyll fluorescence imaging for detection and quantification of apple scab. Comput. Electron. Agric. 90, 159–163 (2013)CrossRefGoogle Scholar
  3. 3.
    Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., Belin, E., Chapeau-Blondeau, F.: On the use of depth camera for 3D phenotyping of entire plants. Comput. Electron. Agric. 82, 122–127 (2012)CrossRefGoogle Scholar
  4. 4.
    Desai, R., Desai, K., Desai, S., Solanki, Z., Patel, D., Patel, V.: Removal of weeds using image processing: a technical review. Int. J. Adv. Comput. Technol. (IJACT) 4, 27–31 (2015)Google Scholar
  5. 5.
    Astrand, B., Baerveldt, A.: An agricultural mobil robot with vision-based perception for mechanical weed control. Auton. Robot 13, 21–35 (2002)CrossRefGoogle Scholar
  6. 6.
    Blasco, J., Aleixos, N., Roger, J., Rabatel, G., Molto, E.: Robotic weed control using machine vision. Biosyst. Eng. 83, 149–157 (2002)CrossRefGoogle Scholar
  7. 7.
    Aitkenhead, M., Dalgetty, I., Mullins, C., Strachan, N.: Weed and crop discrimination using image analysis and artificial intelligence methods. Comput. Electron. Agric. 39, 157–171 (2003)CrossRefGoogle Scholar
  8. 8.
    Tang, L., Tian, L., Steward, B.L.: Classififcation of broadleaf and grass weeds using gabor wavelets and an artificial neural network. Am. Soc. Agric. Eng. 46, 1247–1254 (2003)Google Scholar
  9. 9.
    Bakhshipour, A., Jafari, A., Nassiri, S., Zare, D.: Weed segmentation using texture features extracted from wavelet sub-images. Biosyst. Eng. 157, 1–12 (2017)CrossRefGoogle Scholar
  10. 10.
    Siddiqi, M., Lee, S., Khan, A.: Weed image classification using wavelet transform, stepwise linear discriminant analysis, and support vector machines for a an automatic spray control system. J. Inf. Sci. Eng. 30, 53–64 (2014)Google Scholar
  11. 11.
    Du, J., Wang, X., Zhang, G.: Leaf shape-based plant species recognition. Appl. Math. Comput. 185, 883–893 (2007)zbMATHGoogle Scholar
  12. 12.
    Rasti, P., Ahmad, A., Belin, E., Rousseau, D.: Learning on deep network without the hot air by scattering transform. Application to weed detection in dense culture. In: 6th International Workshop on Image Analysis Methods for the Plant Sciences (IAMPS), Nottingham, 22–23 January 2018Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ali Ahmad
    • 1
  • Rémy Guyonneau
    • 1
  • Franck Mercier
    • 1
  • Étienne Belin
    • 1
    • 2
    Email author
  1. 1.Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d’AngersAngersFrance
  2. 2.ImHorPhen, SFR 4207 QUASAV, IRHS, UMR1345, Université d’AngersAngersFrance

Personalised recommendations