Skip to main content

Statistical Theory of Dislocation

  • Chapter
  • First Online:
Mesoscale Models

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 587))

Abstract

The plastic deformation of materials are traditionally modeled by phenomenological crystal plasticity continuum theories. There are, however, several phenomena, like deformation size effect, hardening due to grain boundary, dislocation patter formation that cannot be described within this framework. One has to take into account that the stress-strain response of crystalline materials is determined by the collective motion of dislocations. The aim of the present chapter is to introduce a continuum theory of dislocation obtained by a systematic coarse-graining of the evolution equation of individual dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • E.C. Aifantis, On the microstructural origin of certain inelastic models. ASME J. Eng. Mater. Technol. 106, 326–330 (1984)

    Article  Google Scholar 

  • E.C. Aifantis, The physics of plastic deformation. Int. J. Plast. 3(3), 211–247 (1987)

    Article  Google Scholar 

  • E.C. Aifantis, Gradient effects at macro, micro, and nano scales. J. Mech. Behav. Mater. 5(3), 355–375 (1994)

    Article  Google Scholar 

  • E.C. Aifantis, Gradient deformation models at nano, micro, and macro scales. J. Eng. Mater. Technol. 2, 189–202 (1999)

    Article  Google Scholar 

  • G. Ananthakrishna, Current theoretical approaches to collective behavior of dislocations. Phys. Rep. 440, 113–259 (2007)

    Article  MathSciNet  Google Scholar 

  • V.L. Berdichevsky, Homogenization in micro-plasticity. J. Mech. Phys. Solids 53, 2457–2469 (2005)

    Article  MathSciNet  Google Scholar 

  • V. Bulatov, L. Hsiung, M. Tang, A. Arsenlis, M.C. Bartelt, W. Cai, J. Florando, M. Hiratani, M. Rhee, G. Hommes, T.G. Pierce, T. Diaz de la Rubia, Dislocation multi-junctions and strain hardening. Nature 440, 1174–1178 (2006)

    Article  Google Scholar 

  • A.H. Cottrell, B. Bilby, Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. 62A, 49–62 (1949)

    Article  Google Scholar 

  • B. Devincre, L.P. Kubin, C. Lemarchand, R. Madec, Mesoscopic simulations of plastic deformation. Mater. Sci. Eng. A 309(SI), 211–219 (2001)

    Article  Google Scholar 

  • M.M.W. Dogge, R.H.J. Peerlings, M.G.D. Geers, Interface modeling in continuum dislocation transport. Mech. Mater. 88, 30–43 (2015)

    Article  Google Scholar 

  • N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)

    Article  Google Scholar 

  • N.M. Ghoniem, L.Z. Sun, Fast-sum method for the elastic field off three-dimensional dislocation ensembles. Phys. Rev. B 60(1), 128–140 (1999)

    Article  Google Scholar 

  • D. Gomez-Garcia, B. Devincre, L.P. Kubin, Dislocation patterns and the similitude principle: 2.5D mesoscale simulations. Phys. Rev. Lett. 96(12), 125503 (2006)

    Google Scholar 

  • R. Gröger, T. Lookman, A. Saxena, Incompatibility of strains and its application to mesoscopic studies of plasticity. Phys. Rev. B 82, 144104 (2010)

    Article  Google Scholar 

  • I. Groma, Link between the microscopic and mesoscopic length-scale description of the collective behavior of dislocations. Phys. Rev. B 56(10), 5807–5813 (1997)

    Article  Google Scholar 

  • I. Groma, B. Bakó, Dislocation patterning: from micro-to mesoscale description. Phys. Rev. Lett. 84(7), 1487 (2000)

    Article  Google Scholar 

  • I. Groma, P. Balogh, Investigation of dislocation pattern formation in a two-dimensional self-consistent field approximation. Acta Mater. 47, 3647–3654 (1999)

    Article  Google Scholar 

  • I. Groma, F.F. Csikor, M. Zaiser, Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51(5), 1271–1281 (2003)

    Article  Google Scholar 

  • I. Groma, G. Gyorgyi, B. Kocsis, Debye screening of dislocations. Phys. Rev. Lett. 96(16), 165503 (2006)

    Google Scholar 

  • I. Groma, G. Gyorgyi, B. Kocsis, Dynamics of coarse grained dislocation densities from an effective free energy. Philos. Mag. 87(8–9), 1185–1199 (2007)

    Article  Google Scholar 

  • I. Groma, G. Gyorgyi, P.D. Ispanovity, Variational approach in dislocation theory. Philos. Mag. 90(27–28), 3679–3695 (2010)

    Article  Google Scholar 

  • I. Groma, Z. Vandrus, P.D. Ispanovity, Scale-free phase field theory of dislocations. Phys. Rev. Lett. 114(1), 015503 (2015)

    Google Scholar 

  • I. Groma, M. Zaiser, P.D. Ispánovity, Dislocation patterning in a two-dimensional continuum theory of dislocations. Phys. Rev. B 93(21), 214110 (2016)

    Google Scholar 

  • M.E. Gurtin, A strain gradient crystal plasticity analysis of grain size effects in polycrystals. J. Mech. Phys. Solids 50, 313–324 (2002)

    Article  Google Scholar 

  • M.Y. Gutkin, E.C. Aifantis, Dislocations in the theory of gradient elasticity. Scripta Mater. 40, 559–566 (1999)

    Article  Google Scholar 

  • N. Hansen, D. Kuhlmann-Wilsdorf, Low-energy dislocation-structures due to unidirectional deformation at low-temperatures. Mater. Sci. Eng. 81(1–2), 141–161 (1986)

    Article  Google Scholar 

  • T. Hochrainer, Thermodynamically consistent continuum dislocation dynamics. J. Mech. Phys. Solids 88, 12–22 (2016)

    Article  MathSciNet  Google Scholar 

  • T. Hochrainer, M. Zaiser, P. Gumbsch, A three-dimensional continuum theory of dislocation systems: kinematics and mean-field formulation. Philos. Mag. 87(8–9), 1261–1282 (2007)

    Article  Google Scholar 

  • T. Hochrainer, S. Sandfeld, M. Zaiser, P. Gumbsch, Continuum dislocation dynamics: towards a physical theory of crystal plasticity. J. Mech. Phys. Solids 63, 167–178 (2014)

    Article  Google Scholar 

  • D.L. Holt, Dislocation cell formation in metals. J. Appl. Phys. 41, 3197–3201 (1970)

    Article  Google Scholar 

  • P.D. Ispánovity, I. Groma, G. Györgyi, Evolution of the correlation functions in two-dimensional dislocation systems. Phys. Rev. B 78(2), 024119 (2008)

    Google Scholar 

  • P.D. Ispánovity, I. Groma, G. Györgyi, F.F. Csikor, D. Weygand, Submicron plasticity: yield stress, dislocation avalanches, and velocity distribution. Phys. Rev. Lett. 105(8), 085503 (2010)

    Google Scholar 

  • P.D. Ispánovity, L. Laurson, M. Zaiser, I. Groma, S. Zapperi, M.J. Alava, Avalanches in 2D dislocation systems: plastic yielding is not depinning. Phys. Rev. Lett. 112(23), 1–5 (2014)

    Article  Google Scholar 

  • A.M. Kosevich, Crystal dislocations and the theory of elasticity, in Dislocations in Solids, vol. 1 (North-Holland, Amsterdam, 1979), pp. 33–142

    Google Scholar 

  • L. Kovács, L. Zsoldos, Dislocations and Plastic Deformation (Pergamon Press, Oxford, 1973)

    MATH  Google Scholar 

  • J. Kratochvil, R. Sedlacek, Pattern formation in the framework of the continuum theory of dislocations. Phys. Rev. B 67(9), 094105 (2003)

    Google Scholar 

  • E. Kröner, Continuum theory of defects, in Physics of Defects, ed. by R. Balian et al. (Elsevier, Amsterdam, 1981)

    MATH  Google Scholar 

  • L.P. Kubin, G. Canova, The modeling of dislocation patterns. Scripta Metall. 27(8), 957–962 (1992)

    Article  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Theory of Elasticity, Volume 7 of Course in Theoretical Physics, 3rd edn. (Pergamon, Oxford, 1986)

    Google Scholar 

  • M. Lazar, A nonsingular solution of the edge dislocation in the gauge theory of dislocations. J. Phys. A 36, 1415 (2003)

    Article  MathSciNet  Google Scholar 

  • S.D. Mesarovic, R. Baskaran, A. Panchenko, Thermodynamic coarsening of dislocation mechanics and the size-dependent continuum crystal plasticity. J. Mech. Phys. Solids 58(3), 311–329 (2010)

    Article  MathSciNet  Google Scholar 

  • J. Pontes, D. Walgraef, E.C. Aifantis, On dislocation patterning: multiple slip effects in the rate equation approach. Int. J. Plast. 22(8), 1486–1505 (2006)

    Article  Google Scholar 

  • M. Rhee, H.M. Zbib, J.P. Hirth, H. Huang, T. de la Rubia, Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals. Modell. Simul. Mater. Sci. Eng. 6(4), 467–492 (1998)

    Article  Google Scholar 

  • B. Svendsen, Continuum thermodynamic models for crystal plasticity including the effects of geometrically-necessary dislocations. J. Mech. Phys. Solids 50, 1297–1329 (2002)

    Article  MathSciNet  Google Scholar 

  • P. Valdenaire, Y. Le Bouar, B. Appolaire, A. Finel, Density-based crystal plasticity: from the discrete to the continuum. Phys. Rev. B 93(21), 214111 (2016)

    Google Scholar 

  • D. Walgraef, E.C. Aifantis, Dislocation patterning in fatigued metals as a result of dynamical instabilities. J. Appl. Phys. 58(2), 688–691 (1985)

    Article  Google Scholar 

  • S. Xia, A. El-Azab, Computational modelling of mesoscale dislocation patterning and plastic deformation of single crystals. Model. Simul. Mater. Sci. Eng. 23(5) (2015) (055009)

    Article  Google Scholar 

  • S. Yefimov, I. Groma, E. van der Giessen, A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 52(2), 279–300 (2004)

    Article  MathSciNet  Google Scholar 

  • M. Zaiser, The energetics and interactions of random dislocation walls. Philos. Mag. Lett. 93(7), 387–394 (2013)

    Article  Google Scholar 

  • M. Zaiser, Local density approximation for the energy functional of three-dimensional dislocation systems. Phys. Rev. B 92, 174120 (2015)

    Article  Google Scholar 

  • M. Zaiser, M.C. Miguel, I. Groma, Statistical dynamics of dislocation systems: the influence of dislocation-dislocation correlations. Phys. Rev. B 64(22), 224102 (2001)

    Google Scholar 

  • L.A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, V. Bulatov, Probing the ultimate limits of metal plasticity. Nature 550, 492–495 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

During the past years the author had the pleasure to work with Michael Zaiser, Erik van der Giessen, Géza Györgyi, Alphonse Finel, Botond Bakó, Ferenc Csikor, and Serge Yefimov. Most of the results presented in the paper were obtained together with them. Their outstanding scientific contributions and friendships are gratefully acknowledged.

Financial supports of the National Research, Development and Innovation Found of Hungary under contract number NKFIH-K-119561 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Groma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Groma, I. (2019). Statistical Theory of Dislocation. In: Mesarovic, S., Forest, S., Zbib, H. (eds) Mesoscale Models. CISM International Centre for Mechanical Sciences, vol 587. Springer, Cham. https://doi.org/10.1007/978-3-319-94186-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94186-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94185-1

  • Online ISBN: 978-3-319-94186-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics