Skip to main content

The Uncalm Development of Proglacial Soils in the European Alps Since 1850

  • Chapter
  • First Online:

Part of the book series: Geography of the Physical Environment ((GEOPHY))

Abstract

Glaciers in the Alps and other mountain regions are widely retreating. This contribution focusses on the soils that are forming in the proglacial areas. These soils are important because of the hydrological and ecological effect they will have in future glacierless valleys. A geographical approach is taken that attempts to explain differences in rates of soil formation between proglacial valleys. Through a comparison of published soil chronosequences of European proglacial areas, it is found that age is the most important factor determining rates of soil development—even where morphodynamics are strong. Nonetheless, the effect of geomorphic activity and the effect of vegetation succession have been clearly observed in several studies. The combination of all factors forces us to acknowledge a complex model of soil formation in alpine proglacial valley that among others highlights the heterogenous and dynamic nature of morphodynamics. This model invites us to fill in some blanks in our understanding and suggests that with a larger number of proglacial soil development studies, we may be able to provide pan-alpine information on soils in proglacial areas. This is of importance, for instance, when establishing pan-alpine carbon budgets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander EB, Ellis CC, Burke R (2007) A chronosequence of soils and vegetation on serpentine terraces in the Klamath Mountains, USA. Soil Sci 172:565–576

    Article  Google Scholar 

  • Baewert H, Morche D (2014) Coarse sediment dynamics in a proglacial fluvial system (Fagge River, Tyrol). Geomorphology 218:88–97. https://doi.org/10.1016/j.geomorph.2013.10.021

    Article  Google Scholar 

  • Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK (2005) A temporal approach to linking aboveground and belowground ecology. Trends Ecol Evol 20:634–641

    Article  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31

    Article  Google Scholar 

  • Bernasconi SM, Bauder A, Bourdon B et al (2011) Chemical and biological gradients along the Damma Glacier soil chronosequence, Switzerland. Vadose Zone J 10:867. https://doi.org/10.2136/vzj2010.0129

    Article  Google Scholar 

  • Bernasconi SM, BigLink Project Members (2008) Weathering, soil formation and initial ecosystem evolution on a glacier forefield: a case study from the Damma Glacier, Switzerland. Mineral Mag 72:19–22

    Article  Google Scholar 

  • Burga CA (1999) Vegetation development on the glacier forefield Morteratsch (Switzerland). Appl Veg Sci 2:17–24

    Article  Google Scholar 

  • Burke BC, Heimsath AM, White AF (2007) Coupling chemical weathering with soil production across soil-mantled landscapes. Earth Surf Proc Land 32:853–873

    Article  Google Scholar 

  • Carey M (2010) In the shadow of melting glaciers: climate change and Andean society. Oxford University Press, Oxford

    Book  Google Scholar 

  • Carnielli T (2005) Snout and area recent variations of Grande di Verra Glacier (Monte Rosa, Alps). Geografia Fisica e Dinamica Quaternaria VII: 79–87

    Google Scholar 

  • Citterio M, Diolaiuti G, Smiraglia C et al (2007) The fluctuations of Italian glaciers during the last century: a contribution to knowledge about alpine glacier changes. Geogr Ann: Ser A, Phys Geogr 89:167–184

    Article  Google Scholar 

  • D’Amico ME, Bonifacio E, Zanini E (2014a) Relationships between serpentine soils and vegetation in a xeric inner-alpine environment. Plant Soil 376:111–128

    Article  Google Scholar 

  • D’Amico ME, Freppaz M, Filippa G, Zanini E (2014b) Vegetation influence on soil formation rate in a proglacial chronosequence (Lys Glacier, NW Italian Alps). CATENA 113:122–137. https://doi.org/10.1016/j.catena.2013.10.001

    Article  Google Scholar 

  • D’Amico ME, Freppaz M, Leonelli G et al (2015) Early stages of soil development on serpentinite: the proglacial area of the Verra Grande Glacier, Western Italian Alps. J Soils Sediments 15:1292–1310

    Article  Google Scholar 

  • D’Amico ME, Catoni M, Terribile F, Zanini E, Bonifacio E (2016) Contrasting environmental memories in relict soils on different parent rocks in the south-western Italian Alps. Quat Int 418:61–74

    Article  Google Scholar 

  • Duc L, Noll M, Meier BE et al (2009) High diversity of diazotrophs in the forefield of a receding alpine glacier. Microb Ecol 57:179–190

    Article  Google Scholar 

  • Dümig A, Smittenberg R, Kögel-Knabner I (2011) Concurrent evolution of organic and mineral components during initial soil development after retreat of the Damma glacier, Switzerland. Geoderma 163:83–94

    Article  Google Scholar 

  • Egli M, Fitze P, Mirabella A (2001) Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swiss alpine environments. Catena 45:19–47

    Article  Google Scholar 

  • Egli M, Lessovaia SN, Chistyakov K et al (2015) Microclimate affects soil chemical and mineralogical properties of cold alpine soils of the Altai Mountains (Russia). J Soils Sediments 15:1420–1436

    Article  Google Scholar 

  • Egli M, Wernli M, Burga C et al (2011) Fast but spatially scattered smectite-formation in the proglacial area Morteratsch: an evaluation using GIS. Geoderma 164:11–21

    Article  Google Scholar 

  • Egli M, Wernli M, Kneisel C et al (2006a) Melting glaciers and soil development in the proglacial area Morteratsch (Swiss Alps): II. Modeling the present and future soil state. Arct Antarct, Alp Res 38:510–521

    Article  Google Scholar 

  • Egli M, Wernli M, Kneisel C, Haeberli W (2006b) Melting glaciers and soil development in the proglacial area Morteratsch (Swiss Alps): I. Soil Type Chronosequence. Arct Antarct, Alp Res 38:499–509. https://doi.org/10.1657/1523-0430(2006)38%5b499:MGASDI%5d2.0.CO;2

    Article  Google Scholar 

  • Göransson H, Welc M, Bünemann EK et al (2016) Nitrogen and phosphorus availability at early stages of soil development in the Damma glacier forefield, Switzerland; implications for establishment of N2-fixing plants. Plant Soil 404:251–261. https://doi.org/10.1007/s11104-016-2821-5

    Article  Google Scholar 

  • Guelland K, Hagedorn F, Smittenberg RH, Göransson H, Bernasconi SM, Hajdas I, Kretzschmar R (2013) Evolution of carbon fluxes during initial soil formation along the forefield of Damma glacier, Switzerland. Biogeochemistry 113:545–561. https://doi.org/10.1007/s10533-012-9785-1

    Article  Google Scholar 

  • Haas F, Heckmann T, Hilger L, Becht M (2012) Quantification and modelling of debris flows in the proglacial area of the Gepatschferner, Austria, using ground-based LiDAR. IAHS-AISH publication. International Association of Hydrological Sciences, pp 293–302

    Google Scholar 

  • Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 46:150–160

    Article  Google Scholar 

  • Hartl L (2010) The Gepatschferner from 1850–2006-changes in length, area and volume in relation to climate. Diploma thesis (unpublished), University of Innsbruck

    Google Scholar 

  • Heckmann T, Haas F, Morche D, Schmidt K-H, Rohn J, Moser M, Leopold M, Kuhn M, Briese C, Pfeifer N, Becht M (2012) Investigating an alpine proglacial sediment budget using field measurements, airborne and terrestrial LiDAR data, vol 356. IAHS-AISH publication, pp 438–447

    Google Scholar 

  • Huggel C, Kääb A, Haeberli W et al (2002) Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Can Geotech J 39:316–330

    Article  Google Scholar 

  • Jacobsen D, Milner AM, Brown LE, Dangles O (2012) Biodiversity under threat in glacier-fed river systems. Nat Clim Change 2:361–364

    Article  Google Scholar 

  • Jürgens C (2006) A visual system for the interactive study and experimental simulation of climate-induced 3D Mountain Glacier Fluctuations. JSTOR

    Google Scholar 

  • Kabala C, Zapart J et al (2009) Recent, relic and buried soils in the forefield of Werenskiold Glacier, SW Spitsbergen. Pol Polar Res 30:161–178

    Google Scholar 

  • Karlstrom ET, Osborn G (1992) Genesis of buried paleosols and soils in Holocene and late Pleistocene tills, Bugaboo Glacier area, British Columbia, Canada. Arct Alp Res 108–123

    Article  Google Scholar 

  • Khaziev FK (2011) Soil and biodiversity. Russ J Ecol 42:199–204

    Article  Google Scholar 

  • Knight J, Harrison S (2014) Mountain Glacial and paraglacial environments under global climate change: lessons from the past, future directions and policy implications. Geogr Ann: Ser A, Phys Geogr 96:245–264. https://doi.org/10.1111/geoa.12051

    Article  Google Scholar 

  • Langston AL, Tucker GE, Anderson RS, Anderson SP (2015) Evidence for climatic and hillslope-aspect controls on vadose zone hydrology and implications for saprolite weathering. Earth Surf Process Land 40:1254–1269

    Article  Google Scholar 

  • Mahaney WC, Hancock RG, Melville H (2011) Late glacial retreat and Neoglacial advance sequences in the Zillertal Alps, Austria. Geomorphology 130:312–326

    Article  Google Scholar 

  • Mavris C, Egli M, Plötze M, Blum JD, Mirabella A, Giaccai D, Haeberli W (2010) Initial stages of weathering and soil formation in the Morteratsch proglacial area (Upper Engadine, Switzerland). Geoderma 155:359–371

    Article  Google Scholar 

  • Morche D, Haas F, Baewert H, Heckmann T, Schmidt K-H, Becht M (2012) Sediment transport in the proglacial Fagge River (Kaunertal/Austria), vol 356. IAHS-AISH Publication, pp 72–80

    Google Scholar 

  • Morche D, Schuchardt A, Dubberke K, Baewert H (2014) Channel morphodynamics on a small proglacial braid plain (Fagge River, Gepatschferner, Austria), vol 367. IAHS-AISH Publication, pp 109–116. https://doi.org/10.5194/piahs-367-109-2015

    Article  Google Scholar 

  • Nicol GW, Tscherko D, Embley TM, Prosser JI (2005) Primary succession of soil Crenarchaeota across a receding glacier foreland. Environ Microbiol 7:337–347

    Article  Google Scholar 

  • Philippot L, Tscherko D, Bru D, Kandeler E (2011) Distribution of high bacterial taxa across the chronosequence of two alpine glacier forelands. Microbial Ecol 61:303–312

    Article  Google Scholar 

  • Prietzel J, Wu Y, Dümig A, Zhou J, Klysubun W (2013) Soil sulphur speciation in two glacier forefield soil chronosequences assessed by S K-edge XANES spectroscopy: S speciation in glacier forefield soils by XANES. Eur J Soil Sci 64:260–272. https://doi.org/10.1111/ejss.12032

    Article  Google Scholar 

  • Richardson SD, Reynolds JM (2000) An overview of glacial hazards in the Himalayas. Quat Int 65:31–47

    Article  Google Scholar 

  • Schmalenberger A, Noll M (2009) Shifts in desulfating bacterial communities along a soil chronosequence in the forefield of a receding glacier. FEMS Microbiol Ecol 71:208–217

    Article  Google Scholar 

  • Schurig C, Smittenberg RH, Berger J, Kraft F, Woche SK, Goebel MO, Heipieper HJ, Miltner A, Kaestner M (2013) Microbial cell-envelope fragments and the formation of soil organic matter: a case study from a glacier forefield. Biogeochemistry 113:595–612

    Article  Google Scholar 

  • Sigler W, Zeyer J (2002) Microbial diversity and activity along the forefields of two receding glaciers. Microb Ecol 43:397–407

    Article  Google Scholar 

  • Singh P, Bengtsson L (2005) Impact of warmer climate on melt and evaporation for the rainfed, snowfed and glacierfed basins in the Himalayan region. J Hydrol 300:140–154

    Article  Google Scholar 

  • Smittenberg RH, Gierga M, Göransson H, Christl I, Farinotti D, Bernasconi SM (2012) Climate-sensitive ecosystem carbon dynamics along the soil chronosequence of the Damma glacier forefield, Switzerland. Global Change Biol 18:1941–1955. https://doi.org/10.1111/j.1365-2486.2012.02654.x

    Article  Google Scholar 

  • Sommer M, Gerke H, Deumlich D (2008) Modelling soil landscape genesis—a “time split” approach for hummocky agricultural landscapes. Geoderma 145:480–493

    Article  Google Scholar 

  • Stöcklin J, Bäumler E (1996) Seed rain, seedling establishment and clonal growth strategies on a glacier foreland. J Veg Sci 7:45–56

    Article  Google Scholar 

  • Temme AJAM, Heckmann T, Harlaar P (2016) Silent play in a loud theatre—dominantly time-dependent soil development in the geomorphically active proglacial area of the Gepatsch glacier, Austria. Catena 147:40–50

    Article  Google Scholar 

  • Temme AJAM, Lange K, Schwering MF (2015) Time development of soils in mountain landscapes—divergence and convergence of properties with age. J Soils Sed 15:1373–1382

    Article  Google Scholar 

  • Temme AJAM, Lange K (2014) Pro-glacial soil variability and geomorphic activity—the case of three Swiss valleys. Earth Surf Process Land 39:1492–1499. https://doi.org/10.1002/esp.3553

    Article  Google Scholar 

  • Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E (2003) Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci 54:685–696

    Article  Google Scholar 

  • Vavtar F (1981) Syngenetische metamorphe Kiesanreicherungen in Paragneisen des Ötztal-Kristallins (Kaunertal, Tirol). Veröff Museum Ferdinandeum Innsbruck, S 151–169

    Google Scholar 

  • Welc M, Bünemann EK, Fließbach A, Frossard E, Jansa J (2012) Soil bacterial and fungal communities along a soil chronosequence assessed by fatty acid profiling. Soil Biol Biochem 49:184–192. https://doi.org/10.1016/j.soilbio.2012.01.032

    Article  Google Scholar 

  • Wösten J, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic properties of European soils. Geoderma 90:169–185

    Article  Google Scholar 

  • WRB (2015) World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. FAO, Rome

    Google Scholar 

  • Xu J, Grumbine RE, Shrestha A, Eriksson M, Yang X, Wang Y, Wilkes A (2009) The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv Biol 23:520–530

    Article  Google Scholar 

  • Zech W, Wilke B (1977) Vorläufige Ergebnisse einer Bodenchronosequenzstudie im Zillertal. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 25:571–586

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud J. A. M. Temme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Temme, A.J.A.M. (2019). The Uncalm Development of Proglacial Soils in the European Alps Since 1850. In: Heckmann, T., Morche, D. (eds) Geomorphology of Proglacial Systems. Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-94184-4_18

Download citation

Publish with us

Policies and ethics