Skip to main content

Slope Wash, Gully Erosion and Debris Flows on Lateral Moraines in the Upper Kaunertal, Austria

  • Chapter
  • First Online:
Geomorphology of Proglacial Systems

Part of the book series: Geography of the Physical Environment ((GEOPHY))

Abstract

The science on high-mountain proglacial systems is a rather young field of study, but has gained importance since a few years ago. In this context, we investigated a part of the lateral Little Ice Age (LIA) moraine that was built up by the second longest glacier of the Eastern Alps. The Gepatschferner glacier in the Upper Kaunertal, Central Austrian Alps, created up to 150-m-high moraine slopes during its LIA advance that are now prone to paraglacial reworking. To analyse the degree of reworking and to identify the driving forces behind the slope development with both their spatial and temporal variations, we conducted several case studies, mainly based on data acquired by remote sensing techniques (multitemporal TLS and aerial photographs) and their derivatives (DEMs, DoD, orthophotos). First, a medium-term (5 years) overall balance of erosion and deposition of the studied slope is calculated. Second, seasonal variations of the process dynamics are uncovered based on short-term TLS measurements within c. one year. Third, the sediment contributing area (SCA) is delineated to estimate fluvial reworking. Fourth, following paraglacial adjustment studies by Curry et al. (2006), we measured and analysed gully development with time since deglaciation. The case studies lead to the conclusions that paraglacial adjustment of the study slope is still in progress. Extreme events in summer play a dominant role for morphodynamics, followed by processes during winter, whereas springtime offers important preparatory conditions for sediment transport. Fluvial transport is considered to have minor effects on the moraine development compared to gravitational processes. And last but not least, the development of gullies depends more on natural boundary conditions than on time since deglaciation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballantyne CK, Benn DI (1994) Paraglacial slope adjustment and resedimentation following recent glacier retreat, Faabergstolsdalen, Norway. Arct Antarct Alp Res 26:255–269

    Article  Google Scholar 

  • Ballantyne CK, Benn DI (1996) Paraglacial slope adjustment during recent deglaciation and its implications for slope evolution in formerly glaciated environments. Brooks S, Anderson MG (Eds.) Advances in Hillslope Processes, pp 1173–1195. Wiley, Chichester

    Google Scholar 

  • Bechet J, Duc J, Loye A, Jaboyedoff M, Mathys N, Malet J-P, Klotz S, Le Bouteiller C, Rudaz B, Travelletti J (2016) Detection of seasonal cycles of erosion processes in a black marl gully from a time series of high-resolution digital elevation models (DEMs). Earth Surf Dynam 4:781–798. https://doi.org/10.5194/esurf-4-781-2016

    Article  Google Scholar 

  • Becht M (1995) Untersuchungen zur aktuellen Reliefentwicklung in alpinen Einzugsgebieten: Mit 40 Tabellen. Münchener Universitätsschriften, vol 47. Geobuch-Verl., München

    Google Scholar 

  • Cossart E, Braucher R, Fort M, Bourlès D, Carcaillet J (2008) Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages. Geomorphology 95:3–26. https://doi.org/10.1016/j.geomorph.2006.12.022

    Article  Google Scholar 

  • Curry AM (1999) Paraglacial modification of slope form. Earth Surf Proc Land 24:1213–1228

    Article  Google Scholar 

  • Curry AM, Cleasby V, Zukowskyj P (2006) Paraglacial response of steep, sediment-mantled slopes to post-Little Ice Age glacier recession in the central Swiss Alps. J Quat Sci 21:211–225. https://doi.org/10.1002/jqs.954

    Article  Google Scholar 

  • Groß G (1987) Der Flächenverlust der Gletscher in Österreich 1850-1920-1969. Z Gletscherk Glazialgeol 23:131–141

    Google Scholar 

  • Gude M, Scherer D (1995) Snowmelt and slush torrents: preliminary report from a field campaign in Karkevagge, Swedish Lappland. Geogr Annaler A 77:199–206. https://doi.org/10.2307/521329

    Article  Google Scholar 

  • Haas F (2008) Fluviale Hangprozesse in Alpinen Einzugsgebieten der Nördlichen Kalkalpen: Quantifizierung und Modellierungsansätze. Dissertation

    Google Scholar 

  • Haas F, Heckmann T, Becht M, Cyffka B (2011a) Ground-based laserscanning—a new method for measuring fluvial erosion on steep slopes. In: Hafeez MM (ed) GRACE, remote sensing and ground-based methods in multi-scale hydrology: Proceedings of the symposium JHS01 [entitled: GRACE, remote sensing and ground-based methods in multi-scale hydrology] held during the IUGG GA in Melbourne (28 June–7 July 2011). IAHS Publ, Wallingford, pp 163–168

    Google Scholar 

  • Haas F, Heckmann T, Wichmann V, Becht M (2011b) Quantification and modeling of fluvial bedload discharge from hillslope channels in two alpine catchments (Bavarian Alps, Germany). Z Geomorph NF 55(Suppl):147–168

    Article  Google Scholar 

  • Haas F, Heckmann T, Hilger L, Becht M (2012) Quantification and modelling of debris flows in the proglacial area of the Gepatschferner, Austria, using ground-based LiDAR. In: Collins A (ed) Erosion and sediment yields in the changing environment: proceedings of an IAHS International Commission on continental erosion symposium held at the institute of mountain hazards and environment, CAS-Chengdu, China, 11–15 Oct 2012. IAHS Press, Wallingford, pp 293–302

    Google Scholar 

  • Hagg W, Becht M (2000) Einflüsse von Niederschlag und Substrat auf die Auslösung von Hangmuren in Beispielgebieten der Ostalpen. In: Becht M, Schmidt K-H (eds) Angewandte und vernetzte geomorphologische Prozeßforschung, vol 123. Borntraeger, Berlin, pp 79–92

    Google Scholar 

  • Hartl L (2010) The Gepatschferner from 1850–2006: changes in length, area and volume in relation to climate. University of Innsbruck

    Google Scholar 

  • Holm K, Bovis M, Jakob M (2004) The landslide response of alpine basins to post-Little Ice Age glacial thinning and retreat in southwestern British Columbia. Geomorphology 57:201–216

    Article  Google Scholar 

  • Hugenholtz CH, Moorman B, Barlow J, Wainstein P (2008) Large-scale moraine deformation at the Athabasca Glacier, Jasper National Park, Alberta, Canada. Landslides 5:251–260. https://doi.org/10.1007/s10346-008-0116-5

    Article  Google Scholar 

  • Carrivick JL, Heckmann T (2017) Short-term geomorphological evolution of proglacial systems. Geomorphology 287:3–28

    Article  Google Scholar 

  • Kellerer-Pirklbauer A, Proske H, Strasser V (2010) Paraglacial slope adjustment since the end of the last glacial maximum and its long-lasting effects on secondary mass wasting processes: Hauser Kaibling, Austria. Geomorphology 120:65–76. https://doi.org/10.1016/j.geomorph.2009.09.016

    Article  Google Scholar 

  • Klok E, Oerlemans J (2003) Deriving historical equilibrium-line altitudes from a glacier length record by linear inverse modelling. Holocene 13:343–351. https://doi.org/10.1191/0959683603hl627rp

    Article  Google Scholar 

  • Lambrecht A, Kuhn M (2007) Glacier changes in the Austrian Alps during the last three decades derived from the new Austrian glacier inventory. Ann Glaciol 46:177–184. https://doi.org/10.3189/172756407782871341

    Article  Google Scholar 

  • Lane SN, Westaway RM, Murray Hicks D (2003) Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf Proc Land 28:249–271. https://doi.org/10.1002/esp.483

    Article  Google Scholar 

  • Matthews JA, Shakesby RA (2004) A twentieth-century neoparaglacial rock topple on a glacier foreland, Ötztal Alps, Austria. Holocene 14:454–458. https://doi.org/10.1191/0959683604hl706rr

    Article  Google Scholar 

  • McColl ST (2012) Paraglacial rock-slope stability. Geomorphology 153–154:1–16. https://doi.org/10.1016/j.geomorph.2012.02.015

    Article  Google Scholar 

  • Morche D, Haas F, Baewert H, Heckmann T, Schmidt K-H, Becht M (2012) Sediment transport in the proglacial Fagge River (Kaunertal/Austria). In: Collins A (ed) Erosion and sediment yields in the changing environment: proceedings of an IAHS International Commission on continental erosion symposium held at the institute of mountain hazards and environment, CAS-Chengdu, China, 11–15 Oct 2012. IAHS Press, Wallingford, pp 72–80

    Google Scholar 

  • Neugirg F (2016) Quantifizierung, Analyse und Modellierung von Erosionsprozessen auf Steilhängen in unterschiedlichen Klimaten durch hochaufgelöste Geländemodellen. Dissertation, Katholische Universität Eichstätt-Ingolstadt

    Google Scholar 

  • Neugirg F, Kaiser A, Schindewolf M, Becht M, Schmidt J, Haas F (2015) Monitoring and modelling slope dynamics in an Alpine watershed—a combined approach of soil science, remote sensing and geomorphology. Proc IAHS 371:181–187. https://doi.org/10.5194/piahs-371-181-2015

    Article  Google Scholar 

  • Neugirg F, Stark M, Kaiser A, Vlacilova M, Della Seta M, Vergari F, Schmidt J, Becht M, Haas F (2016a) Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology 269:8–22. https://doi.org/10.1016/j.geomorph.2016.06.027

    Article  Google Scholar 

  • Neugirg F, Kaiser A, Huber A, Heckmann T, Schindewolf M, Schmidt J, Becht M, Haas F (2016b) Using terrestrial LiDAR data to analyse morphodynamics on steep unvegetated slopes driven by different geomorphic processes. CATENA 142:269–280. https://doi.org/10.1016/j.catena.2016.03.021

    Article  Google Scholar 

  • Oostwoud Wijdenes DJ, Ergenzinger P (1998) Erosion and sediment transport on steep marly hillslopes, Draix, Haute-Provence, France: an experimental field study. CATENA 33:179–200. https://doi.org/10.1016/S0341-8162(98)00076-9

    Article  Google Scholar 

  • Patzelt G (1980) The Austrian glacier inventory: status and first results. IAHS Publication 126

    Google Scholar 

  • Pelletier JD, Orem CA (2014) How do sediment yields from post-wildfire debris-laden flows depend on terrain slope, soil burn severity class, and drainage basin area?: Insights from airborne-LiDAR change detection. Earth Surf Proc Land 39:1822–1832. https://doi.org/10.1002/esp.3570

    Article  Google Scholar 

  • Schauer T (1999) Beispiele von Erosionsprozessen in Zusammenhang mit den Standortfaktoren Nutzung und Vegetation im Bayerischen Alpenraum. Relief Boden Pal’aoklima 14:117–128

    Google Scholar 

  • Schiefer E, Gilbert R (2007) Reconstructing morphometric change in a proglacial landscape using historical aerial photography and automated DEM generation. Geomorphology 88:167–178

    Article  Google Scholar 

  • Schindewolf M, Kaiser A, Neugirg F, Richter C, Haas F, Schmidt J (2016) Seasonal erosion patterns under alpine conditions: benefits and challenges of a novel approach in physically based soil erosion modeling. Zeit fur Geo 60(Supp):109–123. https://doi.org/10.1127/zfg_suppl/2015/s-00185

    Article  Google Scholar 

  • Wetzel K-F (1992) Abtragsprozesse an Hängen und Feststoffführung der Gewässer. Dargestelllt am Beispiel der pleistozänen Lockergesteine des Lainbachgebietes (Benediktbeuern/ Obb.). Münchener Geographische Abhandlungen B, vol 17. Geobuch-Verlag, München

    Google Scholar 

  • Zimmermann M (1990) Debris flows 1987 in Switzerland: geomorphological and meteorological aspects. In: Sinniger RO, Monbaron M (eds) Hydrology in mountainous regions II—artificial reservoirs; water and slopes, vol 194, pp 387–393

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana-Marie Dusik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dusik, JM., Neugirg, F., Haas, F. (2019). Slope Wash, Gully Erosion and Debris Flows on Lateral Moraines in the Upper Kaunertal, Austria. In: Heckmann, T., Morche, D. (eds) Geomorphology of Proglacial Systems. Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-94184-4_11

Download citation

Publish with us

Policies and ethics