Skip to main content

Glacial Sediment Stores and Their Reworking

  • Chapter
  • First Online:
Geomorphology of Proglacial Systems

Abstract

In the light of heightened geomorphological activity associated with progressive deglaciation in alpine regions, the storage of sediments within and flux of sediments through the proglacial zone represents an increasingly important area for contemporary geomorphological and sedimentological study. The term ‘paraglacial’ is used to describe this heightened geomorphological activity, and the general model of paraglacial basin sediment yield is one of initial increase as deglaciation commences, followed by progressive decline during and after deglaciation. Against the backdrop of this paraglacial model, in this chapter we consider storage, release and reworking of sediments from lateral and forefield slopes in the proglacial zone. The propensity of lateral slope units to stand stable at steep angles might indicate that such units represent a long-term store of sediments. However, their genetic complexity and geomorphological evidence of sediment reworking, in the form of deep gullies and associated debris cones and fans, would suggest that such units can yield sediments dependant on multiple climatic, geomorphical and biogeomorphical factors. Similarly, the extent to which the generally lower-angled forefield slopes act as a source or sink of sediments is subject to conjecture. Although the forefield is regarded as the most dynamic component of the alpine sediment flux system, largely due to the efficacy of fluvial action, the great diversity of forms and associated genetic complexity, together with the operation of time-variant processes, will likely add great variability to long-term patterns of basin sediment yield. In addition to fluvial activity and associated sediment mobilisation and redistribution, processes such as permafrost degradation, melt of forefield buried ice and associated slumping and debris flowage offer additional sediment release mechanisms that may punctuate the often-assumed uni-directional decline in sediment yield associated with progressive deglaciation. As meltwater discharge declines, after the so-called ‘deglaciation discharge dividend’ peaks, progressive eluviation of fines and consequent armouring of previously abundant sediment supply areas will likely lead to overall declining sediment yields with time, enhanced by progressive vegetation colonisation. However, this net decline will inevitably be punctuated by stochastic geomorphological events. While uncertainty therefore exists concerning the detailed timescales of sediment release associated with deglaciation, contemporary progressive deglaciation offers an unparalleled opportunity to directly observe the genesis of deglaciation landforms, their modification and associated sediment fluxes and fluctuations in basin-scale sediment storage and release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashraf A, Naz R, Iqbal MB (2015) Heterogeneous expansion of end-moraine dammed lakes in the Hindukush-Karakoram-Himalaya ranges of Pakistan during 2001–2013. J Mt Sci 12:1113–1124

    Article  Google Scholar 

  • Ballantyne CK (1995) Paraglacial debris-cone formation on recently deglaciated terrain, western Norway. Holocene 5:25–33. https://doi.org/10.1177/095968369500500104

    Article  Google Scholar 

  • Ballantyne CK (2002a) Paraglacial geomorphology. Quatern Sci Rev 21:1935–2017. https://doi.org/10.1016/S0277-3791(02)00005-7

    Article  Google Scholar 

  • Ballantyne CK (2002b) A general model of paraglacial landscape response. Holocene 12:371–376. https://doi.org/10.1191/0959683602hl553fa

    Article  Google Scholar 

  • Ballantyne CK, Benn DI (1994) Paraglacial slope adjustment and resedimentation following recent glacier retreat, Fåbergstølsdalen, Norway. Arct Alp Res 26(3):255–269

    Article  Google Scholar 

  • Barr ID, Lovell H (2014) A review of topographic controls on moraine distribution. Geomorphology 226:44–64

    Article  Google Scholar 

  • Barry RG (2006) The status of research on glaciers and global glacier recession: a review. Prog Phys Geogr 30:285–306

    Article  Google Scholar 

  • Beedle MJ, Menounos B, Luckman BH, Wheate R (2009) Annual push moraines as climate proxy. Geophys Res Lett 36(20)

    Google Scholar 

  • Benediktsson ÍÖ, Ingolfsson O, Schomacker A, Kjaer KH (2009) Formation of submarginal and proglacial end moraines: implications of ice-flow mechanism during the 1963–64 surge of Brúarjökull, Iceland. Boreas 38:440–457

    Article  Google Scholar 

  • Benn DI, Ballantyne CK (2005) Palaeoclimatic reconstruction from Loch Lomond Readvance glaciers in the West Drumochter Hills, Scotland. J Quat Sci 20:577–592

    Article  Google Scholar 

  • Bennett MR (2001) The morphology, structural evolution and significance of push moraines. Earth Sci Rev 53:197–236

    Article  Google Scholar 

  • Bernasconi SM, Christi I, Hajdas I, Abbaspour K (2008) Weathering, soil formation and initial ecosystem evolution on a glacier forefield: a case study from the Damma Glacier, Switzerland. Mineral Mag 72:19–22

    Article  Google Scholar 

  • Beylich A, Warburton J (2007) Analysis of source-to-sink-fluxes and sediment budgets in changing high-latitude and high-altitude cold environments. SEDIFLUX manual. NGU report

    Google Scholar 

  • Blair R Jr (1994) Moraine and valley wall collapse due to rapid deglaciation in Mount Cook National Park, New Zealand. Mt Res Dev 347–358

    Article  Google Scholar 

  • Bosson J-B, Deline P, Bodin X et al (2015) The influence of ground ice distribution on geomorphic dynamics since the Little Ice Age in proglacial areas of two cirque glacier systems. Earth Surf Proc Land 40:666–680. https://doi.org/10.1002/esp.3666

    Article  Google Scholar 

  • Bradley JA, Singarayer JS, Anesio AM (2014) Microbial community dynamics in the forefield of glaciers. Proc R Soc B 281(1795):20140882

    Article  Google Scholar 

  • Brown LE, Milner AM, Hannah DM (2006) Stability and persistence of alpine stream macroinvertebrate communities and the role of physicochemical habitat variables. Hydrobiologia 560:159–173

    Article  Google Scholar 

  • Carrivick JL, Heckmann T (2017) Short-term geomorphological evolution of proglacial systems. Geomorphology 287:3–28. https://doi.org/10.1016/j.geomorph.2017.01.037

    Article  Google Scholar 

  • Carrivick JL, Geilhausen M, Warburton J et al (2013) Contemporary geomorphological activity throughout the proglacial area of an alpine catchment. Geomorphology 188:83–95. https://doi.org/10.1016/j.geomorph.2012.03.029

    Article  Google Scholar 

  • Cavalli M, Trevisani S, Comiti F, Marchi L (2013) Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188:31–41. https://doi.org/10.1016/j.geomorph.2012.05.007

    Article  Google Scholar 

  • Chandler BM, Evans DJ, Roberts DH (2016) Characteristics of recessional moraines at a temperate glacier in SE Iceland: insights into patterns, rates and drivers of glacier retreat. Quatern Sci Rev 135:171–205

    Article  Google Scholar 

  • Chiarle M, Iannotti S, Mortara G, Deline P (2007) Recent debris flow occurrences associated with glaciers in the Alps. Glob Planet Change 56:123–136. https://doi.org/10.1016/j.gloplacha.2006.07.003

    Article  Google Scholar 

  • Church M, Ryder JM (1972) Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol Soc Am Bull 83:3059. https://doi.org/10.1130/0016-7606(1972)83%5b3059:PSACOF%5d2.0.CO;2

    Article  Google Scholar 

  • Collins DN (2008) Climatic warming, glacier recession and runoff from Alpine basins after the Little Ice Age maximum. Ann Glaciol 48:119–124

    Article  Google Scholar 

  • Cook SJ, Porter PR, Bendall CA (2013) Geomorphological consequences of a glacier advance across a paraglacial rock avalanche deposit. Geomorphology 189:109–120

    Article  Google Scholar 

  • Cossart E, Braucher R, Fort M Bourlès DL Carcaillet J (2008) Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): evidence from field data and 10 Be cosmic ray exposure ages. Geomorphology 95(1–2):3–26

    Article  Google Scholar 

  • Curry AM (1999) Paraglacial modification of slope form. Earth Surf Proc Land 24:1213–1228

    Article  Google Scholar 

  • Curry AM (2000) Observations on the distribution of paraglacial reworking of glacigenic drift in western Norway. Nor Geogr Tidsskr 54:139–147

    Article  Google Scholar 

  • Curry AM, Ballantyne CK (1999) Paraglacial modification of glacigenic sediment. Geogr Ann Ser A Phys Geogr 81:409–419

    Article  Google Scholar 

  • Curry AM, Cleasby V, Zukowskyj P (2006) Paraglacial response of steep, sediment-mantled slopes to post-‘Little Ice Age’ glacier recession in the central Swiss Alps. J Quat Sci 21:211–225. https://doi.org/10.1002/jqs.954

    Article  Google Scholar 

  • Curry AM, Sands TB, Porter PR (2009a) Geotechnical controls on a steep lateral moraine undergoing paraglacial slope adjustment. Geol Soc Lond Spec Publ 320:181–197

    Article  Google Scholar 

  • Curry A, Porter P, Irvine-Fynn T et al (2009b) Quantitative particle size, microtextural and outline shape analyses of glacigenic sediment reworked by paraglacial debris flows. Earth Surf Proc Land 34:48–62

    Article  Google Scholar 

  • Dadson SJ, Church M (2005) Postglacial topographic evolution of glaciated valleys: a stochastic landscape evolution model. Earth Surf Proc Land 30:1387–1403

    Article  Google Scholar 

  • Deline P, Hewitt K, Reznichenko N, Shugar D (2015) Rock avalanches onto glaciers. Landslide hazards, risks and disasters. Elsevier, Amsterdam, pp 263–319

    Chapter  Google Scholar 

  • Dunning SA, Rosser NJ, McColl ST, Reznichenko NV (2015) Rapid sequestration of rock avalanche deposits within glaciers. Nat Commun 6:7964. https://doi.org/10.1038/ncomms8964

    Article  Google Scholar 

  • Eichel J, Krautblatter M, Schmidtlein S, Dikau R (2013) Biogeomorphic interactions in the Turtmann glacier forefield, Switzerland. Geomorphology 201:98–110. https://doi.org/10.1016/j.geomorph.2013.06.012

    Article  Google Scholar 

  • Eichel J, Corenblit D, Dikau R (2016) Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window: conditions for biogeomorphic feedbacks on lateral moraine slopes. Earth Surf Proc Land 41:406–419. https://doi.org/10.1002/esp.3859

    Article  Google Scholar 

  • Etzelmüller B (2000) Quantification of thermo-erosion in pro-glacial areas-examples from Svalbard. Zeitschrift für Geomorphol, NF 343–361

    Google Scholar 

  • Etzelmüller B, Ødegård RS, Vatne G et al (2000) Glacier characteristics and sediment transfer system of Longyearbreen and Larsbreen, western Spitsbergen. Nor Geogr Tidsskr 54:157–168

    Article  Google Scholar 

  • Evans DJ, Lemmen DS, Rea BR (1999) Glacial landsystems of the southwest Laurentide Ice Sheet: modern Icelandic analogues. J Quat Sci 14:673–691

    Article  Google Scholar 

  • Ewertowski MW, Tomczyk AM (2015) Quantification of the ice-cored moraines’ short-term dynamics in the high-Arctic glaciers Ebbabreen and Ragnarbreen, Petuniabukta, Svalbard. Geomorphology 234:211–227

    Article  Google Scholar 

  • Ewertowski M, Kasprzak L, Szuman I, Tomczyk A (2010) Depositional processes within the frontal ice-cored moraine system, Ragnar glacier, Svalbard. Quaestiones Geographicae 29:27

    Article  Google Scholar 

  • Eyles N (1983) Chapter 4—the glaciated valley landsystem. In: Eyles N (ed) Glacial geology. Pergamon, Amsterdam, pp 91–110

    Chapter  Google Scholar 

  • Eyles N, Kocsis S (1988) Sedimentology and clast fabric of subaerial debris flow facies in a glacially-influenced alluvial fan. Sed Geol 59:15–28

    Article  Google Scholar 

  • Eyles N, Rogerson R (1978) Sedimentology of medial moraines on Berendon Glacier, British Columbia, Canada: implications for debris transport in a glacierized basin. Geol Soc Am Bull 89:1688–1693

    Article  Google Scholar 

  • Fenn CR & Gurnell AM (1987) Proglacial channel processes. In: Gurnell AM & Clark MJ (eds) Glaciofluvial sediment transfer: an alpine perspective, Wiley, Chichester, UK, pp 423–472

    Google Scholar 

  • Fischer L, Kääb A, Huggel C, Noetzli J (2006) Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. Nat Hazards Earth Syst Sci 6:761–772

    Article  Google Scholar 

  • Gurnell AM, Clark MJ (1987) Glacio-fluvial sediment transfer. Wiley, USA

    Google Scholar 

  • Heckmann T, Schwanghart W (2013) Geomorphic coupling and sediment connectivity in an alpine catchment—exploring sediment cascades using graph theory. Geomorphology 182:89–103. https://doi.org/10.1016/j.geomorph.2012.10.033

    Article  Google Scholar 

  • Hiemstra JF, Matthews JA, Evans DJ, Owen G (2015) Sediment fingerprinting and the mode of formation of singular and composite annual moraine ridges at two glacier margins, Jotunheimen, southern Norway. Holocene 25:1772–1785

    Article  Google Scholar 

  • Hodgkins R, Cooper R, Wadham J, Tranter M (2003) Suspended sediment fluxes in a high-Arctic glacierised catchment: implications for fluvial sediment storage. Sed Geol 162:105–117

    Article  Google Scholar 

  • Hugenholtz CH, Moorman BJ, Barlow J, Wainstein PA (2008) Large-scale moraine deformation at the Athabasca Glacier, Jasper National Park, Alberta, Canada. Landslides 5:251–260

    Article  Google Scholar 

  • Hürlimann M, Abancó C, Moya J (2012) Rockfalls detached from a lateral moraine during spring season. 2010 and 2011 events observed at the Rebaixader debris-flow monitoring site (Central Pyrenees, Spain). Landslides 9:385–393

    Article  Google Scholar 

  • Irvine-Fynn T, Moorman B, Sjogren D et al (2005) Cryological processes implied in Arctic proglacial stream sediment dynamics using principal components analysis and regression. Geol Soc Lond Spec Publ 242:83–98

    Article  Google Scholar 

  • Irvine-Fynn TDL, Barrand NE, Porter PR et al (2011) Recent high-arctic glacial sediment redistribution: a process perspective using airborne lidar. Geomorphology 125:27–39. https://doi.org/10.1016/j.geomorph.2010.08.012

    Article  Google Scholar 

  • Iturrizaga L (2008) Paraglacial landform assemblages in the Hindukush and Karakoram Mountains. Geomorphology 95:27–47

    Article  Google Scholar 

  • Johnson P (1971) Ice cored moraine formation and degradation, Donjek glacier, Yukon Territory, Canada. Geogr Ann Ser A Phys Geogr 53(3–4):198–202

    Article  Google Scholar 

  • Jumpponen A, Väre H, Mattson KG et al (1999) Characterization of ‘safe sites’ for pioneers in primary succession on recently deglaciated terrain. J Ecol 87:98–105

    Article  Google Scholar 

  • Kaser G, Großshauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Nat Acad Sci 107:20223–20227

    Article  Google Scholar 

  • Kellerer-Pirklbauer A, Proske H, Strasser V (2010) Paraglacial slope adjustment since the end of the last glacial maximum and its long-lasting effects on secondary mass wasting processes: Hauser Kaibling, Austria. Geomorphology 120:65–76

    Article  Google Scholar 

  • Kirkbride MP, Brazier V (1998) A critical evaluation of the use of glacier chronologies in climatic reconstruction, with reference to New Zealand. J Quat Sci 13:55–64

    Article  Google Scholar 

  • Kirkbride M, Winkler S (2012) Correlation of Late Quaternary moraines: impact of climate variability, glacier response, and chronological resolution. Quatern Sci Rev 46:1–29

    Article  Google Scholar 

  • Kjær KH, Krüger J (2001) The final phase of dead-ice moraine development: processes and sediment architecture, Kötlujökull, Iceland. Sedimentology 48:935–952

    Article  Google Scholar 

  • Klaar MJ, Kidd C, Malone E et al (2015) Vegetation succession in deglaciated landscapes: implications for sediment and landscape stability. Earth Surf Proc Land 40:1088–1100

    Article  Google Scholar 

  • Korup O, Tweed F (2007) Ice, moraine, and landslide dams in mountainous terrain. Quatern Sci Rev 26:3406–3422. https://doi.org/10.1016/j.quascirev.2007.10.012

    Article  Google Scholar 

  • Krüger J, Kjær KH (2000) De-icing progression of ice-cored moraines in a humid, subpolar climate, Kötlujökull, Iceland. Holocene 10:737–747

    Google Scholar 

  • Lane SN, Bakker M, Gabbud C et al (2017) Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology 277:210–227. https://doi.org/10.1016/j.geomorph.2016.02.015

    Article  Google Scholar 

  • Langston G, Bentley LR, Hayashi M et al (2011) Internal structure and hydrological functions of an alpine proglacial moraine. Hydrol Process 25:2967–2982

    Google Scholar 

  • Lebourg T, Riss J, Pirard E (2004) Influence of morphological characteristics of heterogeneous moraine formations on their mechanical behaviour using image and statistical analysis. Eng Geol 73:37–50

    Article  Google Scholar 

  • Leggat MS, Owens PN, Stott TA et al (2015) Hydro-meteorological drivers and sources of suspended sediment flux in the pro-glacial zone of the retreating Castle Creek Glacier, Cariboo Mountains, British Columbia, Canada: suspended sediment fluxes in the pro-glacial zone. Earth Surf Proc Land 40:1542–1559. https://doi.org/10.1002/esp.3755

    Article  Google Scholar 

  • Luckman B (1981) The geomorphology of the Alberta Rocky Mountains: a review and commentary. Zeitschrift für Geomophol 91–119

    Google Scholar 

  • Lukas S, Nicholson LI, Ross FH and Humlum, O (2005) Formation, Meltout Processes and Landscape Alteration of high-arctic ice-cored moraines-examples from Nordenskiold Land, Central Spitsbergen. Polar Geography 29(3):157–187

    Article  Google Scholar 

  • Lukas S, Sass O (2011) The formation of Alpine lateral moraines inferred from sedimentology and radar reflection patterns: a case study from Gornergletscher, Switzerland. Geol Soc Lond Spec Publ 354:77–92

    Article  Google Scholar 

  • Lukas S, Graf A, Coray S, Schlüchter C (2012) Genesis, stability and preservation potential of large lateral moraines of Alpine valley glaciers—towards a unifying theory based on Findelengletscher, Switzerland. Quatern Sci Rev 38:27–48

    Article  Google Scholar 

  • Lyså A, Lønne I (2001) Moraine development at a small High-Arctic valley glacier: Rieperbreen, Svalbard. J Quat Sci 16:519–529

    Article  Google Scholar 

  • Maizels J (1993) Lithofacies variations within sandur deposits: the role of runoff regime, flow dynamics and sediment supply characteristics. Sed Geol 85:299–325

    Article  Google Scholar 

  • Marren PM (2005) Magnitude and frequency in proglacial rivers: a geomorphological and sedimentological perspective. Earth Sci Rev 70:203–251. https://doi.org/10.1016/j.earscirev.2004.12.002

    Article  Google Scholar 

  • Marston RA (2010) Geomorphology and vegetation on hillslopes: interactions, dependencies, and feedback loops. Geomorphology 116:206–217

    Article  Google Scholar 

  • Matthews JA (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands. Cambridge University Press, Cambridge

    Google Scholar 

  • Midgley NG, Cook SJ, Graham DJ, Tonkin TN (2013) Origin, evolution and dynamic context of a Neoglacial lateral–frontal moraine at Austre Lovénbreen, Svalbard. Geomorphology 198:96–106

    Article  Google Scholar 

  • Milner AM, Brown LE, Hannah DM (2009) Hydroecological response of river systems to shrinking glaciers. Hydrol Process 23:62–77

    Article  Google Scholar 

  • Moore R, Fleming S, Menounos B et al (2009) Glacier change in western North America: influences on hydrology, geomorphic hazards and water quality. Hydrol Process 23:42–61

    Article  Google Scholar 

  • Muir DL, Hayashi M, McClymont AF (2011) Hydrological storage and transmission characteristics of an alpine talus. Hydrol Process 25:2954–2966

    Google Scholar 

  • Müller J, Gärtner-Roer I, Kenner R et al (2014) Sediment storage and transfer on a periglacial mountain slope (Corvatsch, Switzerland). Geomorphology 218:35–44

    Article  Google Scholar 

  • Orwin JF, Smart CC (2004a) The evidence for paraglacial sedimentation and its temporal scale in the deglacierizing basin of Small River Glacier, Canada. Geomorphology 58:175–202

    Article  Google Scholar 

  • Orwin JF, Smart CC (2004b) Short-term spatial and temporal patterns of suspended sediment transfer in proglacial channels, Small River Glacier, Canada. Hydrol Process 18:1521–1542

    Article  Google Scholar 

  • Orwin JF, Lamoureux SF, Warburton J, Beylich A (2010) A framework for characterizing fluvial sediment fluxes from source to sink in cold environments. Geogr Ann Ser A Phys Geogr 92:155–176

    Article  Google Scholar 

  • Otto J-C, Schrott L, Jaboyedoff M, Dikau R (2009) Quantifying sediment storage in a high alpine valley (Turtmanntal, Switzerland). Earth Surf Proc Land 34:1726–1742. https://doi.org/10.1002/esp.1856

    Article  Google Scholar 

  • Owen LA (1991) Mass movement deposits in the Karakoram Mountains: their sedimentary characteristics, recognition and role in Karakoram landform evolution. Zeitschrift für Geomorphol 35:401–424

    Google Scholar 

  • Palacios D, Parrilla G, Zamorano JJ (1999) Paraglacial and postglacial debris flows on a Little Ice Age terminal moraine: Jamapa Glacier, Pico de Orizaba (Mexico). Geomorphology 28:95–118

    Article  Google Scholar 

  • Porter PR, Vatne G, Ng F, Irvine-fynn TD (2010) Ice-marginal sediment delivery to the surface of a high-Arctic glacier: Austre Brøggerbreen, Svalbard. Geogr Ann Ser A Phys Geogr 92:437–449

    Article  Google Scholar 

  • Radic V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4:91

    Article  Google Scholar 

  • Reinardy BT, Leighton I, Marx PJ (2013) Glacier thermal regime linked to processes of annual moraine formation at Midtdalsbreen, southern Norway. Boreas 42:896–911

    Google Scholar 

  • Reznichenko NV, Davies TR, Alexander DJ (2011) Effects of rock avalanches on glacier behaviour and moraine formation. Geomorphology 132:327–338

    Article  Google Scholar 

  • Richards K (1984) Some observations on suspended sediment dynamics in Storbregrova, Jotunheimen. Earth Surf Proc Land 9:101–112

    Article  Google Scholar 

  • Röthlisberger F, Schneebeli W (1979) Genesis of lateral moraine complexes, demonstrated by fossil soils and trunks: indicators of postglacial climatic fluctuations

    Google Scholar 

  • Schomacker A, Kjær KH (2008) Quantification of dead-ice melting in ice-cored moraines at the high-Arctic glacier Holmströmbreen, Svalbard. Boreas 37:211–225

    Article  Google Scholar 

  • Schrott L, Götz J, Geilhausen M, Morche D (2006) Spatial and temporal variability of sediment transfer and storage in an Alpine basin (Reintal valley, Bavarian Alps, Germany). Geogr Helv 61:191–200. https://doi.org/10.5194/gh-61-191-2006

    Article  Google Scholar 

  • Schurig C, Smittenberg RH, Berger J et al (2013) Microbial cell-envelope fragments and the formation of soil organic matter: a case study from a glacier forefield. Biogeochemistry 113:595–612

    Article  Google Scholar 

  • Shulmeister J, Davies TR, Evans DJ et al (2009) Catastrophic landslides, glacier behaviour and moraine formation—a view from an active plate margin. Quatern Sci Rev 28:1085–1096

    Article  Google Scholar 

  • Small R (1983) Lateral moraines of glacier de Tsidjiore Nouve: form, development, and implications. J Glaciol 29:250–259

    Article  Google Scholar 

  • Small, RJ (1987) Moraine sediment budgets. In: Gurnell AM & Clark MJ (eds) Glaciofluvial sediment transfer: an alpine perspective, Wiley, Chichester, UK, pp 165–197

    Google Scholar 

  • Springman S, Jommi C, Teysseire P (2003) Instabilities on moraine slopes induced by loss of suction: a case history. Geotechnique 53:3–10

    Article  Google Scholar 

  • Staines KE, Carrivick JL, Tweed FS et al (2015) A multi-dimensional analysis of pro-glacial landscape change at Sólheimajökull, southern Iceland. Earth Surf Proc Land 40:809–822

    Article  Google Scholar 

  • Stoffel M, Huggel C (2012) Effects of climate change on mass movements in mountain environments. Prog Phys Geogr 36:421–439

    Article  Google Scholar 

  • Stoffel M, Tiranti D, Huggel C (2014) Climate change impacts on mass movements—case studies from the European Alps. Sci Total Environ 493:1255–1266

    Article  Google Scholar 

  • Tonkin TN, Midgley NG, Graham DJ, Labadz JC (2017) Internal structure and significance of ice-marginal moraine in the Kebnekaise Mountains, northern Sweden. Boreas 46:199–211

    Article  Google Scholar 

  • Vehling L, Rohn J, Moser M (2016) Quantification of small magnitude rockfall processes at a proglacial high mountain site, Gepatsch glacier (Tyrol, Austria). Zeitschrift für Geomorphol 60(Supplementary Issues):93–108

    Article  Google Scholar 

  • Warburton J (1990) An alpine proglacial fluvial sediment budget. Geogr Ann Ser A Phys Geogr 72:261–272. https://doi.org/10.1080/04353676.1990.11880322

    Article  Google Scholar 

  • Westoby MJ, Glasser NF, Brasington J et al (2014) Modelling outburst floods from moraine-dammed glacial lakes. Earth Sci Rev 134:137–159. https://doi.org/10.1016/j.earscirev.2014.03.009

    Article  Google Scholar 

  • Whalley W (1975) Abnormally steep slopes on moraines constructed by valley glaciers. Eng Behav Glacial Mater 60–66

    Google Scholar 

  • Winkler S, Matthews JA (2010) Observations on terminal moraine-ridge formation during recent advances of southern Norwegian glaciers. Geomorphology 116:87–106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip R. Porter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Porter, P., Smart, M., Irvine-Fynn, T.D.L. (2019). Glacial Sediment Stores and Their Reworking. In: Heckmann, T., Morche, D. (eds) Geomorphology of Proglacial Systems. Geography of the Physical Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-94184-4_10

Download citation

Publish with us

Policies and ethics