Skip to main content

Bio-nano: Theranostic at Cellular Level

  • Chapter
  • First Online:
Particles and Nanoparticles in Pharmaceutical Products

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 29))

Abstract

Functionalized nanoparticles are important platforms for targeted drug delivery and multimodal imaging. Materials scientists provide tailor-made tools for medical research, diagnosis and treatment. These tools are rationally designed to have defined functions. Still, the value of these tools can only be determined by the users in medical sciences that develop assays for applying these tools. Until now, little is known about the impact of multifunctional particles that display intrinsic chemical and physical asymmetry which poses new challenges for cells associated with the amphiphilicity, dipole moments and chemical diversity/patchiness of the functionalized nanoparticles. Why is it important to study the impact of anisotropic multifunctional particles on biological cells extending the intricacy of the problem even further? Current nanotechnology projects that started during the past few years focus on the “supramolecular” weak binding of functionalized particles with the goal to form larger ensembles with new functionalities. Thus, one may anticipate new phenomena associated with the exposure of human tissue to the primary building blocks of these new materials. Despite the challenges that still have to be met, multifunctional nanoparticles provide fascinating opportunities for tailoring properties that are not possible with other types of therapeutics. As more clinical data become available, the nanoparticle strategy will improve to such an extent that more sophisticated tools actually reach the clinic. Results from current trials are fueling the enthusiasm of researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu Lila AS, Kiwada H, Ishida T (2013) The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Control Release 172:38–47. https://doi.org/10.1016/j.jconrel.2013.07.026

    Article  CAS  Google Scholar 

  2. Adiseshaiah PP, Hall JB, McNeil SE (2010) Nanomaterial standards for efficacy and toxicity assessment. WIREs Nanomed Nanobiotechnol 2:99–112. https://doi.org/10.1002/wnan.66

    Article  CAS  Google Scholar 

  3. Ahrens ET, Feili-Hariri M, Xu H, Genove G, Morel PA (2003) Receptor-mediated endocytosis of iron-oxide particles provides efficient labeling of dendritic cells for in vivo MR imaging. Magn Reson Med 49:1006–1013. https://doi.org/10.1002/mrm.10465

    Article  CAS  Google Scholar 

  4. Ai K, Liu Y, Liu J, Yuan Q, He Y, Lu L (2011) Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv Mater 23:4886–4891. https://doi.org/10.1002/adma.201103289

    Article  CAS  Google Scholar 

  5. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173. https://doi.org/10.1161/01.res.0000255691.76142.4a

    Article  CAS  Google Scholar 

  6. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515. https://doi.org/10.1021/mp800051m

    Article  CAS  Google Scholar 

  7. Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 22:825–858. https://doi.org/10.1021/bc200065z

    Article  CAS  Google Scholar 

  8. Algar WR, Susumu K, Delehanty JB, Medintz IL (2011) Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal Chem 83:8826–8837. https://doi.org/10.1021/ac201331r

    Article  CAS  Google Scholar 

  9. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937

    Article  CAS  Google Scholar 

  10. Alivisatos AP (2000) Naturally aligned nanocrystals. Science 289:736–737. https://doi.org/10.1126/science.289.5480.736

    Article  CAS  Google Scholar 

  11. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52. https://doi.org/10.1038/nbt927

    Article  CAS  Google Scholar 

  12. Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2:750–763. https://doi.org/10.1038/nrc903

    Article  CAS  Google Scholar 

  13. Almeida JPM, Figueroa ER, Drezek RA (2014) Gold nanoparticle mediated cancer immunotherapy. Nanomedicine 10:503–514. https://doi.org/10.1016/j.nano.2013.09.011

    Article  CAS  Google Scholar 

  14. Amano A, Shizukuishi S, Tamagawa H, Iwakura K, Tsunasawa S, Tsunemitsu A (1990) Characterization of superoxide dismutases purified from either anaerobically maintained or aerated Bacteroides gingivalis. J Bacteriol 172:1457–1463

    Article  CAS  Google Scholar 

  15. Amendola V, Scaramuzza S, Litti L, Meneghetti M, Zuccolotto G, Rosato A, Nicolato E, Marzola P, Fracasso G, Anselmi C, Pinto M, Colombatti M (2014) Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small 10:2476–2486. https://doi.org/10.1002/smll.201303372

    Article  CAS  Google Scholar 

  16. Anchordoquy TJ, Barenholz Y, Boraschi D, Chorny M, Decuzzi P, Dobrovolskaia MA, Farhangrazi ZS, Farrell D, Gabizon A, Ghandehari H, Godin B, La-Beck NM, Ljubimova J, Moghimi SM, Pagliaro L, Park J-H, Peer D, Ruoslahti E, Serkova NJ, Simberg D (2017) Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions. ACS Nano 11:12–18. https://doi.org/10.1021/acsnano.6b08244

    Article  CAS  Google Scholar 

  17. André R, Natálio F, Humanes M, Leppin J, Heinze K, Wever R, Schröder H-C, Müller WEG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501–509. https://doi.org/10.1002/adfm.201001302

    Article  CAS  Google Scholar 

  18. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira J-P, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, André F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059. https://doi.org/10.1038/nm1622

    Article  CAS  Google Scholar 

  19. Archibald FS, Fridovich I (1981) Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J Bacteriol 146:928–936

    CAS  Google Scholar 

  20. Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, Hanna TN, Liu J, Phillips B, Carter MB, Carroll NJ, Jiang X, Dunphy DR, Willman CL, Petsev DN, Evans DG, Parikh AN, Chackerian B, Wharton W, Peabody DS, Brinker CJ (2011) The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 10:389–397. https://doi.org/10.1038/nmat2992

    Article  CAS  Google Scholar 

  21. Atabaev TS, Lee JH, Lee JJ, Han D-W, Hwang Y-H, Kim H-K, Hong NH (2013) Mesoporous silica with fibrous morphology: a multifunctional core–shell platform for biomedical applications. Nanotechnology 24:345603/1–345603/7. https://doi.org/10.1088/0957-4484/24/34/345603

  22. Awwad HK, El Aggar M, Mocktar N, Barsoum M (1986) Intercapillary distance measurement as an indicator of hypoxia in carcinoma of the cervix uteri. Int J Radiat Oncol 12:1329–1333. https://doi.org/10.1016/0360-3016(86)90165-3

    Article  CAS  Google Scholar 

  23. Baeza A, Colilla M, Vallet-Regí M (2015) Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery. Expert Opin Drug Deliv 12:319–337. https://doi.org/10.1517/17425247.2014.953051

    Article  CAS  Google Scholar 

  24. Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC (2007) Quantum dot—aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7:3065–3070. https://doi.org/10.1021/nl071546n

    Article  CAS  Google Scholar 

  25. Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823. https://doi.org/10.1016/j.polymer.2007.02.004

    Article  CAS  Google Scholar 

  26. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86. https://doi.org/10.1021/bc034153y

    Article  CAS  Google Scholar 

  27. Barenholz Y (2012) Doxil®–the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134. https://doi.org/10.1016/j.jconrel.2012.03.020

    Article  CAS  Google Scholar 

  28. Barnese K, Gralla EB, Cabelli DE, Valentine JS (2008) Manganous phosphate acts as a superoxide dismutase. J Am Chem Soc 130:4604–4606. https://doi.org/10.1021/ja710162n

    Article  CAS  Google Scholar 

  29. Baselga J (2001) Herceptin alone or in combination with chemotherapy in the treatment of HER2-positive metastatic breast cancer: pivotal trials. Oncology 61(Suppl 2):14–21. https://doi.org/10.1159/000055397

    Article  CAS  Google Scholar 

  30. Bawendi MG, Steigerwald ML, Brus LE (1990) The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu Rev Phys Chem 41:477–496. https://doi.org/10.1146/annurev.pc.41.100190.002401

    Article  CAS  Google Scholar 

  31. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843. https://doi.org/10.1021/ja00053a020

    Article  CAS  Google Scholar 

  32. Behr J-P (1997) The Proton Sponge: a Trick to Enter Cells the Viruses Did Not Exploit. Chim Int J Chem 51:34–36

    CAS  Google Scholar 

  33. Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL (2013) The possible “proton sponge ” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther 21:149–157. https://doi.org/10.1038/mt.2012.185

    Article  CAS  Google Scholar 

  34. Bergman L, Rosenholm J, Öst A-B, Duchanoy A, Kankaanpää P, Heino J, Lindén M (2008) On the complexity of electrostatic suspension stabilization of functionalized silica nanoparticles for biotargeting and imaging applications. J Nanomater 2008:1–9. https://doi.org/10.1155/2008/712514

    Article  CAS  Google Scholar 

  35. Bernardos A, Mondragon L, Aznar E, Marcos MD, Martinez-Mañez R, Sancenon F, Soto J, Barat JM, Perez-Paya E, Guillem C, Amoros P (2010) Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano 4:6353–6368. https://doi.org/10.1021/nn101499d

    Article  CAS  Google Scholar 

  36. Berry CC, Wells S, Charles S, Curtis ASG (2003) Dextran and albumin derivatised iron oxide nanoparticles: Influence on fibroblasts in vitro. Biomaterials 24:4551–4557. https://doi.org/10.1016/s0142-9612(03)00237-0

    Article  CAS  Google Scholar 

  37. Bertrand N, Leroux J-C (2012) The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 161:152–163. https://doi.org/10.1016/j.jconrel.2011.09.098

    Article  CAS  Google Scholar 

  38. Biju V, Itoh T, Ishikawa M (2010) Delivering quantum dots to cells: bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem Soc Rev 39:3031–3056. https://doi.org/10.1039/b926512k

    Article  CAS  Google Scholar 

  39. Boal A, Ilhan F, DeRouchey J, Thurn-Albrecht T, Russell T, Rotello V (2000) Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404:746–748. https://doi.org/10.1038/35008037

    Article  CAS  Google Scholar 

  40. Borchardt SA, Allain EJ, Michels JJ, Stearns GW, Kelly RF, McCoy WF (2001) Reaction of acylated homoserine lactone bacterial signaling molecules with oxidized halogen antimicrobials. Appl Environ Microbiol 67:3174–3179. https://doi.org/10.1128/aem.67.7.3174-3179.2001

    Article  CAS  Google Scholar 

  41. Borisch B, Semac I, Soltermann A, Palomba C, Hoessli DC (2001) Anti-CD20 treatments and the lymphocyte membrane: pathology for therapy. Verh Dtsch Ges Pathol 85:161–166

    CAS  Google Scholar 

  42. Bottrill M, Green M (2011) Some aspects of quantum dot toxicity. Chem Commun 47:7039–7050. https://doi.org/10.1039/c1cc10692a

    Article  CAS  Google Scholar 

  43. Boucher Y, Baxter LT, Jain RK (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50:4478–4484

    CAS  Google Scholar 

  44. Boucher Y, Kirkwood JM, Opacic D, Desantis M, Jain RK (1991) Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res 51:6691–6694

    CAS  Google Scholar 

  45. Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465. https://doi.org/10.1056/nejmoa1200694

    Article  CAS  Google Scholar 

  46. Braun K, Pochert A, Beck M, Fiedler R, Gruber J, Lindén M (2016) Dissolution kinetics of mesoporous silica nanoparticles in different simulated body fluids. J Sol-Gel Sci Technol 79:319–327. https://doi.org/10.1007/s10971-016-4053-9

    Article  CAS  Google Scholar 

  47. Breslow R, Overman LE (1970) An “artificial enzyme” combining a metal catalytic group and a hydrophobic binding cavity. J Am Chem Soc 92:1075–1077. https://doi.org/10.1021/ja00707a062

    Article  CAS  Google Scholar 

  48. Brevet D, Gary-Bobo M, Raehm L, Richeter S, Hocine O, Amro K, Loock B, Couleaud P, Frochot C, Morère A, Maillard P, Garcia M, Durand J-O (2009) Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem Commun 1475–1477. https://doi.org/10.1039/b900427k

  49. Brinker C, Scherer W (1990) The physics and chemistry of sol-gel processing. Academic Press, San Diego

    Google Scholar 

  50. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016. https://doi.org/10.1126/science.281.5385.2013

    Article  CAS  Google Scholar 

  51. Buck MR, Bondi JF, Schaak RE (2012) A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles. Nat Chem 4:37–44. https://doi.org/10.1038/nchem.1195

    Article  CAS  Google Scholar 

  52. Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem Soc Rev 35:1028–1042. https://doi.org/10.1039/b600562b

    Article  CAS  Google Scholar 

  53. Butcher NJ, Mortimer GM, Minchin RF (2016) Drug delivery: unravelling the stealth effect. Nat Nanotechnol 11:310–311. https://doi.org/10.1038/nnano.2016.6

    Article  CAS  Google Scholar 

  54. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626. https://doi.org/10.1016/j.addr.2008.08.005

    Article  CAS  Google Scholar 

  55. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano MR, Miyazono K, Uesaka M, Nishiyama N, Kataoka K (2011) Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol 6:815–823. https://doi.org/10.1038/nnano.2011.166

    Article  CAS  Google Scholar 

  56. Cai W, Chen K, Li Z-BB, Gambhir SS, Chen X (2007) Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 48:1862–1870. https://doi.org/10.2967/jnumed.107.043216

    Article  CAS  Google Scholar 

  57. Caltagirone C, Bettoschi A, Garau A, Montis R (2014) Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev 44:4645–4671. https://doi.org/10.1039/c4cs00270a

    Article  CAS  Google Scholar 

  58. Carbone L, Cozzoli PD (2010) Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5:449–493. https://doi.org/10.1016/j.nantod.2010.08.006

    Article  CAS  Google Scholar 

  59. Carter CL, Allen C, Henson DE (1989) Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 63:181–187. https://doi.org/10.1002/1097-0142(19890101)63:1<181:aid-cncr2820630129>3.0.co;2-h

    Article  CAS  Google Scholar 

  60. Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129. https://doi.org/10.1038/35101072

    Article  CAS  Google Scholar 

  61. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes VF (2011) Hardening of the nanoparticle-protein corona in metal (Au, Ag) and oxide (Fe3O4, CoO, and CeO2) nanoparticles. Small 7:3479–3486. https://doi.org/10.1002/smll.201101511

    Article  CAS  Google Scholar 

  62. Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, Coutant F, Métivier D, Pichard E, Aucouturier P, Pierron G, Garrido C, Zitvogel L, Kroemer G (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701. https://doi.org/10.1084/jem.20050915

    Article  CAS  Google Scholar 

  63. Casasús R, Marcos MD, Martínez-Máñez R, Ros-Lis JV, Soto J, Villaescusa LA, Amorós P, Beltrán D, Guillem C, Latorre J (2004) Toward the development of ionically controlled nanoscopic molecular gates. J Am Chem Soc 126:8612–8613. https://doi.org/10.1021/ja048095i

    Article  CAS  Google Scholar 

  64. Cauda V, Argyo C, Bein T (2010) Impact of different PEGylation patterns on the long-term bio-stability of colloidal mesoporous silica nanoparticles. J Mater Chem 20:8693–8699. https://doi.org/10.1039/c0jm01390k

    Article  CAS  Google Scholar 

  65. Cauda V, Schlossbauer A, Bein T (2010) Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol). Microporous Mesoporous Mater 132:60–71. https://doi.org/10.1016/j.micromeso.2009.11.015

    Article  CAS  Google Scholar 

  66. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci 104:2050–2055. https://doi.org/10.1073/pnas.0608582104

    Article  CAS  Google Scholar 

  67. Celardo I, Pedersen JZ, Traversa E, Ghibelli L (2011) Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3:1411–1420. https://doi.org/10.1039/c0nr00875c

    Article  CAS  Google Scholar 

  68. Chai S, Guo Y, Zhang Z, Chai Z, Ma Y, Qi L (2017) Cyclodextrin-gated mesoporous silica nanoparticles as drug carriers for red light-induced drug release. Nanotechnology 28:145101/1–145101/10. https://doi.org/10.1088/1361-6528/aa5e74

  69. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46. https://doi.org/10.1016/s0958-1669(02)00282-3

    Article  CAS  Google Scholar 

  70. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018. https://doi.org/10.1126/science.281.5385.2016

    Article  CAS  Google Scholar 

  71. Chang C-L, Fogler HS (1996) Kinetics of silica particle formation in nonionic W/O microemulsions from TEOS. AIChE J 42:3153–3163. https://doi.org/10.1002/aic.690421115

    Article  CAS  Google Scholar 

  72. Chang C-L, Fogler HS (1997) Controlled formation of silica particles from tetraethyl orthosilicate in nonionic water-in-oil microemulsions. Langmuir 13:3295–3307. https://doi.org/10.1021/la961062z

    Article  CAS  Google Scholar 

  73. Chang Y-J, Liu X-Z, Zhao Q, Yang X-H, Wang K-M, Wang Q, Lin M, Yang M (2015) P(VPBA-DMAEA) as a pH-sensitive nanovalve for mesoporous silica nanoparticles based controlled release. Chinese Chem Lett 26:1203–1208. https://doi.org/10.1016/j.cclet.2015.08.005

    Article  CAS  Google Scholar 

  74. Chaudhuri RG, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433. https://doi.org/10.1021/cr100449n

    Article  CAS  Google Scholar 

  75. Chauhan VP, Jain RK (2013) Strategies for advancing cancer nanomedicine. Nat Mater 12:958–962. https://doi.org/10.1038/nmat3792

    Article  CAS  Google Scholar 

  76. Chauhan VP, Popović Z, Chen O, Cui J, Fukumura D, Bawendi MG, Jain RK (2011) Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew Chem Int Ed 50:11417–11420. https://doi.org/10.1002/anie.201104449

    Article  CAS  Google Scholar 

  77. Chauhan VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D, Jain RK (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7:383–388. https://doi.org/10.1038/nnano.2012.45

    Article  CAS  Google Scholar 

  78. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, He H (2009) Co-delivery of Doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 5:2673–2677. https://doi.org/10.1002/smll.200900621

    Article  CAS  Google Scholar 

  79. Chen G, Teng Z, Su X, Liu Y, Lu G (2015) Unique biological degradation behavior of stöber mesoporous silica nanoparticles from their interiors to their exteriors. J Biomed Nanotechnol 11:722–729. https://doi.org/10.1166/jbn.2015.2072

    Article  CAS  Google Scholar 

  80. Chen G, Wang J, Wu C, Li CZ, Jiang H, Wang X (2012) Photoelectrocatalytic oxidation of glutathione based on porous TiO2-Pt nanowhiskers. Langmuir 28:12393–12399. https://doi.org/10.1021/la302355b

    Article  CAS  Google Scholar 

  81. Chen T, Wu W, Xiao H, Chen Y, Chen M, Li J (2016) Intelligent drug delivery system based on mesoporous silica nanoparticles coated with an ultra-pH-sensitive gatekeeper and poly(ethylene glycol). ACS Macro Lett 5:55–58. https://doi.org/10.1021/acsmacrolett.5b00765

    Article  CAS  Google Scholar 

  82. Chen W-H, Luo G-F, Lei Q, Jia H-Z, Hong S, Wang Q-R, Zhuo R-X, Zhang X-Z (2015) MMP-2 responsive polymeric micelles for cancer-targeted intracellular drug delivery. Chem Commun 51:465–468. https://doi.org/10.1039/c4cc07563c

    Article  CAS  Google Scholar 

  83. Chen YS, Choi H, Kamat PV (2013) Metal-cluster-sensitized solar cells. A new class of thiolated gold sensitizers delivering efficiency greater than 2%. J Am Chem Soc 135:8822–8825. https://doi.org/10.1021/ja403807f

    Article  CAS  Google Scholar 

  84. Chen Z, Yin JJ, Zhou YT, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6:4001–4012. https://doi.org/10.1021/nn300291r

    Article  CAS  Google Scholar 

  85. Cheng H, Zhu J-L, Zeng X, Jing Y, Zhang X-Z, Zhuo R-X (2009) Targeted gene delivery mediated by folate-polyethylenimine-block-poly(ethylene glycol) with receptor selectivity. Bioconjug Chem 20:481–487. https://doi.org/10.1021/bc8004057

    Article  CAS  Google Scholar 

  86. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28:869–876. https://doi.org/10.1016/j.biomaterials.2006.09.047

    Article  CAS  Google Scholar 

  87. Cheng K, Frey NA, Sun S, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542. https://doi.org/10.1039/b815548h

    Article  CAS  Google Scholar 

  88. Cheng K, Yang M, Zhang R, Qin C, Su X, Cheng Z (2014) Hybrid nanotrimers for Dual T1 and T2-weighted magnetic resonance imaging. ACS Nano 8:9884–9896. https://doi.org/10.1021/nn500188y

    Article  CAS  Google Scholar 

  89. Cheng L-C, Huang J-H, Chen HM, Lai T-C, Yang K-Y, Liu R-S, Hsiao M, Chen C-H, Her L-J, Tsai DP (2012) Seedless, silver-induced synthesis of star-shaped gold/silver bimetallic nanoparticles as high efficiency photothermal therapy reagent. J Mater Chem 22:2244–2253. https://doi.org/10.1039/c1jm13937a

    Article  CAS  Google Scholar 

  90. Cheng MMC, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10:11–19. https://doi.org/10.1016/j.cbpa.2006.01.006

    Article  CAS  Google Scholar 

  91. Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z (2011) Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 152:2–12. https://doi.org/10.1016/j.jconrel.2011.01.030

    Article  CAS  Google Scholar 

  92. Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A (2012) Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science 338:903–910. https://doi.org/10.1126/science.1226338

    Article  CAS  Google Scholar 

  93. Cheon J, Lee JH (2008) Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 41:1630–1640. https://doi.org/10.1021/ar800045c

    Article  CAS  Google Scholar 

  94. Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550. https://doi.org/10.1021/nl070363y

    Article  CAS  Google Scholar 

  95. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668. https://doi.org/10.1021/nl052396o

    Article  CAS  Google Scholar 

  96. Chiu H-Y, Deng W, Engelke H, Helma J, Leonhardt H, Bein T (2016) Intracellular chromobody delivery by mesoporous silica nanoparticles for antigen targeting and visualization in real time. Sci Rep 6:25019/1–25019/12. https://doi.org/10.1038/srep25019

  97. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170. https://doi.org/10.1038/nbt1340

    Article  CAS  Google Scholar 

  98. Choi Y, Lee J-E, Lee JH, Jeong JH, Kim J (2015) A biodegradation study of SBA-15 microparticles in simulated body fluid and in vivo. Langmuir 31:6457–6462. https://doi.org/10.1021/acs.langmuir.5b01316

    Article  CAS  Google Scholar 

  99. Chu YT, Chanda K, Lin PH, Huang MH (2012) Aqueous phase synthesis of palladium tripod nanostructures for sonogashira coupling reactions. Langmuir 28:11258–11264. https://doi.org/10.1021/la302284m

    Article  CAS  Google Scholar 

  100. Clark AJ, Wiley DT, Zuckerman JE, Webster P, Chao J, Lin J, Yen Y, Davis ME (2016) CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing. Proc Natl Acad Sci 113:3850–3854. https://doi.org/10.1073/pnas.1603018113

    Article  CAS  Google Scholar 

  101. Clemments AM, Botella P, Landry CC (2015) Protein adsorption from biofluids on silica nanoparticles: corona analysis as a function of particle diameter and porosity. ACS Appl Mater Interfaces 7:21682–21689. https://doi.org/10.1021/acsami.5b07631

    Article  CAS  Google Scholar 

  102. Conde J, Bao C, Tan Y, Cui D, Edelman ER, Azevedo HS, Byrne HJ, Artzi N, Tian F (2015) Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells. Adv Funct Mater 25:4183–4194. https://doi.org/10.1002/adfm.201501283

    Article  CAS  Google Scholar 

  103. Costi R, Saunders AE, Banin U (2010) Colloidal hybrid nanostructures: a new type of functional materials. Angew Chem Int Ed 49:4878–4897. https://doi.org/10.1002/anie.200906010

    Article  CAS  Google Scholar 

  104. Courty A, Henry A-I, Goubet N, Pileni M-P (2007) Large triangular single crystals formed by mild annealing of self-organized silver nanocrystals. Nat Mater 6:900–907. https://doi.org/10.1038/nmat2004

    Article  CAS  Google Scholar 

  105. Courty A, Mermet A, Albouy PA, Duval E, Pileni MP (2005) Vibrational coherence of self-organized silver nanocrystals in f.c.c. supra-crystals. Nat Mater 4:395–398. https://doi.org/10.1038/nmat1366

    Article  CAS  Google Scholar 

  106. Cozzoli PD, Pellegrino T, Manna L (2006) Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 35:1195–1208. https://doi.org/10.1039/b517790c

    Article  CAS  Google Scholar 

  107. Croissant J, Cattoën X, Man MWC, Gallud A, Raehm L, Trens P, Maynadier M, Durand J-O (2014) Biodegradable ethylene-bis(propyl)disulfide-based periodic mesoporous organosilica nanorods and nanospheres for efficient in-vitro drug delivery. Adv Mater 26:6174–6180. https://doi.org/10.1002/adma.201401931

    Article  CAS  Google Scholar 

  108. Croissant JG, Fatieiev Y, Khashab NM (2017) Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater 29:1604634/1–1604634/51. https://doi.org/10.1002/adma.201604634

  109. Croissant JG, Fatieiev Y, Omar H, Anjum DH, Gurinov A, Lu J, Tamanoi F, Zink JI, Khashab NM (2016) Periodic mesoporous organosilica nanoparticles with controlled morphologies and high drug/dye loadings for multicargo delivery in cancer cells. Chemistry 22:9607–9615. https://doi.org/10.1002/chem.201600587

    Article  CAS  Google Scholar 

  110. Croissant JG, Picard S, Aggad D, Klausen M, Mauriello Jimenez C, Maynadier M, Mongin O, Clermont G, Genin E, Cattoën X, Wong Chi Man M, Raehm L, Garcia M, Gary-Bobo M, Blanchard-Desce M, Durand J-O (2016) Fluorescent periodic mesoporous organosilica nanoparticles dual-functionalized via click chemistry for two-photon photodynamic therapy in cells. J Mater Chem B 4:5567–5574. https://doi.org/10.1039/c6tb00638h

    Article  CAS  Google Scholar 

  111. Croissant JG, Zhang D, Alsaiari S, Lu J, Deng L, Tamanoi F, AlMalik AM, Zink JI, Khashab NM (2016) Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. J Control Release 229:183–191. https://doi.org/10.1016/j.jconrel.2016.03.030

    Article  CAS  Google Scholar 

  112. Cubillos-Ruiz JR, Engle X, Scarlett UK, Martinez D, Barber A, Elgueta R, Wang L, Nesbeth Y, Durant Y, Gewirtz AT, Sentman CL, Kedl R, Conejo-Garcia JR (2009) Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J Clin Invest 119:2231–2244. https://doi.org/10.1172/jci37716

    Article  CAS  Google Scholar 

  113. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci 107:4275–4280. https://doi.org/10.1073/pnas.0915174107

    Article  Google Scholar 

  114. Dai L, Zhang Q, Gu H, Cai K (2015) Facile synthesis of yolk–shell silica nanoparticles for targeted tumor therapy. J Mater Chem B 3:8303–8313. https://doi.org/10.1039/c5tb01620g

    Article  CAS  Google Scholar 

  115. Daldrup-Link HE, Golovko D, Ruffell B, Denardo DG, Castaneda R, Ansari C, Rao J, Tikhomirov GA, Wendland MF, Corot C, Coussens LM (2011) MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin Cancer Res 17:5695–5704. https://doi.org/10.1158/1078-0432.ccr-10-3420

    Article  CAS  Google Scholar 

  116. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146. https://doi.org/10.1016/j.jconrel.2010.08.027

    Article  CAS  Google Scholar 

  117. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  Google Scholar 

  118. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464:1067–1070. https://doi.org/10.1038/nature08956

    Article  CAS  Google Scholar 

  119. Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, Searson PC (2014) State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release 187:133–144. https://doi.org/10.1016/j.jconrel.2014.05.036

    Article  CAS  Google Scholar 

  120. Dawson JH (1988) Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240:433–439. https://doi.org/10.1126/science.3358128

    Article  CAS  Google Scholar 

  121. Deng Z, Zhen Z, Hu X, Wu S, Xu Z, Chu PK (2011) Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials 32:4976–4986. https://doi.org/10.1016/j.biomaterials.2011.03.050

    Article  CAS  Google Scholar 

  122. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett 4:11–18. https://doi.org/10.1021/nl0347334

    Article  CAS  Google Scholar 

  123. Desai D, Prabhakar N, Mamaeva V, Karaman DŞ, Lähdeniemi IAK, Sahlgren C, Rosenholm JM, Toivola DM (2016) Targeted modulation of cell differentiation in distinct regions of the gastrointestinal tract via oral administration of differently PEG-PEI functionalized mesoporous silica nanoparticles. Int J Nanomedicine 11:299–313. https://doi.org/10.2147/ijn.s94013

    Article  CAS  Google Scholar 

  124. Ding J, Wang Y, Ma M, Zhang Y, Lu S, Jiang Y, Qi C, Luo S, Dong G, Wen S, An Y, Gu N (2013) CT/fluorescence dual-modal nanoemulsion platform for investigating atherosclerotic plaques. Biomaterials 34:209–216. https://doi.org/10.1016/j.biomaterials.2012.09.025

    Article  CAS  Google Scholar 

  125. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902. https://doi.org/10.1146/annurev.biochem.78.081307.110540

    Article  CAS  Google Scholar 

  126. Dolmans DEJGJ, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387. https://doi.org/10.1038/nrc1071

    Article  CAS  Google Scholar 

  127. Dong A, Jiao Y, Milliron DJ (2013) Electronically coupled nanocrystal superlattice films by in situ ligand exchange at the liquid-air interface. ACS Nano 7:10978–10984. https://doi.org/10.1021/nn404566b

    Article  CAS  Google Scholar 

  128. Dong R, Su Y, Yu S, Zhou Y, Lu Y, Zhu X (2013) A redox-responsive cationic supramolecular polymer constructed from small molecules as a promising gene vector. Chem Commun 49:9845–9847. https://doi.org/10.1039/c3cc46123h

    Article  CAS  Google Scholar 

  129. Dragovich T, Gordon M, Mendelson D, Wong L, Modiano M, Chow H-HS, Samulitis B, O’Day S, Grenier K, Hersh E, Dorr R (2007) Phase I trial of imexon in patients with advanced malignancy. J Clin Oncol 25:1779–1784. https://doi.org/10.1200/jco.2006.08.9672

    Article  CAS  Google Scholar 

  130. Du X, He J (2010) Fine-tuning of silica nanosphere structure by simple regulation of the volume ratio of cosolvents. Langmuir 26:10057–10062. https://doi.org/10.1021/la100196j

    Article  CAS  Google Scholar 

  131. Du X, Li X, Xiong L, Zhang X, Kleitz F, Qiao SZ (2016) Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91:90–127. https://doi.org/10.1016/j.biomaterials.2016.03.019

    Article  CAS  Google Scholar 

  132. Duan D, Fan K, Zhang D, Tan S, Liang M, Liu Y, Zhang J, Zhang P, Liu W, Qiu X, Kobinger GP, Fu Gao G, Yan X (2015) Nanozyme-strip for rapid local diagnosis of Ebola. Biosens Bioelectron 74:134–141. https://doi.org/10.1016/j.bios.2015.05.025

    Article  CAS  Google Scholar 

  133. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762. https://doi.org/10.1126/science.1077194

    Article  CAS  Google Scholar 

  134. Dunford HB (2010) Peroxidases and catalases: biochemistry biophysics, biotechnology and physiology. Wiley, Hoboken

    Google Scholar 

  135. Dunford HB, Stillman JS (1976) On the function and mechanism of action of peroxidases. Coord Chem Rev 19:187–251. https://doi.org/10.1016/s0010-8545(00)80316-1

    Article  CAS  Google Scholar 

  136. Durfee PN, Lin Y-S, Dunphy DR, Muñiz AJ, Butler KS, Humphrey KR, Lokke AJ, Agola JO, Chou SS, Chen I-M, Wharton W, Townson JL, Willman CL, Brinker CJ (2016) Mesoporous silica nanoparticle-supported lipid bilayers (protocells) for active targeting and delivery to individual leukemia cells. ACS Nano 10:8325–8345. https://doi.org/10.1021/acsnano.6b02819

    Article  CAS  Google Scholar 

  137. Eckford PDW, Sharom FJ (2009) ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev 109:2989–3011. https://doi.org/10.1021/cr9000226

    Article  CAS  Google Scholar 

  138. Ehlerding EB, Chen F, Cai W (2016) Biodegradable and renal clearable inorganic nanoparticles. Adv Sci 3:1500223/1–1500223/8. https://doi.org/10.1002/advs.201500223

  139. Elechiguerra JL, Reyes-Gasga J, Yacaman MJ (2006) The role of twinning in shape evolution of anisotropic noble metal nanostructures. J Mater Chem 16:3906–3919. https://doi.org/10.1039/b607128g

    Article  CAS  Google Scholar 

  140. Eliasof S, Lazarus D, Peters CG, Case RI, Cole RO, Hwang J, Schluep T, Chao J, Lin J, Yen Y, Han H, Wiley DT, Zuckerman JE, Davis ME (2013) Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc Natl Acad Sci 110:15127–15132. https://doi.org/10.1073/pnas.1309566110

    Article  Google Scholar 

  141. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. https://doi.org/10.1038/346818a0

    Article  CAS  Google Scholar 

  142. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  Google Scholar 

  143. Eskey CJ, Koretsky AP, Domach MM, Jain RK (1993) Role of oxygen vs. glucose in energy metabolism in a mammary carcinoma perfused ex vivo: direct measurement by 31P NMR. Proc Natl Acad Sci 90:2646–2650

    Article  CAS  Google Scholar 

  144. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang L-P, Gimotty PA, Gilks CB, Lal P, Zhang L, Coukos G (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475:226–230. https://doi.org/10.1038/nature10169

    Article  CAS  Google Scholar 

  145. Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62:362–374. https://doi.org/10.1016/j.addr.2009.11.008

    Article  CAS  Google Scholar 

  146. Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7:459–464. https://doi.org/10.1038/nnano.2012.90

    Article  CAS  Google Scholar 

  147. Fang W, Tang S, Liu P, Fang X, Gong J, Zheng N (2012) Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells. Small 8:3816–3822. https://doi.org/10.1002/smll.201200962

    Article  CAS  Google Scholar 

  148. Faraday M (1857) The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147:145–181. https://doi.org/10.1098/rstl.1857.0011

    Article  Google Scholar 

  149. Farber S, Diamond LK (1948) Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med 238:787–793. https://doi.org/10.1056/nejm194806032382301

    Article  CAS  Google Scholar 

  150. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci 103:6315–6320. https://doi.org/10.1073/pnas.0601755103

    Article  CAS  Google Scholar 

  151. Fenton H (1894) LXXIII.—Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910

    Article  CAS  Google Scholar 

  152. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910. https://doi.org/10.1021/cr040090g

    Article  CAS  Google Scholar 

  153. Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333:328–335. https://doi.org/10.1016/j.bbrc.2005.05.132

    Article  CAS  Google Scholar 

  154. Figdor CG, de Vries IJM, Lesterhuis WJ, Melief CJM (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480. https://doi.org/10.1038/nm1039

    Article  CAS  Google Scholar 

  155. Finlay J, Roberts CM, Dong J, Zink JI, Tamanoi F, Glackin CA (2015) Mesoporous silica nanoparticle delivery of chemically modified siRNA against TWIST1 leads to reduced tumor burden. Nanomedicine 11:1657–1666. https://doi.org/10.1016/j.nano.2015.05.011

    Article  CAS  Google Scholar 

  156. Florence AT (2012) “Targeting” nanoparticles: the constraints of physical laws and physical barriers. J Control Release 164:115–124. https://doi.org/10.1016/j.jconrel.2012.03.022

    Article  CAS  Google Scholar 

  157. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186. https://doi.org/10.1056/nejm197111182852108

    Article  CAS  Google Scholar 

  158. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–7. https://doi.org/10.1093/jnci/82.1.4

    Article  CAS  Google Scholar 

  159. Fortin JJ-P, Wilhelm C, Servais J, Menager C, Bacri J-CJ-C, Gazeau F, Ménager C, Bacri J-CJ-C, Gazeau Florence (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635. https://doi.org/10.1021/ja067457e

    Article  CAS  Google Scholar 

  160. Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. Nanomater Toxicol Med Appl 22:64–75. https://doi.org/10.1016/j.jfda.2014.01.005

    Article  CAS  Google Scholar 

  161. Fu WH, Guan Y, Wang YM, He M-Y (2016) A facile synthesis of monodispersed mesoporous silica nanospheres with Pm3n structure. Microporous Mesoporous Mater 220:168–174. https://doi.org/10.1016/j.micromeso.2015.09.004

    Article  CAS  Google Scholar 

  162. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174. https://doi.org/10.1038/nri2506

    Article  CAS  Google Scholar 

  163. Gac LS, Vermes I, Van Den Berg A Den (2006) Quantum dots based probes conjugated to Annexin V for photostable apoptosis detection and imaging. Nano Lett 6:1863–1869. https://doi.org/10.1021/nl060694v

  164. Gai S, Yang P, Ma P, Wang D, Li C, Li X, Niu N, Lin J (2011) Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery. J Mater Chem 21:16420–16426. https://doi.org/10.1039/c1jm13357h

    Article  CAS  Google Scholar 

  165. Gao L, Cui Y, He Q, Yang Y, Fei J, Li J (2011) Selective recognition of co-assembled thrombin aptamer and docetaxel on mesoporous silica nanoparticles against tumor cell proliferation. Chemistry 17:13170–13174. https://doi.org/10.1002/chem.201101658

    Article  CAS  Google Scholar 

  166. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  Google Scholar 

  167. Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976. https://doi.org/10.1038/nbt994

    Article  CAS  Google Scholar 

  168. Garrett RM, Johnson JL, Graf TN, Feigenbaum A, Rajagopalan KV (1998) Human sulfite oxidase R160Q: identification of the mutation in a sulfite oxidase-deficient patient and expression and characterization of the mutant enzyme. Proc Natl Acad Sci 95:6394–6398. https://doi.org/10.1073/pnas.95.11.6394

    Article  CAS  Google Scholar 

  169. Gennes DP-G (1992) Soft matter (Nobel Lecture). Angew Chem Int Ed 31:842–845. https://doi.org/10.1002/anie.199208421

    Article  Google Scholar 

  170. Gerlowski LE, Jain RK (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31:288–305. https://doi.org/10.1016/0026-2862(86)90018-x

    Article  CAS  Google Scholar 

  171. Gillet J-P, Gottesman MM (2010) Mechanisms of multidrug resistance in cancer. Methods Mol Biol 596:47–76. https://doi.org/10.1007/978-1-60761-416-6_4

    Article  CAS  Google Scholar 

  172. Giri S, Sykes EA, Jennings TL, Chan WCW (2011) Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. ACS Nano 5:1580–1587. https://doi.org/10.1021/nn102873w

    Article  CAS  Google Scholar 

  173. Glaser N, Adams DJ, Bo A, Krausch G (2006) Janus particles at liquid–liquid interfaces. Langmuir 22:5227–5229. https://doi.org/10.1021/la060693i

    Article  CAS  Google Scholar 

  174. Gomez-Grana S, Hubert F (2011) Surfactant (bi) layers on gold nanorods. Langmuir 1453–1459. https://doi.org/10.1021/la203451p

  175. Gonzalez Porras MA, Durfee PN, Gregory AM, Sieck GC, Brinker CJ, Mantilla CB (2016) A novel approach for targeted delivery to motoneurons using cholera toxin-B modified protocells. J Neurosci Methods 273:160–174. https://doi.org/10.1016/j.jneumeth.2016.09.003

    Article  CAS  Google Scholar 

  176. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58. https://doi.org/10.1038/nrc706

    Article  CAS  Google Scholar 

  177. Graf C, Vossen DLJ, Imhof A, van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19:6693–6700. https://doi.org/10.1021/la0347859

    Article  CAS  Google Scholar 

  178. Green NM (1990) Avidin and streptavidin. Methods Enzymol 184:51–67

    Article  CAS  Google Scholar 

  179. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603. https://doi.org/10.1126/science.8128245

    Article  CAS  Google Scholar 

  180. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791. https://doi.org/10.1039/b711490g

    Article  CAS  Google Scholar 

  181. Guisasola E, Baeza A, Talelli M, Arcos D, Vallet-Regí M (2016) Design of thermoresponsive polymeric gates with opposite controlled release behaviors. RSC Adv 6:42510–42516. https://doi.org/10.1039/c6ra02260j

    Article  CAS  Google Scholar 

  182. Guo L, Yan DD, Yang D, Li Y, Xiaodong W, Zalewski O, Yan B, Lu W (2015) Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano 8:5670–5681. https://doi.org/10.1021/nn5002112

    Article  CAS  Google Scholar 

  183. Haacke EM, Brown RW, Thomson MR, Venkatesan R (1999) Magnetic resonance imaging—physical principles and sequence design. Wiley, New York

    Google Scholar 

  184. Haartman E, Lindberg D, Prabhakar N, Rosenholm JM (2016) On the intracellular release mechanism of hydrophobic cargo and its relation to the biodegradation behavior of mesoporous silica nanocarriers. Eur J Pharm Sci 95:17–27. https://doi.org/10.1016/j.ejps.2016.06.001

    Article  CAS  Google Scholar 

  185. Hajipour MJ, Laurent S, Aghaie A, Rezaee F, Mahmoudi M (2014) Personalized protein coronas: a “key” factor at the nanobiointerface. Biomater Sci 2:1210–1221. https://doi.org/10.1039/c4bm00131a

    Article  CAS  Google Scholar 

  186. Han L, Tang C, Yin C (2015) Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA. Biomaterials 60:42–52. https://doi.org/10.1016/j.biomaterials.2015.05.001

    Article  CAS  Google Scholar 

  187. Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635. https://doi.org/10.1038/90228

    Article  CAS  Google Scholar 

  188. Hanafi-Bojd MY, Jaafari MR, Ramezanian N, Xue M, Amin M, Shahtahmassebi N, Malaekeh-Nikouei B (2015) Surface functionalized mesoporous silica nanoparticles as an effective carrier for epirubicin delivery to cancer cells. Eur J Pharm Biopharm 89:248–258. https://doi.org/10.1016/j.ejpb.2014.12.009

    Article  CAS  Google Scholar 

  189. Hao X, Hu X, Zhang C, Chen S, Li Z, Yang X, Liu H, Jia G, Liu D, Ge K, Liang X-J, Zhang J (2015) Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite. ACS Nano 9:9614–9625. https://doi.org/10.1021/nn507485j

    Article  CAS  Google Scholar 

  190. Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, Stewart JS (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7:243–254

    CAS  Google Scholar 

  191. Hasan Z, Renirie R, Kerkman R, Ruijssenaars HJ, Hartog AF, Wever R (2006) Laboratory-evolved vanadium chloroperoxidase exhibits 100-fold higher halogenating activity at alkaline pH: Catalytic effects from first and second coordination sphere mutations. J Biol Chem 281:9738–9744. https://doi.org/10.1074/jbc.m512166200

    Article  CAS  Google Scholar 

  192. He Q, Kiesewetter DO, Qu Y, Fu X, Fan J, Huang P, Liu Y, Zhu G, Liu Y, Qian Z, Chen X (2015) NIR-responsive on-demand release of co from metal carbonyl-caged graphene oxide nanomedicine. Adv Mater 27:6741–6746. https://doi.org/10.1002/adma.201502762

    Article  CAS  Google Scholar 

  193. He Q, Shi J, Zhu M, Chen Y, Chen F (2010) The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid. Microporous Mesoporous Mater 131:314–320. https://doi.org/10.1016/j.micromeso.2010.01.009

    Article  CAS  Google Scholar 

  194. He Q, Zhang Z, Gao Y, Shi J, Li Y (2009) Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles. Small 5:2722–2729. https://doi.org/10.1002/smll.200900923

    Article  CAS  Google Scholar 

  195. Heidegger S, Gößl D, Schmidt A, Niedermayer S, Argyo C, Endres S, Bein T, Bourquin C (2015) Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale 8:938–948. https://doi.org/10.1039/c5nr06122a

    Article  CAS  Google Scholar 

  196. Helmlinger G, Sckell A, Dellian M, Forbes NS, Jain RK (2002) Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin Cancer Res 8:1284–1291

    CAS  Google Scholar 

  197. Herget K, Hubach P, Pusch S, Deglmann P, Götz H, Gorelik TE, Gural’skiy IA, Pfitzner F, Link T, Schenk S, Panthöfer M, Ksenofontov V, Kolb U, Opatz T, André R, Tremel W (2016) Haloperoxidase mimicry by CeO2−x nanorods combats biofouling. Adv Mater 29:1603823/1-1603823/8. https://doi.org/10.1002/adma.201603823

  198. Herricks T, Chen J, Xia Y (2004) Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Lett 4:2367–2371. https://doi.org/10.1021/nl048570a

    Article  CAS  Google Scholar 

  199. Hobson B, Denekamp J (1984) Endothelial proliferation in tumours and normal tissues: continuous labelling studies. Br J Cancer 49:405–413

    Article  CAS  Google Scholar 

  200. Hoekstra HJ, van Ginkel RJ (2003) Hyperthermic isolated limb perfusion in the management of extremity sarcoma. Curr Opin Oncol 15:300–303

    Article  CAS  Google Scholar 

  201. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251. https://doi.org/10.1002/anie.200503075

    Article  CAS  Google Scholar 

  202. Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlén M (2005) The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26:501–510. https://doi.org/10.1002/elps.200410070

    Article  CAS  Google Scholar 

  203. Holohan C, van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13:714–726. https://doi.org/10.1038/nrc3599

    Article  CAS  Google Scholar 

  204. Hong R, Fischer N (2005) Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem Mater 4617–4621. https://doi.org/10.1021/cm0507819

  205. Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14:107–115. https://doi.org/10.1016/j.chembiol.2006.11.015

    Article  CAS  Google Scholar 

  206. Horssen VR, Ten Hagen TLM, Eggermont AMM (2006) TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11:397–408. https://doi.org/10.1634/theoncologist.11-4-397

    Article  Google Scholar 

  207. Hsiao I-L, Hsieh Y-K, Chuang C-Y, Wang C-F, Huang Y-J (2017) Effects of silver nanoparticles on the interactions of neuron- and glia-like cells: toxicity, uptake mechanisms, and lysosomal tracking. Environ Toxicol. https://doi.org/10.1002/tox.22397

    Article  Google Scholar 

  208. Hu C-MJ, Fang RH, Wang K-C, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang K, Chien S, Zhang L (2015) Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118–121. https://doi.org/10.1038/nature15373

    Article  CAS  Google Scholar 

  209. Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L (2011) Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci 108:10980–10985. https://doi.org/10.1073/pnas.1106634108

    Article  Google Scholar 

  210. Hu H, You Y, He L, Chen T (2015) Rational design of NAMI-A-loaded mesoporous silica nanoparticles as antiangiogeneic nanosystem. J Mater Chem B 3:6346–6368. https://doi.org/10.1039/c5tb00612k

    Article  Google Scholar 

  211. Hu JW, Li JF, Ren B, Wu DY, Sun SG, Tian ZQ (2007) Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced raman scattering substrate. J Phys Chem C 111:1105–1112. https://doi.org/10.1021/jp0652906

    Article  CAS  Google Scholar 

  212. Hu Y, Yang Y, Wang H, Du H (2015) Synergistic integration of layer-by-layer assembly of photosensitizer and gold nanorings for enhanced photodynamic therapy in the near infrared. ACS Nano 9:8744–8754. https://doi.org/10.1021/acsnano.5b03063

    Article  CAS  Google Scholar 

  213. Huang J, Guo M, Ke H, Zong C, Ren B, Liu G, Shen H, Ma Y, Wang X, Zhang H, Deng Z, Chen H, Zhang Z (2015) Rational design and synthesis of γFe2O3@Au magnetic gold nanoflowers for efficient cancer theranostics. Adv Mater 27:5049–5056. https://doi.org/10.1002/adma.201501942

    Article  CAS  Google Scholar 

  214. Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N (2011) Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol 6:28–32. https://doi.org/10.1038/nnano.2010.235

    Article  CAS  Google Scholar 

  215. Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295:2425–2427. https://doi.org/10.1126/science.1069156

    Article  CAS  Google Scholar 

  216. Hwang AA, Lee B-Y, Clemens DL, Dillon BJ, Zink JI, Horwitz MA (2015) pH-responsive isoniazid-loaded nanoparticles markedly improve tuberculosis treatment in mice. Small 11:5066–5078. https://doi.org/10.1002/smll.201500937

    Article  CAS  Google Scholar 

  217. Jain RK (1996) 1995 Whitaker lecture: delivery of molecules, particles, and cells to solid tumors. Ann Biomed Eng 24:457–473. https://doi.org/10.1007/bf02648108

    Article  CAS  Google Scholar 

  218. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. https://doi.org/10.1126/science.1104819

    Article  CAS  Google Scholar 

  219. Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31:2205–2218. https://doi.org/10.1200/jco.2012.46.3653

    Article  CAS  Google Scholar 

  220. Jain RK, Baxter LT (1988) Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res 48:7022–7032

    CAS  Google Scholar 

  221. Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7:653–664. https://doi.org/10.1038/nrclinonc.2010.139

    Article  CAS  Google Scholar 

  222. Jana N, Earhart C, Ying J (2007) Synthesis of water-soluble and functionalized nanoparticles by silica coating. Chem Mater 5:5074–5082. https://doi.org/10.1021/cm071368z

    Article  CAS  Google Scholar 

  223. Jang J, Nah H, Lee J-H, Moon SH, Kim MG, Cheon J (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem Int Ed 48:1234–1238. https://doi.org/10.1002/anie.200805149

    Article  CAS  Google Scholar 

  224. Jang YH, Jang YJ, Kochuveedu ST, Byun M, Lin Z, Kim DH (2014) Plasmonic dye-sensitized solar cells incorporated with Au-TiO2 nanostructures with tailored configurations. Nanoscale 6:1823–1832. https://doi.org/10.1039/c3nr05012b

    Article  CAS  Google Scholar 

  225. Jiang H, Chess L (2009) How the immune system achieves self–nonself discrimination during adaptive immunity. In: Advances in immunology. Academic Press, New York, pp 95–133

    Google Scholar 

  226. Johnson JL, Rajagopalan KV, Wadman SK (1993) Human molybdenum cofactor deficiency. Adv Exp Med Biol 338:373–378

    Article  CAS  Google Scholar 

  227. Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R (1999) Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater 194:185–196. https://doi.org/10.1016/s0304-8853(98)00558-7

    Article  CAS  Google Scholar 

  228. Josephson L, Tung C-H, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug Chem 10:186–191. https://doi.org/10.1021/bc980125h

    Article  CAS  Google Scholar 

  229. Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7:513–520. https://doi.org/10.1016/j.ccr.2005.05.024

    Article  CAS  Google Scholar 

  230. Juarez JC, Manuia M, Burnett ME, Betancourt O, Boivin B, Shaw DE, Tonks NK, Mazar AP, Doñate F (2008) Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc Natl Acad Sci 105:7147–7152. https://doi.org/10.1073/pnas.0709451105

    Article  Google Scholar 

  231. Jun Y-W, Huh Y-M, Choi J-S, Lee J-H, Song H-T, Kim S, Yoon S, Kim K-S, Shin J-S, Suh J-S, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732–5733. https://doi.org/10.1021/ja0422155

    Article  CAS  Google Scholar 

  232. Jun Y, Lee J-H, Cheon J (2008) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47:5122–5135. https://doi.org/10.1002/anie.200701674

    Article  CAS  Google Scholar 

  233. Jun YW, Choi JS, Cheon J (2006) Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Ed 45:3414–3439. https://doi.org/10.1002/anie.200503821

    Article  CAS  Google Scholar 

  234. Kaim W, Schwederski B (2005) Bioanorganische Chemie. Springer, Wiesbaden

    Book  Google Scholar 

  235. Kang Z, Yan X, Zhao L, Liao Q, Zhao K, Du H, Zhang X, Zhang X, Zhang Y (2015) Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy. Nano Res 8:1–11. https://doi.org/10.1007/s12274-015-0712-3

    Article  CAS  Google Scholar 

  236. Karakashev SV, Reginato MJ (2015) Progress toward overcoming hypoxia-induced resistance to solid tumor therapy. Cancer Manage Res 7:253–264. https://doi.org/10.2147/cmar.s58285

    Article  CAS  Google Scholar 

  237. Karakoti A, Singh S, Dowding JM, Seal S, Self WT (2010) Redox-active radical scavenging nanomaterials. Chem Soc Rev 39:4422–4432. https://doi.org/10.1039/b919677n

    Article  CAS  Google Scholar 

  238. Karesoja M, McKee J, Karjalainen E, Hietala S, Bergman L, Linden M, Tenhu H (2013) Mesoporous silica particles grafted with poly(ethyleneoxide- block—N-vinylcaprolactam). J Polym Sci A Polym Chem 51:5012–5020. https://doi.org/10.1002/pola.26928

    Article  CAS  Google Scholar 

  239. Kato M, Hattori Y, Kubo M, Maitani Y (2012) Collagenase-1 injection improved tumor distribution and gene expression of cationic lipoplex. Int J Pharm 423:428–434. https://doi.org/10.1016/j.ijpharm.2011.12.015

    Article  CAS  Google Scholar 

  240. Kavruk M, Celikbicak O, Ozalp VC, Borsa BA, Hernandez FJ, Bayramoglu G, Salih B, Arica MY (2015) Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens. Chem Commun 51:8492–8495. https://doi.org/10.1039/c5cc01869b

    Article  CAS  Google Scholar 

  241. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550. https://doi.org/10.1038/nrd3141

    Article  CAS  Google Scholar 

  242. Keith B, Johnson RS, Simon MC (2011) HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12:9–22. https://doi.org/10.1038/nrc3183

    Article  CAS  Google Scholar 

  243. Khanal S, Casillas G, Bhattarai N, Velázquez-Salazar JJ, Santiago U, Ponce A, Mejía-Rosales S, José-Yacamán M (2013) CuS(2)-passivated Au-core, Au(3)Cu-shell nanoparticles analyzed by atomistic-resolution C(s)-corrected STEM. Langmuir 29:9231–9239. https://doi.org/10.1021/la401598e

    Article  CAS  Google Scholar 

  244. Khashab NM, Trabolsi A, Lau YA, Ambrogio MW, Friedman DC, Khatib HA, Zink JI, Stoddart JF (2009) Redox- and pH-controlled mechanized nanoparticles. Eur J Org Chem 2009:1669–1673. https://doi.org/10.1002/ejoc.200801300

    Article  CAS  Google Scholar 

  245. Kievit FM, Zhang M (2011) Cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 23:H217–H247. https://doi.org/10.1002/adma.201102313

    Article  CAS  Google Scholar 

  246. Kim CK, Kim T, Choi IY, Soh M, Kim D, Kim YJ, Jang H, Yang HS, Kim JY, Park HK, Park SP, Park S, Yu T, Yoon BW, Lee SH, Hyeon T (2012) Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed 51:11039–11043. https://doi.org/10.1002/anie.201203780

    Article  CAS  Google Scholar 

  247. Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665. https://doi.org/10.1021/ja071471p

    Article  CAS  Google Scholar 

  248. Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665. https://doi.org/10.1021/ja071471p

    Article  CAS  Google Scholar 

  249. Kim J, Kim HHS, Lee N, Kim T, Kim HHS, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed 47:8438–8441. https://doi.org/10.1002/anie.200802469

    Article  CAS  Google Scholar 

  250. Kim SW, Kim S, Tracy JB, Jasanoff A, Bawendi MG (2005) Phosphine oxide polymer for water-soluble nanoparticles. J Am Chem Soc 127:4556–4557. https://doi.org/10.1021/ja043577f

    Article  CAS  Google Scholar 

  251. Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, Marks JD, Benz CC, Park JW (2006) Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res 66:6732–6740. https://doi.org/10.1158/0008-5472.can-05-4199

    Article  CAS  Google Scholar 

  252. Klostranec JM, Xiang Q, Farcas GA, Lee JA, Rhee A, Laffert EI, Perrault SD, Kain KC, Chan WCW (2007) Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics. Nano Lett 7:2812–2818. https://doi.org/10.1021/nl071415m

    Article  CAS  Google Scholar 

  253. Kluenker M, Tahir MN, Ragg R, Korschelt K, Simon P, Gorelik TE, Barton B, Shylin SI, Panthoefer M, Herzberger J, Frey H, Ksenofontov V, Möller A, Kolb U, Grin Y, Tremel W (2017) Pd@Fe2O3 superparticles with enhanced peroxidase activity by solution phase. Chem Mater 29:1134–1146. https://doi.org/10.1021/acs.chemmater.6b04283

    Article  CAS  Google Scholar 

  254. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288–6308. https://doi.org/10.1002/anie.200902672

    Article  CAS  Google Scholar 

  255. Knopp D, Tang D, Niessner R (2009) Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. Anal Chim Acta 647:14–30. https://doi.org/10.1016/j.aca.2009.05.037

    Article  CAS  Google Scholar 

  256. Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CAS, Urano Y, Choyke PL (2007) Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett 7:1711–1716. https://doi.org/10.1021/nl0707003

    Article  CAS  Google Scholar 

  257. Kochuveedu ST, Jang YH, Kim DH (2013) A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev 42:8467–8493. https://doi.org/10.1039/c3cs60043b

    Article  CAS  Google Scholar 

  258. Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, Mitragotri S (2013) Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci 110:10753–10758. https://doi.org/10.1073/pnas.1308345110

    Article  Google Scholar 

  259. Korotchenkov GS (2015) Porous silicon: from formation to application. CRC Press, Boca Raton

    Google Scholar 

  260. Korsvik C, Patil S, Seal S, Self WT (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun 1056–1058. https://doi.org/10.1039/b615134e

  261. Koukourakis MI, Koukouraki S, Giatromanolaki A, Archimandritis SC, Skarlatos J, Beroukas K, Bizakis JG, Retalis G, Karkavitsas N, Helidonis ES (1999) Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J Clin Oncol 17:3512–3521. https://doi.org/10.1200/jco.1999.17.11.3512

    Article  CAS  Google Scholar 

  262. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712. https://doi.org/10.1038/359710a0

    Article  CAS  Google Scholar 

  263. Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, Sajjad M, Prasad PN (2010) In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4:699–708. https://doi.org/10.1021/nn901146y

    Article  CAS  Google Scholar 

  264. Kumar R, Roy I, Ohulchanskyy TY, Goswami LN, Bonoiu AC, Bergey EJ, Tramposch KM, Maitra A, Prasad PN (2008) Covalently dye-linked, surface-controlled, and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging. ACS Nano 2:449–456. https://doi.org/10.1021/nn700370b

    Article  CAS  Google Scholar 

  265. Kuszyk BS, Corl FM, Franano FN, Bluemke DA, Hofmann LV, Fortman BJ, Fishman EK (2001) Tumor transport physiology: implications for imaging and imaging-guided therapy. Am J Roentgenol 177:747–753. https://doi.org/10.2214/ajr.177.4.1770747

    Article  CAS  Google Scholar 

  266. Kwon SG, Hyeon T (2011) Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 7:2685–2702. https://doi.org/10.1002/smll.201002022

    Article  CAS  Google Scholar 

  267. Laaksonen T, Santos H, Vihola H, Salonen J, Riikonen J, Heikkilä T, Peltonen L, Kumar N, Murzin DY, Lehto V-P, Hirvonen J (2007) Failure of MTT as a toxicity testing agent for mesoporous silicon microparticles. Chem Res Toxicol 20:1913–1918. https://doi.org/10.1021/tx700326b

    Article  CAS  Google Scholar 

  268. Rica DLR, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 64:967–978. https://doi.org/10.1016/j.addr.2012.01.002

    Article  CAS  Google Scholar 

  269. Lai C-Y, Trewyn BG, Jeftinija DM, Jeftinija K, Xu S, Jeftinija S, Lin VS-Y (2003) A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J Am Chem Soc 125:4451–4459. https://doi.org/10.1021/ja028650l

    Article  CAS  Google Scholar 

  270. Lake RA, van der Most RG (2006) A better way for a cancer cell to die. N Engl J Med 354:2503–2504. https://doi.org/10.1056/nejmcibr061443

    Article  CAS  Google Scholar 

  271. LaMer VK (1952) Nucleation in phase transitions. Ind Eng Chem 44:1270–1277. https://doi.org/10.1021/ie50510a027

    Article  CAS  Google Scholar 

  272. LaMer VK, Dinegar RRH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854. https://doi.org/10.1021/ja01167a001

    Article  CAS  Google Scholar 

  273. Landgraf L, Christner C, Storck W, Schick I, Krumbein I, Dähring H, Haedicke K, Heinz-Herrmann K, Teichgräber U, Reichenbach JR, Tremel W, Tenzer S, Hilger I (2015) A plasma protein corona enhances the biocompatibility of Au@Fe3O4 Janus particles. Biomaterials 68:77–88. https://doi.org/10.1016/j.biomaterials.2015.07.049

    Article  CAS  Google Scholar 

  274. Landgraf L, Ernst P, Schick I, Köhler O, Oehring H, Tremel W, Hilger I (2014) Anti-oxidative effects and harmlessness of asymmetric Au@Fe3O4 Janus particles on human blood cells. Biomaterials 35:6986–6997. https://doi.org/10.1016/j.biomaterials.2014.04.111

    Article  CAS  Google Scholar 

  275. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436. https://doi.org/10.1126/science.1083780

    Article  Google Scholar 

  276. Lartigue L, Alloyeau D, Kolosnjaj-Tabi J, Javed Y, Guardia P, Riedinger A, Péchoux C, Pellegrino T, Wilhelm C, Gazeau F (2013) Biodegradation of iron oxide nanocubes: high-resolution in situ monitoring. ACS Nano 7:3939–3952. https://doi.org/10.1021/nn305719y

    Article  CAS  Google Scholar 

  277. Lartigue L, Hugounenq P, Alloyeau D, Clarke SP, Lévy M, Bacri JC, Bazzi R, Brougham DF, Wilhelm C, Gazeau F (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6:10935–10949. https://doi.org/10.1021/nn304477s

    Article  CAS  Google Scholar 

  278. Lazarovits J, Chen YY, Sykes EA, Chan WCW (2015) Nanoparticle-blood interactions: the implications on solid tumour targeting. Chem Commun 51:2756–2767. https://doi.org/10.1039/c4cc07644c

    Article  CAS  Google Scholar 

  279. Leatherdale CA, Woo W-K, Mikulec FV, Bawendi MG (2002) On the absorption cross section of CdSe nanocrystal quantum dots. J Phys Chem B 106:7619–7622. https://doi.org/10.1021/jp025698c

    Article  CAS  Google Scholar 

  280. Lee BP, Dalsin JL, Messersmith PB (2002) Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromolecules 3:1038–1047. https://doi.org/10.1021/bm025546n

    Article  CAS  Google Scholar 

  281. Lee J-H, Huh Y-M, Jun Y, Seo J, Jang J, Song H-T, Kim S, Cho E-J, Yoon H-G, Suh J-S, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99. https://doi.org/10.1038/nm1467

    Article  CAS  Google Scholar 

  282. Lee J-H, Jang J-T, Choi J-S, Moon SH, Noh S-H, Kim J-W, Kim J-G, Kim I-S, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422. https://doi.org/10.1038/nnano.2011.95

    Article  CAS  Google Scholar 

  283. Lee N, Kim H, Choi SH, Park M, Kim D, Kim H-C, Choi Y, Lin S, Kim BH, Jung HS, Kim H, Park KS, Moon WK, Hyeon T (2011) Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci 108:2662–2667. https://doi.org/10.1073/pnas.1016409108

    Article  Google Scholar 

  284. Lee Y, Thompson DH (2017) Stimuli-responsive liposomes for drug delivery. WIREs Nanomed Nanobiotechnol e1450:1–40. https://doi.org/10.1002/wnan.1450

  285. Leonessa F (2003) ATP binding cassette transporters and drug resistance in breast cancer. Endocr Relat Cancer 10:43–73. https://doi.org/10.1677/erc.0.0100043

    Article  CAS  Google Scholar 

  286. Leserman LD, Barbet J, Kourilsky F, Weinstein JN (1980) Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 288:602–604. https://doi.org/10.1038/288602a0

    Article  CAS  Google Scholar 

  287. Levy M, Luciani N, Alloyeau D, Elgrabli D, Deveaux V, Pechoux C, Chat S, Wang G, Vats N, Gendron F, Factor C, Lotersztajn S, Luciani A, Wilhelm C, Gazeau F (2011) Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 32:3988–3999. https://doi.org/10.1016/j.biomaterials.2011.02.031

    Article  CAS  Google Scholar 

  288. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49. https://doi.org/10.1002/smll.200700595

    Article  CAS  Google Scholar 

  289. Li C, Sun L, Sun Y, Teranishi T (2013) One-pot controllable synthesis of Au@ Ag heterogeneous nanorods with highly tunable plasmonic absorption. Chem Mater 25:2580–2590. https://doi.org/10.1021/cm400392e

    Article  CAS  Google Scholar 

  290. Li H-J, Du J-Z, Du X-J, Xu C-F, Sun C-Y, Wang H-X, Cao Z-T, Yang X-Z, Zhu Y-H, Nie S, Wang J (2016) Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc Natl Acad Sci 113:4164–4169. https://doi.org/10.1073/pnas.1522080113

    Article  CAS  Google Scholar 

  291. Li P, Wei Z, Wu T, Peng Q, Li Y (2011) Au–ZnO hybrid nanopyramids and their photocatalytic properties. J Am Chem Soc 133:5660–5663. https://doi.org/10.1021/ja111102u

    Article  CAS  Google Scholar 

  292. Li Q-L, Xu S-H, Zhou H, Wang X, Dong B, Gao H, Tang J, Yang Y-W (2015) pH and glutathione dual-responsive dynamic cross-linked supramolecular network on mesoporous silica nanoparticles for controlled anticancer drug release. ACS Appl Mater Interfaces 7:28656–28664. https://doi.org/10.1021/acsami.5b10534

    Article  CAS  Google Scholar 

  293. Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H (2013) A mesoporous silica nanoparticle–PEI–fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials 34:1391–1401. https://doi.org/10.1016/j.biomaterials.2012.10.072

    Article  CAS  Google Scholar 

  294. Li X, Xie QR, Zhang J, Xia W, Gu H (2011) The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials 32:9546–9556. https://doi.org/10.1016/j.biomaterials.2011.08.068

    Article  CAS  Google Scholar 

  295. Li Y, Xu X, Zhang X, Li Y, Zhang Z, Gu Z (2017) Tumor-specific multiple stimuli-activated dendrimeric nanoassemblies with metabolic blockade surmount chemotherapy resistance. ACS Nano 11:416–429. https://doi.org/10.1021/acsnano.6b06161

    Article  CAS  Google Scholar 

  296. Li Z-Y, Hu J-J, Xu Q, Chen S, Jia H-Z, Sun Y-X, Zhuo R-X, Zhang X-Z (2015) A redox-responsive drug delivery system based on RGD containing peptide-capped mesoporous silica nanoparticles. J Mater Chem B 3:39–44. https://doi.org/10.1039/c4tb01533a

    Article  CAS  Google Scholar 

  297. Li Z, Li W, Camargo PHC, Xia Y (2008) Facile synthesis of branched Au nanostructures by templating against a self-destructive lattice of magnetic Fe nanoparticles. Angew Chem Int Ed 47:9653–9656. https://doi.org/10.1002/anie.200804634

    Article  CAS  Google Scholar 

  298. Li Z, Liu Z, Yin M, Yang X, Yuan Q, Ren J, Qu X (2012) Aptamer-capped multifunctional mesoporous strontium hydroxyapatite nanovehicle for cancer-cell-responsive drug delivery and imaging. Biomacromolecules 13:4257–4263. https://doi.org/10.1021/bm301563q

    Article  CAS  Google Scholar 

  299. Lima RT, Martins LM, Guimarães JE, Sambade C, Vasconcelos MH (2004) Specific downregulation of bcl-2 and xIAP by RNAi enhances the effects of chemotherapeutic agents in MCF-7 human breast cancer cells. Cancer Gene Ther 11:309–316. https://doi.org/10.1038/sj.cgt.7700706

    Article  CAS  Google Scholar 

  300. Lin Y-S, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132:4834–4842. https://doi.org/10.1021/ja910846q

    Article  CAS  Google Scholar 

  301. Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496. https://doi.org/10.3109/10715761003667554

    Article  CAS  Google Scholar 

  302. Liu J, Li Q, Zhang J, Huang L, Qi C, Xu L, Liu X, Wang G, Wang L, Wang Z (2017) Safe and effective reversal of cancer multidrug resistance using sericin-coated mesoporous silica nanoparticles for lysosome-targeting delivery in mice. Small 139:1602567/1–1602567/14. https://doi.org/10.1002/smll.201602567

  303. Liu J, Qiao SZ, Budi Hartono S, Lu GQM (2010) Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew Chem Int Ed 49:4981–4985. https://doi.org/10.1002/anie.201001252

    Article  CAS  Google Scholar 

  304. Liu J, Yu M, Zhou C, Zheng J (2013) Renal clearable inorganic nanoparticles: a new frontier of bionanotechnology. Mater Today 16:477–486. https://doi.org/10.1016/j.mattod.2013.11.003

    Article  CAS  Google Scholar 

  305. Liu X, Wang Q, Zhao H, Zhang L, Su Y, Lv Y (2012) BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 137:4552–4558. https://doi.org/10.1039/c2an35700c

    Article  CAS  Google Scholar 

  306. Liu Y, Ai K, Liu J, Yuan Q, He Y, Lu L (2012) A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. Angew Chem Int Ed 51:1437–1442. https://doi.org/10.1002/anie.201106686

    Article  CAS  Google Scholar 

  307. Liu Y, Ai K, Lu L (2012) Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications. Acc Chem Res 45:1817–1827. https://doi.org/10.1021/ar300150c

    Article  CAS  Google Scholar 

  308. Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci 105:1410–1415. https://doi.org/10.1073/pnas.0707654105

    Article  Google Scholar 

  309. Lofgreen JE, Ozin GA (2014) Controlling morphology and porosity to improve performance of molecularly imprinted sol-gel silica. Chem Soc Rev 43:911–933. https://doi.org/10.1039/c3cs60276a

    Article  CAS  Google Scholar 

  310. Loo C, Lin A, Hirsch L, Lee M-H, Barton J, Halas N, West J, Drezek R (2004) Nanoshell- enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33–40. https://doi.org/10.1177/153303460400300104

    Article  CAS  Google Scholar 

  311. Lopes de Menezes DE, Pilarski LM, Allen TM (1998) In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res 58:3320–3330

    CAS  Google Scholar 

  312. López-Lázaro M (2007) Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett 252:1–8. https://doi.org/10.1016/j.canlet.2006.10.029

    Article  CAS  Google Scholar 

  313. Love SA, Maurer-Jones MA, Thompson JW, Lin Y-S, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem 5:181–205. https://doi.org/10.1146/annurev-anchem-062011-143134

    Article  CAS  Google Scholar 

  314. Lu J, Liong M, Li Z, Zink JI, Tamanoi F (2010) Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6:1794–1805. https://doi.org/10.1002/smll.201000538

    Article  CAS  Google Scholar 

  315. Lu N, Tian Y, Tian W, Huang P, Liu Y, Tang Y, Wang C, Wang S, Su Y, Zhang Y, Pan J, Teng Z, Lu G (2016) Smart cancer cell targeting imaging and drug delivery system by systematically engineering periodic mesoporous organosilica nanoparticles. ACS Appl Mater Interfaces 8:2985–2993. https://doi.org/10.1021/acsami.5b09585

    Article  CAS  Google Scholar 

  316. Lu Y, Yin Y, Li Z, Xia Y (2002) Synthesis and self-assembly of Au@SiO2 core–shell colloids. Nano Lett 2:785–788. https://doi.org/10.1021/nl025598i

    Article  CAS  Google Scholar 

  317. Ludi B, Süess MJ, Werner IA, Niederberger M (2012) Mechanistic aspects of molecular formation and crystallization of zinc oxide nanoparticles in benzyl alcohol. Nanoscale 4:1982. https://doi.org/10.1039/c1nr11557j

    Article  CAS  Google Scholar 

  318. Luo Y, Zhou H, Krueger J, Kaplan C, Lee S-H, Dolman C, Markowitz D, Wu W, Liu C, Reisfeld RA, Xiang R (2006) Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116:2132–2141. https://doi.org/10.1172/jci27648

    Article  CAS  Google Scholar 

  319. Ma L, Wang C, Gong M, Liao L, Long R, Wang J, Wu D, Zhong W, Kim MJ, Chen Y, Xie Y, Xiong Y (2012) Control over the branched structures of platinum nanocrystals for electrocatalytic applications. ACS Nano 6:9797–9806. https://doi.org/10.1021/nn304237u

    Article  CAS  Google Scholar 

  320. Ma X, Zhao Y, Ng KW, Zhao Y (2013) Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery. Chemistry 19:15593–15603. https://doi.org/10.1002/chem.201302736

    Article  CAS  Google Scholar 

  321. Mackowiak SA, Schmidt A, Weiss V, Argyo C, Schirnding C, Bein T, Bräuchle C (2013) Targeted drug delivery in cancer cells with red-light photoactivated mesoporous silica nanoparticles. Nano Lett 13:2576–2583. https://doi.org/10.1021/nl400681f

    Article  CAS  Google Scholar 

  322. Maeda H, Tsukigawa K, Fang J (2016) A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy-problems, solutions, and prospects. Microcirculation 23:173–182. https://doi.org/10.1111/micc.12228

    Article  CAS  Google Scholar 

  323. Magda D, Miller RA (2006) Motexafin gadolinium: a novel redox active drug for cancer therapy. Semin Cancer Biol 16:466–476. https://doi.org/10.1016/j.semcancer.2006.09.002

    Article  CAS  Google Scholar 

  324. Maggini L, Cabrera I, Ruiz-Carretero A, Prasetyanto EA, Robinet E, Cola L (2016) Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale 8:7240–7247. https://doi.org/10.1039/c5nr09112h

    Article  CAS  Google Scholar 

  325. Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4:288–314. https://doi.org/10.1016/j.arr.2005.02.005

    Article  CAS  Google Scholar 

  326. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637. https://doi.org/10.1021/cr100440g

    Article  CAS  Google Scholar 

  327. Malvi B, Sarkar BR, Pati D, Mathew R, Ajithkumar TG, Sen Gupta S (2009) “Clickable” SBA-15 mesoporous materials: synthesis, characterization and their reaction with alkynes. J Mater Chem 19:1409–1416. https://doi.org/10.1039/b815350g

    Article  CAS  Google Scholar 

  328. Mamaeva V, Rosenholm JM, Bate-Eya LT, Bergman L, Peuhu E, Duchanoy A, Fortelius LE, Landor S, Toivola DM, Lindén M, Sahlgren C (2011) Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of notch signaling in cancer. Mol Ther 19:1538–1546. https://doi.org/10.1038/mt.2011.105

    Article  CAS  Google Scholar 

  329. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237. https://doi.org/10.1016/j.coi.2010.01.009

    Article  CAS  Google Scholar 

  330. Markov IV (2003) Crystal growth for beginners: fundamentals of nucleation, crystal growth and epitaxy. World Scientific, Singapore

    Book  Google Scholar 

  331. Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134:425–439. https://doi.org/10.1039/b818082b

    Article  CAS  Google Scholar 

  332. Martinez-Boubeta C, Simeonidis K, Makridis A, Angelakeris M, Iglesias O, Guardia P, Cabot A, Yedra L, Estradé S, Peiró F, Saghi Z, Midgley P, Conde-Leborán I, Serantes D, Baldomir D (2013) Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci Rep 3:1652/1–1652/8. https://doi.org/10.1038/srep01652

  333. Martinez-Carmona M, Baeza A, Rodriguez-Milla MA, García-Castro J, Vallet M (2015) Mesoporous silica nanoparticles grafted with light-responsive protein shell for highly cytotoxic antitumoral therapy. J Mater Chem B 3:5746–5752. https://doi.org/10.1039/c5tb00304k

    Article  CAS  Google Scholar 

  334. Matsumoto K, Yamamoto T, Kamata R, Maeda H (1986) Enhancement of vascular permeability upon serratial infection: activation of Hageman factor–kallikrein–kinin cascade. Adv Exp Med Biol 198:71–78

    Article  Google Scholar 

  335. Matsumoto Y, Nichols JW, Toh K, Nomoto T, Cabral H, Miura Y, Christie RJ, Yamada N, Ogura T, Kano MR, Matsumura Y, Nishiyama N, Yamasoba T, Bae YH, Kataoka K (2016) Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nat Nanotechnol 11:533–538. https://doi.org/10.1038/nnano.2015.342

    Article  CAS  Google Scholar 

  336. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  337. Maye MM, Luo J, Lim IIS, Han L, Kariuki NN, Rabinovich D, Liu T, Zhong CJ (2003) Size-controlled assembly of gold nanoparticles induced by a tridentate thioether ligand. J Am Chem Soc 125:9906–9907. https://doi.org/10.1021/ja0363866

    Article  CAS  Google Scholar 

  338. McCord JM, Keele BB, Fridovich I (1971) An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci 68:1024–1027. https://doi.org/10.1073/pnas.68.5.1024

    Article  CAS  Google Scholar 

  339. McCurrie RA (1994) Ferromagnetic materials: structure and properties. Academic Press, San Diego

    Google Scholar 

  340. McNeil SE (2009) Nanoparticle therapeutics: a personal perspective. WIREs Nanomed Nanobiotechnol 1:264–271. https://doi.org/10.1002/wnan.6

    Article  CAS  Google Scholar 

  341. Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9:665–674. https://doi.org/10.1038/nrc2714

    Article  CAS  Google Scholar 

  342. Meka AK, Niu Y, Karmakar S, Hartono SB, Zhang J, Lin CXC, Zhang H, Whittaker A, Jack K, Yu M, Yu C (2016) Facile synthesis of large-pore bicontinuous cubic mesoporous silica nanoparticles for intracellular gene delivery. ChemNanoMat 2:220–225. https://doi.org/10.1002/cnma.201600021

    Article  CAS  Google Scholar 

  343. Mekaru H, Lu J, Tamanoi F (2015) Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev 95:40–49. https://doi.org/10.1016/j.addr.2015.09.009

    Article  CAS  Google Scholar 

  344. Melief CJM (2008) Cancer immunotherapy by dendritic cells. Immunity 29:372–383. https://doi.org/10.1016/j.immuni.2008.08.004

    Article  CAS  Google Scholar 

  345. Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, Nel AE (2010) Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4:4539–4550. https://doi.org/10.1021/nn100690m

    Article  CAS  Google Scholar 

  346. Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S, Wang X, Zhao Y, Ji Z, Zink JI, Nel AE (2013) Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 7:994–1005. https://doi.org/10.1021/nn3044066

    Article  CAS  Google Scholar 

  347. Meng H, Xue M, Xia T, Ji Z, Tarn DY, Zink JI, Nel AE (2011) Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5:4131–4144. https://doi.org/10.1021/nn200809t

    Article  CAS  Google Scholar 

  348. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2008) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 538:538–544. https://doi.org/10.1126/science.1104274

    Article  CAS  Google Scholar 

  349. Miller MA, Zheng Y-R, Gadde S, Pfirschke C, Zope H, Engblom C, Kohler RH, Iwamoto Y, Yang KS, Askevold B, Kolishetti N, Pittet M, Lippard SJ, Farokhzad OC, Weissleder R (2015) Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat Commun 6:8692. https://doi.org/10.1038/ncomms9692

    Article  CAS  Google Scholar 

  350. Min Y, Akbulut M, Kristiansen K, Golan Y, Israelachvili J (2008) The role of interparticle and external forces in nanoparticle assembly. Nat Mater 7:527–538. https://doi.org/10.1038/nmat2206

    Article  CAS  Google Scholar 

  351. Mitchell DG, Cohen MS (2004) MRI principles. Elsevier Saunders, Philadelphia

    Google Scholar 

  352. Modica-Napolitano JS, Aprille JR (2001) Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 49:63–70. https://doi.org/10.1016/s0169-409x(01)00125-9

    Article  CAS  Google Scholar 

  353. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786. https://doi.org/10.1038/nnano.2012.207

    Article  CAS  Google Scholar 

  354. Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234:222–235. https://doi.org/10.1016/j.taap.2008.09.030

    Article  CAS  Google Scholar 

  355. Morales MP, Verdangure SV-, Montero MI, Serna CJ, Roig A, Casas L, Martinez B, Sandiumenge F (1999) Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem Mater 11:3058–3064. https://doi.org/10.1021/cm991018f

    Article  CAS  Google Scholar 

  356. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175. https://doi.org/10.1039/b402025a

    Article  CAS  Google Scholar 

  357. Mortensen LJ, Oberdörster G, Pentland AP, Delouise LA (2008) In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett 8:2779–2787. https://doi.org/10.1021/nl801323y

    Article  CAS  Google Scholar 

  358. Moyano DF, Saha K, Prakash G, Yan B, Kong H, Yazdani M, Rotello VM (2014) Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8:6748–6755. https://doi.org/10.1021/nn5006478

    Article  CAS  Google Scholar 

  359. Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849. https://doi.org/10.1038/nrc1477

    Article  CAS  Google Scholar 

  360. Mulvihill MJ, Ling XY, Henzie J, Yang P (2010) Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J Am Chem Soc 132:268–274. https://doi.org/10.1021/ja906954f

    Article  CAS  Google Scholar 

  361. Murphy EA, Majeti BK, Barnes LA, Makale M, Weis SM, Lutu-Fuga K, Wrasidlo W, Cheresh DA (2008) Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl Acad Sci 105:9343–9348. https://doi.org/10.1073/pnas.0803728105

    Article  Google Scholar 

  362. Murthy MRN, Reid TJ, Sicignano A, Tanaka N, Rossmann MG (1982) The structure of beef liver catalase. In: Dunford HB, Dolphin D, Raymond KN, Sieker L (eds) The biological chemistry of iron—a look at the metabolism of iron and its subsequent uses living organisms. Proceedings of NATO advanced study institute held at Edmonton, Alberta, Canada, 13 Aug 13–4 Sept 1981. Springer Netherlands, Dordrecht, pp 439–458

    Google Scholar 

  363. Myers CE, McGuire WP, Liss RH, Ifrim I, Grotzinger K, Young RC (1977) Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 197:165–167. https://doi.org/10.1126/science.877547

    Article  CAS  Google Scholar 

  364. Natalio F, André R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7:530–535. https://doi.org/10.1038/nnano.2012.91

    Article  CAS  Google Scholar 

  365. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. https://doi.org/10.1126/science.1114397

    Article  CAS  Google Scholar 

  366. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557. https://doi.org/10.1038/nmat2442

    Article  CAS  Google Scholar 

  367. Neri D, Bicknell R (2005) Tumour vascular targeting. Nat Rev Cancer 5:436–446. https://doi.org/10.1038/nrc1627

    Article  CAS  Google Scholar 

  368. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK (2000) Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res 60:2497–2503

    CAS  Google Scholar 

  369. Nichols JW, Bae YH (2012) Odyssey of a cancer nanoparticle: from injection site to site of action. Nano Today 7:606–618. https://doi.org/10.1016/j.nantod.2012.10.010

    Article  CAS  Google Scholar 

  370. Niedermayer S, Weiss V, Herrmann A, Schmidt A, Datz S, Müller K, Wagner E, Bein T, Bräuchle C (2015) Multifunctional polymer-capped mesoporous silica nanoparticles for pH-responsive targeted drug delivery. Nanoscale 7:7953–7964. https://doi.org/10.1039/c4nr07245f

    Article  CAS  Google Scholar 

  371. Niemelä E, Desai D, Nkizinkiko Y, Eriksson JE, Rosenholm JM (2015) Sugar-decorated mesoporous silica nanoparticles as delivery vehicles for the poorly soluble drug celastrol enables targeted induction of apoptosis in cancer cells. Eur J Pharm Biopharm 96:11–21. https://doi.org/10.1016/j.ejpb.2015.07.009

    Article  CAS  Google Scholar 

  372. Nikolic MS, Krack M, Aleksandrovic V, Kornowski A, Förster S, Weller H (2006) Maßgeschneiderte Liganden für biokompatible Nanopartikel. Angew Chem 118:6727–6731. https://doi.org/10.1002/ange.200602209

    Article  Google Scholar 

  373. Niu W, Zhang W, Firdoz S, Lu X (2014) Controlled synthesis of palladium concave nanocubes with sub-10-nanometer edges and corners for tunable plasmonic property. Chem Mater 26:2180–2186. https://doi.org/10.1021/cm500210u

    Article  CAS  Google Scholar 

  374. Noh SH, Na W, Jang JT, Lee JH, Lee EJ, Moon SH, Lim Y, Shin JS, Cheon J (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12:3716–3721. https://doi.org/10.1021/nl301499u

    Article  CAS  Google Scholar 

  375. Noureddine A, Gary-Bobo M, Lichon L, Garcia M, Zink JI, Wong Chi Man M, Cattoën X (2016) Bis-clickable mesoporous silica nanoparticles: straightforward preparation of light-actuated nanomachines for controlled drug delivery with active targeting. Chem Eur J 22:9624–9630. https://doi.org/10.1002/chem.201600870

    Article  CAS  Google Scholar 

  376. Noureddine A, Lichon L, Maynadier M, Garcia M, Gary-Bobo M, Zink JI, Wong Chi Man M, Cattoën X (2015) Controlled multiple functionalization of mesoporous silica nanoparticles: homogeneous implementation of pairs of functionalities communicating through energy or proton transfers. Nanoscale 7:11444–11452. https://doi.org/10.1039/c5nr02620b

    Article  CAS  Google Scholar 

  377. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini J-L, Castedo M, Mignot G, Panaretakis T, Casares N, Métivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61. https://doi.org/10.1038/nm1523

    Article  CAS  Google Scholar 

  378. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8/1–8/35. https://doi.org/10.1186/1743-8977-2-8

  379. Ogawara K, Furumoto K, Nagayama S, Minato K, Higaki K, Kai T, Kimura T (2004) Pre-coating with serum albumin reduces receptor-mediated hepatic disposition of polystyrene nanosphere: implications for rational design of nanoparticles. J Control Release 100:451–455. https://doi.org/10.1016/j.jconrel.2004.07.028

    Article  CAS  Google Scholar 

  380. Ohkuma S, Poole B (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci 75:3327–3331

    Article  CAS  Google Scholar 

  381. Olive PL, Vikse C, Trotter MJ (1992) Measurement of oxygen diffusion distance in tumor cubes using a fluorescent hypoxia probe. Int J Radiat Oncol 22:397–402. https://doi.org/10.1016/0360-3016(92)90840-e

    Article  CAS  Google Scholar 

  382. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y (2004) A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J Am Chem Soc 126:6520–6521. https://doi.org/10.1021/ja048792a

    Article  CAS  Google Scholar 

  383. Osseo-Asare K, Arriagada FJ (1990) Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids Surf 50:321–339. https://doi.org/10.1016/0166-6622(90)80273-7

    Article  CAS  Google Scholar 

  384. Ostwald W (1900) Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Zeitschrift für Phys Chemie 34:495–503

    Google Scholar 

  385. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010

    Article  CAS  Google Scholar 

  386. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–194. https://doi.org/10.1126/science.1114849

    Article  CAS  Google Scholar 

  387. Padera TP, Stoll BR, Tooredman JB, Capen D, Di Tomaso E, Jain RK (2004) Pathology: cancer cells compress intratumour vessels. Nature 427:695. https://doi.org/10.1038/427695a

    Article  CAS  Google Scholar 

  388. Pakunlu RI, Cook TJ, Minko T (2003) Simultaneous modulation of multidrug resistance and antiapoptotic cellular defense by MDR1 and BCL-2 targeted antisense oligonucleotides enhances the anticancer efficacy of doxorubicin. Pharm Res 20:351–359. https://doi.org/10.1023/a:1022687617318

    Article  CAS  Google Scholar 

  389. Pakunlu RI, Wang Y, Tsao W, Pozharov V, Cook TJ, Minko T (2004) Enhancement of the efficacy of chemotherapy for lung cancer by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense: novel multicomponent delivery system. Cancer Res 64:6214–6224. https://doi.org/10.1158/0008-5472.can-04-0001

    Article  CAS  Google Scholar 

  390. Palanikumar L, Kim HY, Oh JY, Thomas AP, Choi ES, Jeena MT, Joo SH, Ryu J-H (2015) Noncovalent surface locking of mesoporous silica nanoparticles for exceptionally high hydrophobic drug loading and enhanced colloidal stability. Biomacromolecules 16:2701–2714. https://doi.org/10.1021/acs.biomac.5b00589

    Article  CAS  Google Scholar 

  391. Palma DR, Peeters S, Van Bael MJ, Van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G (2007) Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem Mater 19:1821–1831. https://doi.org/10.1021/cm0628000

    Article  CAS  Google Scholar 

  392. Pan D, Roessl E, Schlomka JP, Caruthers SD, Senpan A, Scott MJ, Allen JS, Zhang H, Hu G, Gaffney PJ, Choi ET, Rasche V, Wickline SA, Proksa R, Lanza GM (2010) Computed tomography in color: Nanok-enhanced spectral CT molecular imaging. Angew Chem Int Ed 49:9635–9639. https://doi.org/10.1002/anie.201005657

    Article  CAS  Google Scholar 

  393. Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134:5722–5725. https://doi.org/10.1021/ja211035w

    Article  CAS  Google Scholar 

  394. Pang J, Zhou G, Liu R, Li T (2016) Esterification of oleic acid with methanol by immobilized lipase on wrinkled silica nanoparticles with highly ordered, radially oriented mesochannels. Mater Sci Eng C 59:35–42. https://doi.org/10.1016/j.msec.2015.09.088

    Article  CAS  Google Scholar 

  395. Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D, Micheel CM, Williams SC, Alivisatos AP, Larabell C (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14:882–885. https://doi.org/10.1002/1521-4095(20020618)14:12<882:aid-adma882>3.0.co;2-y

    Article  CAS  Google Scholar 

  396. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  Google Scholar 

  397. Park J-H, Gu L, Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336. https://doi.org/10.1038/nmat2398

    Article  CAS  Google Scholar 

  398. Park J, Joo J, Soon GK, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660. https://doi.org/10.1002/anie.200603148

    Article  CAS  Google Scholar 

  399. Parodi A, Quattrocchi N, van de Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61–68. https://doi.org/10.1038/nnano.2012.212

    Article  CAS  Google Scholar 

  400. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539. https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  401. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK (2011) RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11:59–67. https://doi.org/10.1038/nrc2966

    Article  CAS  Google Scholar 

  402. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760. https://doi.org/10.1038/nnano.2007.387

    Article  CAS  Google Scholar 

  403. Peer D, Margalit R (2006) Fluoxetine and reversal of multidrug resistance. Cancer Lett 237:180–187. https://doi.org/10.1016/j.canlet.2005.06.003

    Article  CAS  Google Scholar 

  404. Persidis A (1999) Cancer multidrug resistance. Nat Biotechnol 17:94–95. https://doi.org/10.1038/5289

    Article  CAS  Google Scholar 

  405. Piddington DL, Fang FC, Laessig T, Cooper M, Orme IM, Buchmeier N, Cooper AM (2001) Cu , zn superoxide dismutase of mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst Cu, Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages. Infect Immun 69:4980–4987. https://doi.org/10.1128/iai.69.8.4980

  406. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JES, Seal S, Self WT (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun 46:2736–2738. https://doi.org/10.1039/b922024k

    Article  CAS  Google Scholar 

  407. Prabhakar N, Zhang J, Desai D, Casals E, Gulin-Sarfraz T, Näreoja T, Westermarck J, Rosenholm JM (2016) Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery. Int J Nanomedicine 11:6591–6608. https://doi.org/10.2147/ijn.s120611

    Article  CAS  Google Scholar 

  408. Pradhan S, Ghosh D, Chen S (2009) Janus nanostructures based on Au-TiO2 heterodimers and their photocatalytic activity in the oxidation of methanol. ACS Appl Mater Interfaces 1:2060–2065. https://doi.org/10.1021/am900425v

    Article  CAS  Google Scholar 

  409. Pumera M (2011) Nanomaterials meet microfluidics. Chem Commun 47:5671–5680. https://doi.org/10.1039/c1cc11060h

    Article  CAS  Google Scholar 

  410. Qin J, Jo YS, Muhammed M (2009) Coating nanocrystals with amphiphilic thermosensitive copolymers. Angew Chem Int Ed 48:7845–7849. https://doi.org/10.1002/anie.200900489

    Article  CAS  Google Scholar 

  411. Qin J, Laurent S, Jo YS, Roch A, Mikhaylova M, Bhujwalla ZM, Müller RN, Muhammed M (2007) A high-performance magnetic resonance imaging T2 contrast agent. Adv Mater 19:1874–1878. https://doi.org/10.1002/adma.200602326

    Article  Google Scholar 

  412. Qu K, Shi P, Ren J, Qu X (2014) Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. Chem Eur J 20:7501–7506. https://doi.org/10.1002/chem.201400309

    Article  CAS  Google Scholar 

  413. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437. https://doi.org/10.1038/nm.3394

    Article  CAS  Google Scholar 

  414. Radu DR, Lai C, Jeftinija K, Rowe EW, Jeftinija S, Lin VS (2004) Communication A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent a polyamidoamine dendrimer-capped mesoporous silica nanosphere-based. J Am Chem Soc 126:13216–13217. https://doi.org/10.1021/ja046275m

    Article  CAS  Google Scholar 

  415. Ragg R, Natalio F, Tahir MN, Janssen H, Kashyap A, Strand D, Strand S, Tremel W (2014) Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity. ACS Nano 8:5182–5189. https://doi.org/10.1021/nn501235j

    Article  CAS  Google Scholar 

  416. Ragg R, Schilmann AM, Korschelt K, Wieseotte C, Kluenker M, Viel M, Völker L, Preiß S, Herzberger J, Frey H, Heinze K, Blümler P, Tahir MN, Natalio F, Tremel W (2016) Intrinsic superoxide dismutase activity of MnO nanoparticles enhances the magnetic resonance imaging contrast. J Mater Chem B 4:7423–7428. https://doi.org/10.1039/c6tb02078j

    Article  CAS  Google Scholar 

  417. Ragg R, Tahir MN, Tremel W (2016) Solids Go Bio: inorganic nanoparticles as enzyme mimics. Eur J Inorg Chem 2016:1906–1915. https://doi.org/10.1002/ejic.201501237

    Article  CAS  Google Scholar 

  418. Ramanujan S, Pluen A, McKee TD, Brown EB, Boucher Y, Jain RK (2002) Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys J 83:1650–1660. https://doi.org/10.1016/s0006-3495(02)73933-7

    Article  CAS  Google Scholar 

  419. Rana S, Yeh Y-C, Rotello VM (2010) Engineering the nanoparticle-protein interface: applications and possibilities. Curr Opin Chem Biol 14:828–834. https://doi.org/10.1016/j.cbpa.2010.10.001

    Article  CAS  Google Scholar 

  420. Rengan AK, Bukhari AB, Pradhan A, Malhotra R, Banerjee R, Srivastava R, De A (2015) In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett 15:842–848. https://doi.org/10.1021/nl5045378

    Article  CAS  Google Scholar 

  421. Renzo DF, Testa F, Chen J, Cambon H, Galarneau A, Plee D, Fajula F (1999) Textural control of micelle-templated mesoporous silicates: the effects of co-surfactants and alkalinity. Microporous Mesoporous Mater 28:437–446. https://doi.org/10.1016/s1387-1811(98)00315-1

    Article  Google Scholar 

  422. Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24:389–427. https://doi.org/10.1210/er.2002-0007

    Article  CAS  Google Scholar 

  423. Rijt VS, Boeluekbas DA, Argyo C, Wipplinger K, Naureen M, Datz S, Eickelberg O, Meiners S, Bein T, Schmid O, Stoeger T (2016) Applicability of avidin protein coated mesoporous silica nanoparticles as drug carriers in the lung. Nanoscale 8:8058–8069. https://doi.org/10.1039/c5nr04119h

    Article  Google Scholar 

  424. Ritz S, Schöttler S, Kotman N, Baier G, Musyanovych A, Kuharev J, Landfester K, Schild H, Jahn O, Tenzer S, Mailänder V (2015) Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16:1311–1321. https://doi.org/10.1021/acs.biomac.5b00108

    Article  CAS  Google Scholar 

  425. Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE (2013) Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339:971–975. https://doi.org/10.1126/science.1229568

    Article  CAS  Google Scholar 

  426. Roduner E (2014) Understanding catalysis. Chem Soc Rev 2:8226–8239. https://doi.org/10.1039/c4cs00210e

    Article  CAS  Google Scholar 

  427. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915. https://doi.org/10.1038/nm1100

    Article  CAS  Google Scholar 

  428. Rosenhahn A, Schilp S, Kreuzer HJ, Grunze M (2010) The role of “‘inert’” surface chemistry in marine biofouling prevention. Phys Chem Chem Phys 12:4275–4286. https://doi.org/10.1039/c004746p

    Article  CAS  Google Scholar 

  429. Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, Lindén M (2009) Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 3:197–206. https://doi.org/10.1021/nn800781r

    Article  CAS  Google Scholar 

  430. Rosenholm JM, Sahlgren C, Lindén M (2010) Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles—opportunities & challenges. Nanoscale 2:1870–1883. https://doi.org/10.1039/c0nr00156b

    Article  CAS  Google Scholar 

  431. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374. https://doi.org/10.1016/s0304-8853(02)00706-0

    Article  CAS  Google Scholar 

  432. Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A, Wallin H (2009) Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine 5:162–169. https://doi.org/10.1016/j.nano.2008.11.002

    Article  CAS  Google Scholar 

  433. Sahay G, Alakhova DY, Kabanov AV (2010) Endocytosis of nanomedicines. J Control Release 145:182–195. https://doi.org/10.1016/j.jconrel.2010.01.036

    Article  CAS  Google Scholar 

  434. Sahoo JK, Tahir MN, Yella A, Schladt TD, Mugnaoli E, Kolb U, Tremel W (2010) Reversible self-assembly of metal chalcogenide/metal oxide nanostructures based on pearson hardness. Angew Chem Int Ed 49:7578–7582. https://doi.org/10.1002/anie.201000774

    Article  CAS  Google Scholar 

  435. Sahoo JK, Tahir MN, Yella A, Schladt TD, Mugnaoli E, Kolb U, Tremel W (2010) Reversible Selbstorganisation von Metallchalkogenid-Metalloxid- Nanostrukturen basierend auf dem Pearson-Konzept. Angew Chem 122:7741–7745. https://doi.org/10.1002/ange.201000774

    Article  Google Scholar 

  436. Saito G, Swanson JA, Lee K-D (2003) Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities. Adv Drug Deliv Rev 55:199–215. https://doi.org/10.1016/s0169-409x(02)00179-5

    Article  CAS  Google Scholar 

  437. Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10:490–500. https://doi.org/10.1038/nri2785

    Article  CAS  Google Scholar 

  438. Sakulkhu U, Maurizi L, Mahmoudi M, Motazacker M, Vries M, Gramoun A, Ollivier Beuzelin M-G, Vallée J-P, Rezaee F, Hofmann H (2014) Ex situ evaluation of the composition of protein corona of intravenously injected superparamagnetic nanoparticles in rats. Nanoscale 6:11439–11450. https://doi.org/10.1039/c4nr02793k

    Article  CAS  Google Scholar 

  439. Saleh T, Shojaosadati SA (2016) Multifunctional nanoparticles for cancer immunotherapy. Hum Vaccin Immunother 12:1863–1875. https://doi.org/10.1080/21645515.2016.1147635

    Article  Google Scholar 

  440. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Åberg C, Mahon E, Dawson KA (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143. https://doi.org/10.1038/nnano.2012.237

    Article  CAS  Google Scholar 

  441. Satchi-Fainaro R, Duncan R (2006) Advances in polymer science. Springer, Berlin

    Google Scholar 

  442. Schick I, Gehrig D, Montigny M, Balke B, Panthöfer M, Henkel A, Laquai F, Tremel W (2015) Effect of charge transfer in magnetic-plasmonic Au@MOx (M = Mn, Fe) heterodimers on the kinetics of nanocrystal formation. Chem Mater 27:4877–4884. https://doi.org/10.1021/acs.chemmater.5b01968

    Article  CAS  Google Scholar 

  443. Schick I, Lorenz S, Gehrig D, Schilmann AM, Bauer H, Panthöfer M, Fischer K, Strand D, Laquai F, Tremel W (2014) Multifunctional two-photon active silica-coated Au@ MnO janus particles for selective dual functionalization and imaging. J Am Chem Soc 136:2473–2483. https://doi.org/10.1021/ja410787u

    Article  CAS  Google Scholar 

  444. Schladt T, Graf T, Köhler O (2012) Synthesis and magnetic properties of FePt@ MnO nano-heteroparticles. Chem Mater 24:525–535. https://doi.org/10.1021/cm2030685

    Article  CAS  Google Scholar 

  445. Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalt Trans 40:6315–6343. https://doi.org/10.1039/c0dt00689k

    Article  CAS  Google Scholar 

  446. Schladt TD, Shukoor MI, Schneider K, Tahir MN, Natalio F, Ament I, Becker J, Jochum FD, Weber S, Köhler O, Theato P, Schreiber LM, Sönnichsen C, Schröder HC, Müller WEG, Tremel W (2010) Au@MnO-“Nanoblumen” - Hybrid-Nanokomposite zur selektiven dualen Funktionalisierung und Bildgebung. Angew Chem 122:4068–4072. https://doi.org/10.1002/ange.200906689

    Article  Google Scholar 

  447. Schöttler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K, Mailänder V, Wurm FR (2016) Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol 11:372–377. https://doi.org/10.1038/nnano.2015.330

    Article  CAS  Google Scholar 

  448. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. https://doi.org/10.1126/science.1203486

    Article  CAS  Google Scholar 

  449. Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847. https://doi.org/10.1038/nature08302

    Article  CAS  Google Scholar 

  450. Scott AM, Allison JP, Wolchok JD (2012) Monoclonal antibodies in cancer therapy. Cancer Immun 12:14/1–14/8.

    Google Scholar 

  451. Seh ZW, Liu S, Low M, Zhang SY, Liu Z, Mlayah A, Han MY (2012) Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 24:2310–2314. https://doi.org/10.1002/adma.201104241

    Article  CAS  Google Scholar 

  452. Şen Karaman D, Gulin-Sarfraz T, Hedström G, Duchanoy A, Eklund P, Rosenholm JM (2014) Rational evaluation of the utilization of PEG-PEI copolymers for the facilitation of silica nanoparticulate systems in biomedical applications. J Colloid Interface Sci 418:300–310. https://doi.org/10.1016/j.jcis.2013.11.080

    Article  CAS  Google Scholar 

  453. Senyei A, Widder K, Czerlinski G (1978) Magnetic guidance of drug-carrying microspheres. J Appl Phys 49:3578–3583. https://doi.org/10.1063/1.325219

    Article  CAS  Google Scholar 

  454. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61. https://doi.org/10.1126/science.aaa8172

    Article  CAS  Google Scholar 

  455. Sheldon MT, Trudeau PE, Mokari T, Wang LW, Paul Alivisatos A (2009) Enhanced semiconductor nanocrystal conductance via solution grown contacts. Nano Lett 9:3676–3682. https://doi.org/10.1021/nl902186v

    Article  CAS  Google Scholar 

  456. Shen D, Chen L, Yang J, Zhang R, Wei Y, Li X, Li W, Sun Z, Zhu H, Abdullah AM, Al-Enizi A, Elzatahry AA, Zhang F, Zhao D (2015) Ultradispersed palladium nanoparticles in three-dimensional dendritic mesoporous silica nanospheres: toward active and stable heterogeneous catalysts. ACS Appl Mater Interfaces 7:17450–17459. https://doi.org/10.1021/acsami.5b04992

    Article  CAS  Google Scholar 

  457. Shi H, Wang Z, Huang C, Gu X, Jia T, Zhang A, Wu Z, Zhu L, Luo X, Zhao X, Jia N, Miao F (2016) A functional CT contrast agent for in vivo imaging of tumor hypoxia. Small 12:3995–4006. https://doi.org/10.1002/smll.201601029

    Article  CAS  Google Scholar 

  458. Shi S, Huang Y, Chen X, Weng J, Zheng N (2015) Optimization of surface coating on small Pd nanosheets for in vivo near-infrared photothermal therapy of tumor. ACS Appl Mater Interfaces 7:14369–14375. https://doi.org/10.1021/acsami.5b03106

    Article  CAS  Google Scholar 

  459. Shi W, Sahoo Y, Zeng H, Ding Y, Swihart MT, Prasad PN (2006) Anisotropic growth of PbSe nanocrystals on Au-Fe3O4 hybrid nanoparticles. Adv Mater 18:1889–1894. https://doi.org/10.1002/adma.200600685

    Article  CAS  Google Scholar 

  460. Shi W, Zeng H, Sahoo Y, Ohulchanskyy TY (2006) A general approach to binary and ternary hybrid nanocrystals. Nano Lett 6:875–881. https://doi.org/10.1021/nl0600833

    Article  CAS  Google Scholar 

  461. Shinto H, Fukasawa T, Yoshisue K, Tezuka M, Orita M (2014) Cell membrane disruption induced by amorphous silica nanoparticles in erythrocytes, lymphocytes, malignant melanocytes, and macrophages. Adv Powder Technol 25:1872–1881. https://doi.org/10.1016/j.apt.2014.09.002

    Article  CAS  Google Scholar 

  462. Shliomis MI, Pshenichnikov AF, Morozov KI, Shurubor IY (1990) Magnetic properties of ferrocolloids. J Magn Magn Mater 85:40–46. https://doi.org/10.1016/0304-8853(90)90013-g

    Article  CAS  Google Scholar 

  463. Shukla S, Steinmetz NF (2016) Emerging nanotechnologies for cancer immunotherapy. Exp Biol Med 241:1116–1126. https://doi.org/10.1177/1535370216647123

    Article  CAS  Google Scholar 

  464. Shultz MD, Ulises Reveles J, Khanna SN, Carpenter EE (2007) Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles. J Am Chem Soc 129:2482–2487. https://doi.org/10.1021/ja0651963

    Article  CAS  Google Scholar 

  465. Slowing I, Trewyn BG, Lin VS-Y (2006) Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc 128:14792–14793. https://doi.org/10.1021/ja0645943

    Article  CAS  Google Scholar 

  466. van der Sluis TC, van Duikeren S, Huppelschoten S, Jordanova ES, Beyranvand Nejad E, Sloots A, Boon L, Smit VTHBM, Welters MJP, Ossendorp F, van de Water B, Arens R, van der Burg SH, Melief CJM (2015) Vaccine-induced tumor necrosis factor-producing T cells synergize with cisplatin to promote tumor cell death. Clin Cancer Res 21:781–794. https://doi.org/10.1158/1078-0432.ccr-14-2142

    Article  Google Scholar 

  467. Smith BR, Kempen P, Bouley D, Xu A, Liu Z, Melosh N, Dai H, Sinclair R, Gambhir SS (2012) Shape matters: intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Lett 12:3369–3377. https://doi.org/10.1021/nl204175t

    Article  CAS  Google Scholar 

  468. Smith CA, Farrah T, Goodwin RG (1994) The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76:959–962. https://doi.org/10.1016/0092-8674(94)90372-7

    Article  CAS  Google Scholar 

  469. Soedjak HS, Walker JV, Butler A (1995) Inhibition and inactivation of vanadium bromoperoxidase by the substrate hydrogen peroxide and further mechanistic studies. Biochemistry 34:12689–12696. https://doi.org/10.1021/bi00039a027

    Article  CAS  Google Scholar 

  470. Soto-Cantu E, Cueto R, Koch J, Russo PS (2012) Synthesis and rapid characterization of amine-functionalized silica. Langmuir 28:5562–5569. https://doi.org/10.1021/la204981b

    Article  CAS  Google Scholar 

  471. Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 109:5649–5655. https://doi.org/10.1021/ja00253a015

    Article  CAS  Google Scholar 

  472. Steiner D, Mokari T, Banin U, Millo O (2005) Electronic structure of metal-semiconductor nanojunctions in gold CdSe nanodumbbells. Phys Rev Lett 95:056805/1–056805/4. https://doi.org/10.1103/physrevlett.95.056805

  473. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  474. Stohrer M, Boucher Y, Stangassinger M, Jain RK (2000) Oncotic pressure in solid tumors is elevated. Cancer Res 60:4251–4255

    CAS  Google Scholar 

  475. Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896

    Article  CAS  Google Scholar 

  476. Stubbs M, McSheehy PMJ, Griffiths JR, Bashford CL (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6:15–19. https://doi.org/10.1016/s1357-4310(99)01615-9

    Article  CAS  Google Scholar 

  477. Stylianopoulos T, Poh M-Z, Insin N, Bawendi MG, Fukumura D, Munn LL, Jain RK (2010) Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys J 99:1342–1349. https://doi.org/10.1016/j.bpj.2010.06.016

    Article  CAS  Google Scholar 

  478. Subramanian V, Wolf EE, Kamat PV (2004) Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am Chem Soc 126:4943–4950. https://doi.org/10.1021/ja0315199

    Article  CAS  Google Scholar 

  479. Sun C, Lee JSHJ, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265. https://doi.org/10.1016/j.addr.2008.03.018

    Article  CAS  Google Scholar 

  480. Sun H, Yuan Q, Zhang B, Ai K, Zhang P, Lu L (2011) Gd(III) functionalized gold nanorods for multimodal imaging applications. Nanoscale 3:1990–1996. https://doi.org/10.1039/c0nr00929f

    Article  CAS  Google Scholar 

  481. Sun J, Kim D-H, Guo Y, Teng Z, Li Y, Zheng L, Zhang Z, Larson AC, Lu G (2015) A c(RGDfE) conjugated multi-functional nanomedicine delivery system for targeted pancreatic cancer therapy. J Mater Chem B 3:1049–1058. https://doi.org/10.1039/c4tb01402b

    Article  CAS  Google Scholar 

  482. Sun L, Liu Y-J, Yang Z-Z, Qi X-R (2015) Tumor specific delivery with redox-triggered mesoporous silica nanoparticles inducing neovascularization suppression and vascular normalization. RSC Adv 5:55566–55578. https://doi.org/10.1039/c5ra09633b

    Article  CAS  Google Scholar 

  483. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992. https://doi.org/10.1126/science.287.5460.1989

    Article  CAS  Google Scholar 

  484. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53:12320–12364. https://doi.org/10.1002/anie.201403036

    Article  CAS  Google Scholar 

  485. Sun X, Guo S, Chung C-S, Zhu W, Sun S (2013) A sensitive H2O2 assay based on dumbbell-like PtPd-Fe3O4 nanoparticles. Adv Mater 25:132–136. https://doi.org/10.1002/adma.201203218

    Article  CAS  Google Scholar 

  486. Sun X, Klapper A, Su Y, Nemkovski K, Wildes A, Bauer H, Köhler O, Schilmann A, Tremel W, Petracic O, Brückel T (2017) Magnetism of monomer MnO and heterodimer FePt@MnO nanoparticles. Phys Rev B 95:134427/1–134427/8. https://doi.org/10.1103/physrevb.95.134427

  487. Sun Y, Foley JJ, Peng S, Li Z, Gray SK (2013) Interfaced metal heterodimers in the quantum size regime. Nano Lett 13:3958–3964. https://doi.org/10.1021/nl402361b

    Article  CAS  Google Scholar 

  488. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2180

    Article  CAS  Google Scholar 

  489. Susumu K, Uyeda HT, Medintz IL, Pons T, Delehanty JB, Mattoussi H (2007) Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 129:13987–13996. https://doi.org/10.1021/ja0749744

    Article  CAS  Google Scholar 

  490. Sykes EA, Chen J, Zheng G, Chan WCW (2014) Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8:5696–5706. https://doi.org/10.1021/nn500299p

    Article  CAS  Google Scholar 

  491. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5:219–234. https://doi.org/10.1038/nrd1984

    Article  CAS  Google Scholar 

  492. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    CAS  Google Scholar 

  493. Tahir MN, André R, Sahoo JK, Jochum FD, Theato P, Natalio F, Berger R, Branscheid R, Kolb U, Tremel W (2011) Hydrogen peroxide sensors for cellular imaging based on horse radish peroxidase reconstituted on polymer-functionalized TiO(2) nanorods. Nanoscale 3:3907–3914. https://doi.org/10.1039/c1nr10587f

    Article  CAS  Google Scholar 

  494. Tahir MN, Herzberger J, Natalio F, Koehler O, Branscheid R, Mugnaioli E, Ksenofontov V, Panthoefer M, Kolb U, Frey H, Tremel W, Köhler O, Branscheid R, Mugnaioli E, Ksenofontov V, Panthöfer M, Kolb U, Frey H, Tremel W (2016) Hierachical Ni@Fe2O3 superparticles through epitaxial growth of γ-Fe2O3 nanorods on in situ formed Ni nanoplates. Nanoscale 8:9548–9555. https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  495. Tahir MN, Natalio F, Cambaz MA, Panthofer M, Branscheid R, Kolb U, Tremel W (2013) Controlled synthesis of linear and branched Au@ZnO hybrid nanocrystals and their photocatalytic properties. Nanoscale 5:9944–9949. https://doi.org/10.1039/c3nr02817h

    Article  CAS  Google Scholar 

  496. Tang S, Chen M, Zheng N (2014) Sub-10-nm Pd nanosheets with renal clearance for efficient near-infrared photothermal cancer therapy. Small 10:3139–3144. https://doi.org/10.1002/smll.201303631

    Article  CAS  Google Scholar 

  497. Tang S, Chen M, Zheng N (2014) Multifunctional ultrasmall Pd nanosheets for enhanced near-infrared photothermal therapy and chemotherapy of cancer. Nano Res 8:165–174. https://doi.org/10.1007/s12274-014-0605-x

    Article  CAS  Google Scholar 

  498. Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325. https://doi.org/10.1002/smll.200701295

    Article  CAS  Google Scholar 

  499. Tao Z, Morrow MP, Asefa T, Sharma KK, Duncan C, Anan A, Penefsky HS, Goodisman J, Souid A-K (2008) Mesoporous silica nanoparticles inhibit cellular respiration. Nano Lett 8:1517–1526. https://doi.org/10.1021/nl080250u

    Article  CAS  Google Scholar 

  500. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577. https://doi.org/10.1021/nl052024f

    Article  CAS  Google Scholar 

  501. Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3:151–157. https://doi.org/10.1038/nnano.2008.34

    Article  CAS  Google Scholar 

  502. Tekle C, van Deurs B, Sandvig K, Iversen T-G (2008) Cellular trafficking of quantum dot-ligand bioconjugates and their induction of changes in normal routing of unconjugated ligands. Nano Lett 8:1858–1865. https://doi.org/10.1021/nl0803848

    Article  CAS  Google Scholar 

  503. Tenzer S, Docter D, Kuharev JJJJ, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild HH, Maskos M, Knauer SK, Stauber RH (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nano 8:772–781. https://doi.org/10.1038/nnano.2013.181

    Article  CAS  Google Scholar 

  504. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 3:7610–7630. https://doi.org/10.1021/cr400544s

    Article  CAS  Google Scholar 

  505. Thomas A, Bauer H, Schilmann AM, Fischer K, Tremel W, Frey H (2014) The “needle in the haystack” Makes the difference: linear and hyperbranched polyglycerols with a single catechol moiety for metal oxide nanoparticle coating. Macromolecules 47:4557–4566. https://doi.org/10.1021/ma5003672

    Article  CAS  Google Scholar 

  506. Tian Y, Kong Y, Li X, Wu J, Ko AC-T, Xing M (2015) Light- and pH- activated intracellular drug release from polymeric mesoporous silica nanoparticles. Colloids Surf B Biointerfaces 134:147–155. https://doi.org/10.1016/j.colsurfb.2015.04.069

    Article  CAS  Google Scholar 

  507. Tong S, Hou S, Zheng Z, Zhou J, Bao G (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10:4607–4613. https://doi.org/10.1021/nl102623x

    Article  CAS  Google Scholar 

  508. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160. https://doi.org/10.1038/nrd1632

    Article  CAS  Google Scholar 

  509. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591. https://doi.org/10.1038/nrd2803

    Article  CAS  Google Scholar 

  510. Traina CA, Schwartz J (2007) Surface Modification of Y2O3 Nanoparticles. Langmuir 23:9158–9161. https://doi.org/10.1021/la701653v

    Article  CAS  Google Scholar 

  511. Tromsdorf U (2010) Magnetische Nanopartikel als Kontrastmittel für die MRT. Dissertation, University of Hamburg

    Google Scholar 

  512. Tsirikis P, Wilson K, Xiang S, Wei W, Ma G, Selomulya C, Plebanski M (2016) Immunogenicity and biodistribution of nanoparticles in vivo. J Immunol 196(75):28

    Google Scholar 

  513. Tsoi KM, MacParland SA, Ma X-Z, Spetzler VN, Echeverri J, Ouyang B, Fadel SM, Sykes EA, Goldaracena N, Kaths JM, Conneely JB, Alman BA, Selzner M, Ostrowski MA, Adeyi OA, Zilman A, McGilvray ID, Chan WCW (2016) Mechanism of hard-nanomaterial clearance by the liver. Nat Mater 15:1212–1221. https://doi.org/10.1038/nmat4718

    Article  CAS  Google Scholar 

  514. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. https://doi.org/10.1039/df9511100055

    Article  Google Scholar 

  515. Tzur-Balter A, Shatsberg Z, Beckerman M, Segal E, Artzi N (2015) Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues. Nat Commun 6:6208/1–6208/8. https://doi.org/10.1038/ncomms7208

  516. Uyeda HT, Medintz IL, Jaiswal JK, Simon SM, Mattoussi H (2005) Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J Am Chem Soc 127:3870–3878. https://doi.org/10.1021/ja044031w

    Article  CAS  Google Scholar 

  517. Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T, Munn LL, Tearney GJ, Fukumura D, Jain RK, Bouma BE (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15:1219–1223. https://doi.org/10.1038/nm.1971

    Article  CAS  Google Scholar 

  518. Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311. https://doi.org/10.1021/cm0011559

    Article  CAS  Google Scholar 

  519. Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65:249–259. https://doi.org/10.1016/j.phytochem.2003.10.022

    Article  CAS  Google Scholar 

  520. Vert M, Doi Y, Hellwich K-H, Hess M, Hodge P, Kubisa P, Rinaudo M, Schué F (2012) Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 84:377–410. https://doi.org/10.1351/pac-rec-10-12-04

    Article  CAS  Google Scholar 

  521. Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807. https://doi.org/10.1021/la0497200

    Article  Google Scholar 

  522. Vo DQ, Kim EJ, Kim S (2009) Surface modification of hydrophobic nanocrystals using short-chain carboxylic acids. J Colloid Interface Sci 337:75–80. https://doi.org/10.1016/j.jcis.2009.04.078

    Article  CAS  Google Scholar 

  523. Wagner E, Kloeckner J (2006) Gene delivery using polymer therapeutics. Polymer Therapeutics I. https://doi.org/10.1007/12_023

  524. Walkey CD, Olsen JB, Guo H, Emili A, Chan WCW (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134:2139–2147. https://doi.org/10.1021/ja2084338

    Article  CAS  Google Scholar 

  525. Walkey CD, Olsen JB, Song F, Liu R, Guo H, Olsen DWH, Cohen Y, Emili A, Chan WCW (2014) Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8:2439–2455. https://doi.org/10.1021/nn406018q

    Article  CAS  Google Scholar 

  526. Walter A, Billotey C, Garofalo A, Ulhaq-Bouillet, Corinne Lefèvre C, Taleb J, Laurent S, Elst L Vander, Muller RN, Felder-Flesch D, Begin-Colin S (2014) Mastering the shape and composition of dendronized iron oxide nanoparticles to tailor magnetic resonance imaging and hyperthermia. Chem Mater 26:5252–5264. https://doi.org/10.1021/cm5019025

  527. Wang C, Daimon H, Sun S (2009) Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett 9:1493–1496. https://doi.org/10.1021/nl8034724

    Article  CAS  Google Scholar 

  528. Wang C, Xu C, Zeng H, Sun S (2009) Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv Mater 21:3045–3052. https://doi.org/10.1002/adma.200900320

    Article  CAS  Google Scholar 

  529. Wang C, Xu Y, Deng C, Liu Z, Wang R, Zhao H (2016) Design and preparation of a recyclable microfluidic SERS chip with integrated Au@Ag/TiO2 NTs. RSC Adv 6:113115–113122. https://doi.org/10.1039/c6ra14947b

    Article  CAS  Google Scholar 

  530. Wang F, Wang Y-C, Dou S, Xiong M-H, Sun T-M, Wang J (2011) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5:3679–3692. https://doi.org/10.1021/nn200007z

    Article  CAS  Google Scholar 

  531. Wang G, Wang X, Liu J, Sun X (2012) Mesoporous Au/TiO2 nanocomposite microspheres for visible-light photocatalysis. Chem Eur J 18:5361–5366. https://doi.org/10.1002/chem.201101410

    Article  CAS  Google Scholar 

  532. Wang J, Wang Y, Liu Q, Yang L, Zhu R, Yu C, Wang S (2016) Rational design of multifunctional dendritic mesoporous silica nanoparticles to load curcumin and enhance efficacy for breast cancer therapy. ACS Appl Mater Interfaces 8:26511–26523. https://doi.org/10.1021/acsami.6b08400

    Article  CAS  Google Scholar 

  533. Wang R-H, Bai J, Deng J, Fang C-J, Chen X (2017) TAT-modified gold nanoparticle carrier with enhanced anticancer activity and size effect on overcoming multidrug resistance. ACS Appl Mater Interfaces 9:5828–5837. https://doi.org/10.1021/acsami.6b15200

    Article  CAS  Google Scholar 

  534. Wang T, Jiang X (2015) Breaking of the phosphodiester bond: a key factor that induces hemolysis. ACS Appl Mater Interfaces 7:129–136. https://doi.org/10.1021/am503865g

    Article  CAS  Google Scholar 

  535. Wang T, LaMontagne D, Lynch J, Zhuang J, Cao YC (2013) Colloidal superparticles from nanoparticle assembly. Chem Soc Rev 42:2804–2823. https://doi.org/10.1039/c2cs35318k

    Article  CAS  Google Scholar 

  536. Wang T, Wang X, LaMontagne D, Wang Z, Wang Z, Cao YC (2012) Shape-controlled synthesis of colloidal superparticles from nanocubes. J Am Chem Soc 134:18225–18228. https://doi.org/10.1021/ja308962w

    Article  CAS  Google Scholar 

  537. Wang T, Zhu S, Jiang X (2015) Toxicity mechanism of graphene oxide and nitrogen-doped graphene quantum dots in RBCs revealed by surface-enhanced infrared absorption spectroscopy. Toxicol Res 4:885–894. https://doi.org/10.1039/c4tx00138a

    Article  CAS  Google Scholar 

  538. Wang T, Zhuang J, Lynch J, Chen O, Wang Z, Wang X, LaMontagne D, Wu H, Wang Z, Cao YC (2012) Self-assembled colloidal superparticles from nanorods. Science 338:358–363. https://doi.org/10.1126/science.1224221

    Article  CAS  Google Scholar 

  539. Wang X, Li X, Yoshiyuki K, Watanabe Y, Sogo Y, Ohno T, Tsuji NM, Ito A (2016) Comprehensive mechanism analysis of mesoporous-silica-nanoparticle-induced cancer immunotherapy. Adv Healthc Mater 5:1169–1176. https://doi.org/10.1002/adhm.201501013

    Article  CAS  Google Scholar 

  540. Wang Y, Cui Y, Huang J, Di D, Dong Y, Zhang X, Zhao Q, Han N, Gao Y, Jiang T, Wang S (2015) Redox and pH dual-responsive mesoporous silica nanoparticles for site-specific drug delivery. Appl Surf Sci 356:1282–1288. https://doi.org/10.1016/j.apsusc.2015.07.151

    Article  CAS  Google Scholar 

  541. Wang Y, He J, Liu C, Chong WH, Chen H (2014) Thermodynamics versus kinetics in nanosynthesis. Angew Chem Int Ed 53:2–32. https://doi.org/10.1002/anie.201402986

    Article  CAS  Google Scholar 

  542. Wang Y, Huang H-Y, Yang L, Zhang Z, Ji H (2016) Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance. Sci Rep 6:25468. https://doi.org/10.1038/srep25468

    Article  CAS  Google Scholar 

  543. Warburg O (1925) The Metabolism of Carcinoma Cells. J Cancer Res 9:148–163. https://doi.org/10.1158/jcr.1925.148

    Article  CAS  Google Scholar 

  544. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21:297–308. https://doi.org/10.1016/j.ccr.2012.02.014

    Article  CAS  Google Scholar 

  545. Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44:4792–4834. https://doi.org/10.1039/c4cs00532e

    Article  CAS  Google Scholar 

  546. Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection hui. Anal Chem 80:2250–2254. https://doi.org/10.1016/j.ultsonch.2009.06.014

    Article  CAS  Google Scholar 

  547. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093. https://doi.org/10.1039/c3cs35486e

    Article  CAS  Google Scholar 

  548. Weinberg RA (2007) The biology of cancer. Garland Science, New York

    Google Scholar 

  549. Weiner RG, Skrabalak SE (2015) Metal dendrimers: synthesis of hierarchically stellated nanocrystals by sequential seed—directed overgrowth. Angew Chem Int Ed 54:1181–1184. https://doi.org/10.1002/anie.201409966

    Article  CAS  Google Scholar 

  550. Weiss GJ, Chao J, Neidhart JD, Ramanathan RK, Bassett D, Neidhart JA, Choi CHJ, Chow W, Chung V, Forman SJ, Garmey E, Hwang J, Kalinoski DL, Koczywas M, Longmate J, Melton RJ, Morgan R, Oliver J, Peterkin JJ, Ryan JL, Schluep T, Synold TW, Twardowski P, Davis ME, Yen Y (2013) First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest New Drugs 31:986–1000. https://doi.org/10.1007/s10637-012-9921-8

    Article  CAS  Google Scholar 

  551. Weissleder R, Stark DD, Engelstad BL, Bacon B, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152:167–173

    Google Scholar 

  552. West CM, Cooper RA, Loncaster JA, Wilks DP, Bromley M (2001) Tumor vascularity: a histological measure of angiogenesis and hypoxia. Cancer Res 61:2907–2910

    CAS  Google Scholar 

  553. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1:16014/1–16014/12. https://doi.org/10.1038/natrevmats.2016.14

  554. Willett CG, Boucher Y, Di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147. https://doi.org/10.1038/nm988

    Article  CAS  Google Scholar 

  555. Wilms VS, Bauer H, Tonhauser C, Schilmann AM, Müller MC, Tremel W, Frey H (2013) Catechol-initiated polyethers: multifunctional hydrophilic ligands for pegylation and functionalization of metal oxide nanoparticles. Biomacromolecules 14:193–199. https://doi.org/10.1021/bm3015889

    Article  CAS  Google Scholar 

  556. Winzen S, Schoettler S, Baier G, Rosenauer C, Mailaender V, Landfester K, Mohr K (2015) Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition. Nanoscale 7:2992–3001. https://doi.org/10.1039/c4nr05982d

    Article  CAS  Google Scholar 

  557. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon R-A, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133. https://doi.org/10.1056/nejmoa1302369

    Article  CAS  Google Scholar 

  558. Wolfram J, Yang Y, Shen J, Moten A, Chen C, Shen H, Ferrari M, Zhao Y (2014) The nano-plasma interface: implications of the protein corona. Colloids Surf B Biointerfaces 124:17–24. https://doi.org/10.1016/j.colsurfb.2014.02.035

    Article  CAS  Google Scholar 

  559. Wondrak GT (2007) NQO1-activated phenothiazinium redox cyclers for the targeted bioreductive induction of cancer cell apoptosis. Free Radic Biol Med 43:178–190. https://doi.org/10.1016/j.freeradbiomed.2007.03.035

    Article  CAS  Google Scholar 

  560. Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, Popovic Z, Jain RK, Bawendi MG, Fukumura D (2011) Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci 108:2426–2431. https://doi.org/10.1073/pnas.1018382108

    Article  Google Scholar 

  561. Wu M, Lin Z, Wolfbeis OS (2003) Determination of the activity of catalase using a europium(III)-tetracycline-derived fluorescent substrate. Anal Biochem 320:129–135. https://doi.org/10.1016/s0003-2697(03)00356-7

    Article  CAS  Google Scholar 

  562. Wu S-H, Mou C-Y, Lin H-P (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42:3862–3875. https://doi.org/10.1039/c3cs35405a

    Article  CAS  Google Scholar 

  563. Wulff G (1901) Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Kristallflächen. Zeitschrift für Krist 34:449

    CAS  Google Scholar 

  564. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–3286. https://doi.org/10.1021/nn900918w

    Article  CAS  Google Scholar 

  565. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103. https://doi.org/10.1002/anie.200802248

    Article  CAS  Google Scholar 

  566. Xie M, Shi H, Ma K, Shen H, Li B, Shen S, Wang X, Jin Y (2013) Hybrid nanoparticles for drug delivery and bioimaging: mesoporous silica nanoparticles functionalized with carboxyl groups and a near-infrared fluorescent dye. J Colloid Interface Sci 395:306–314. https://doi.org/10.1016/j.jcis.2013.01.001

    Article  CAS  Google Scholar 

  567. Xu C, Yu M, Noonan O, Zhang J, Song H, Zhang H, Lei C, Niu Y, Huang X, Yang Y, Yu C (2015) Core-cone structured monodispersed mesoporous silica nanoparticles with ultra-large cavity for protein delivery. Small 25:5949–5955. https://doi.org/10.1002/smll.201501449

    Article  CAS  Google Scholar 

  568. Xu R, Zhang G, Mai J, Deng X, Segura-Ibarra V, Wu S, Shen J, Liu H, Hu Z, Chen L, Huang Y, Koay E, Huang Y, Liu J, Ensor JE, Blanco E, Liu X, Ferrari M, Shen H (2016) An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat Biotechnol 34:414–418. https://doi.org/10.1038/nbt.3506

    Article  CAS  Google Scholar 

  569. Yamada H, Ujiie H, Urata C, Yamamoto E, Yamauchi Y, Kuroda K (2015) Multifunctional role of trialkylbenzene for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology. Nanoscale 7:19557–19567. https://doi.org/10.1039/c5nr04465k

    Article  CAS  Google Scholar 

  570. Yamauchi H, Ishikawa T, Kondo S (1989) Surface characterization of ultramicro spherical particles of silica prepared by w/o microemulsion method. Colloids Surf 37:71–80. https://doi.org/10.1016/0166-6622(89)80107-6

    Article  Google Scholar 

  571. Yanagi M, Asano Y, Kandori K, Kon-on K (1986) 39th Symposium on Divison of Colloid and Interface Chemistry. Chemical Society pf Japan Abstracts, p 396.

    Google Scholar 

  572. Yang C, Guo W, An N, Cui L, Zhang T, Tong R, Chen Y, Lin H, Qu F (2015) Enzyme-sensitive magnetic core–shell nanocomposites for triggered drug release. RSC Adv 5:80728–80738. https://doi.org/10.1039/c5ra15026d

    Article  CAS  Google Scholar 

  573. Yang H-J, He S-Y, Tuan H-Y (2014) Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications. Langmuir 30:602–610. https://doi.org/10.1021/la4036198

    Article  CAS  Google Scholar 

  574. Yang J, Chen W, Shen D, Wei Y, Ran X, Teng W, Fan J, Zhang W, Zhao D (2014) Controllable fabrication of dendritic mesoporous silica–carbon nanospheres for anthracene removal. J Mater Chem A 2:11045–11048. https://doi.org/10.1039/c4ta01516a

    Article  CAS  Google Scholar 

  575. Yang J, Chng LL, Yang X, Chen X, Ying JY (2014) Multiply-twinned intermetallic AuCu pentagonal nanorods. Chem Commun 50:1141–1143. https://doi.org/10.1039/c3cc47254j

    Article  CAS  Google Scholar 

  576. Yang K, Luo H, Zeng M, Jiang Y, Li J, Fu X (2015) Intracellular pH-triggered, targeted drug delivery to cancer cells by multifunctional envelope-type mesoporous silica nanocontainers. ACS Appl Mater Interfaces 7:17399–17407. https://doi.org/10.1021/acsami.5b04684

    Article  CAS  Google Scholar 

  577. Yang M, Li J, Chen PR (2014) Transition metal-mediated bioorthogonal protein chemistry in living cells. Chem Soc Rev 43:6511–6526. https://doi.org/10.1039/c4cs00117f

    Article  CAS  Google Scholar 

  578. Yang Y, Liu X, Lv Y, Herng TS, Xu X, Xia W, Zhang T, Fang J, Xiao W, Ding J (2015) Orientation mediated enhancement on magnetic hyperthermia of Fe3O4 nanodisc. Adv Funct Mater 25:812–820. https://doi.org/10.1002/adfm.201402764

    Article  CAS  Google Scholar 

  579. Yang Y, Niu Y, Zhang J, Meka AK, Zhang H, Xu C, Lin CXC, Yu M, Yu C (2015) Biphasic synthesis of large-pore and well-dispersed benzene bridged mesoporous organosilica nanoparticles for intracellular protein delivery. Small 11:2743–2749. https://doi.org/10.1002/smll.201402779

    Article  CAS  Google Scholar 

  580. Yao X, Chen X, He C, Chen L, Chen X (2015) Dual pH-responsive mesoporous silica nanoparticles for efficient combination of chemotherapy and photodynamic therapy. J Mater Chem B 3:4707–4714. https://doi.org/10.1039/c5tb00256g

    Article  CAS  Google Scholar 

  581. Ye E, Regulacio MD, Zhang S-Y, Loh XJ, Han M-Y (2015) Anisotropically branched metal nanostructures. Chem Soc Rev 44:6001–6017. https://doi.org/10.1039/c5cs00213c

    Article  CAS  Google Scholar 

  582. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670. https://doi.org/10.1038/nature04165

    Article  CAS  Google Scholar 

  583. Yip KW, Reed JC (2008) Bcl-2 family proteins and cancer. Oncogene 27:6398–6406. https://doi.org/10.1038/onc.2008.307

    Article  CAS  Google Scholar 

  584. Yoo D, Lee JH, Shin TH, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44:863–874. https://doi.org/10.1021/ar200085c

    Article  CAS  Google Scholar 

  585. Yoreo DJJ, Gilbert PUPA, Sommerdijk NAJM, Penn RL, Whitelam S, Joester D, Zhang H, Rimer JD, Navrotsky A, Banfield JF, Wallace AF, Michel FM, Meldrum FC, Colfen H, Dove PM (2015) Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349:6247/1–6247/9. https://doi.org/10.1126/science.aaa6760

  586. Yoshii Y, Sugiyama K (1988) Intercapillary distance in the proliferating area of human glioma. Cancer Res 48:2938–2941

    CAS  Google Scholar 

  587. Yu H, Chen M, Rice PM, Wang SX, White RL, Sun S (2005) Dumbbell-like bifunctional Au–Fe3O4 nanoparticles. Nano Lett 5:379–382. https://doi.org/10.1021/nl035004r

    Article  CAS  Google Scholar 

  588. Yu SB, Watson AD (1999) Metal-based X-ray contrast media. Chem Rev 99:2353–2377. https://doi.org/10.1021/cr980441p

    Article  CAS  Google Scholar 

  589. Yu WW, Chang E, Falkner JC, Zhang J, Al-Somali a M, Sayes CM, Johns J, Drezek R, Colvin VL (2007) Forming biocompatible & nonaggregated nanocrystal FeNP in water using amphiphilic polymer. J Am Chem Soc 129:2871–2879. https://doi.org/10.1021/ja067184n

  590. Yu Y, Sun K, Tian Y, Li X-Z, Kramer MJ, Sellmyer DJ, Shield JE, Sun S (2013) One-pot synthesis of urchin-like FePd-Fe3O4 and their conversion into exchange-coupled L1(0)-FePd-Fe nanocomposite magnets. Nano Lett 13:4975–4979. https://doi.org/10.1021/nl403043d

    Article  CAS  Google Scholar 

  591. Yuan H, Zhang S (2010) Effects of particle size and ligand density on the kinetics of receptor-mediated endocytosis of nanoparticles. Appl Phys Lett 96:33704/1–33704/3. https://doi.org/10.1063/1.3293303

  592. Yue Y, Jin F, Deng R, Cai J, Dai Z, Lin MCM, Kung H-F, Mattebjerg MA, Andresen TL, Wu C (2011) Revisit complexation between DNA and polyethylenimine–effect of length of free polycationic chains on gene transfection. J Control Release 152:143–151. https://doi.org/10.1016/j.jconrel.2011.03.020

    Article  CAS  Google Scholar 

  593. Yun HJ, Lee H, Kim ND, Lee DM, Yu S, Yi J (2011) A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state. ACS Nano 5:4084–4090. https://doi.org/10.1021/nn2006738

    Article  CAS  Google Scholar 

  594. Zeng H, Li J, Liu JP, Wang ZL, Sun S (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395–398. https://doi.org/10.1038/nature01208

    Article  CAS  Google Scholar 

  595. Zeng H, Sun S (2008) Syntheses, properties, and potential applications of multicomponent magnetic nanoparticles. Adv Funct Mater 18:391–400. https://doi.org/10.1002/adfm.200701211

    Article  CAS  Google Scholar 

  596. Zhang F, Lees E, Amin F, Rivera-Gil P, Yang F, Mulvaney P, Parak WJ (2011) Polymer-coated nanoparticles: a universal tool for biolabelling experiments. Small 7:3113–3127. https://doi.org/10.1002/smll.201100608

    Article  CAS  Google Scholar 

  597. Zhang J, Desai D, Rosenholm JM (2014) Tethered lipid bilayer gates: toward extended retention of hydrophilic cargo in porous nanocarriers. Adv Funct Mater 24:2352–2360. https://doi.org/10.1002/adfm.201302995

    Article  CAS  Google Scholar 

  598. Zhang J, Langille MR, Personick ML, Zhang K, Li S, Mirkin CA (2010) Concave cubic gold nanocrystals with high-index facets. J Am Chem Soc 132:14012–14014

    Article  CAS  Google Scholar 

  599. Zhang J, Rosenholm JM (2015) The viability of mesoporous silica nanoparticles for drug delivery. Ther Deliv 6:891–893. https://doi.org/10.4155/tde.15.46

    Article  CAS  Google Scholar 

  600. Zhang K, Loong SLE, Connor S, Yu SWK, Tan S-Y, Ng RTH, Lee KM, Canham L, Chow PKH (2005) Complete tumor response following intratumoral 32P BioSilicon on human hepatocellular and pancreatic carcinoma xenografts in nude mice. Clin Cancer Res 11:7532–7537. https://doi.org/10.1158/1078-0432.ccr-05-0400

    Article  CAS  Google Scholar 

  601. Zhang L, Chen Y, Li Z, Li L, Saint-Cricq P, Li C, Lin J, Wang C, Su Z, Zink JI (2016) Tailored synthesis of octopus-type janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angew Chem Int Ed 55:2118–2121. https://doi.org/10.1002/anie.201510409

    Article  CAS  Google Scholar 

  602. Zhang L, Dou Y-H, Gu H-C (2006) Synthesis of Ag-Fe3O4 heterodimeric nanoparticles. J Colloid Interface Sci 297:660–664. https://doi.org/10.1016/j.jcis.2005.11.009

    Article  CAS  Google Scholar 

  603. Zhang LW, Monteiro-Riviere NA (2009) Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci 110:138–155. https://doi.org/10.1093/toxsci/kfp087

    Article  CAS  Google Scholar 

  604. Zhang Q, Neoh KG, Xu L, Lu S, Kang ET, Mahendran R, Chiong E (2014) Functionalized mesoporous silica nanoparticles with mucoadhesive and sustained drug release properties for potential bladder cancer therapy. Langmuir 30:6151–6161. https://doi.org/10.1021/la500746e

    Article  CAS  Google Scholar 

  605. Zhang S, Gao H, Bao G (2015) Physical principles of nanoparticle cellular endocytosis. ACS Nano 9:8655–8671. https://doi.org/10.1021/acsnano.5b03184

    Article  CAS  Google Scholar 

  606. Zhang X, Chen YL, Liu R-S, Tsai DP (2013) Plasmonic photocatalysis. Reports Prog Phys 76:046401/1–046401/41. https://doi.org/10.1088/0034-4885/76/4/046401

  607. Zhang X, Tian W, Cai X, Wang X, Dang W, Tang H, Cao H, Wang L, Chen T (2013) Hydrazinocurcumin Encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS One 8:e65896/1–e65896/9. https://doi.org/10.1371/journal.pone.0065896

  608. Zhang Y, Hou Z, Ge Y, Deng K, Liu B, Li X, Li Q, Cheng Z, Ma P, Li C, Lin J (2015) DNA-hybrid-gated photothermal mesoporous silica nanoparticles for NIR-responsive and aptamer-targeted drug delivery. ACS Appl Mater Interfaces 7:20696–20706. https://doi.org/10.1021/acsami.5b05522

    Article  CAS  Google Scholar 

  609. Zhang Y, Liu JM, Yan XP (2013) Self-assembly of folate onto polyethyleneimine-coated CdS/ZnS quantum dots for targeted turn-on fluorescence imaging of folate receptor overexpressed cancer cells. Anal Chem 85:228–234. https://doi.org/10.1021/ac3025653

    Article  CAS  Google Scholar 

  610. Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VS-Y (2011) Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5:1366–1375. https://doi.org/10.1021/nn103077k

    Article  CAS  Google Scholar 

  611. Zhao Z, Zhou Z, Bao J, Wang Z, Hu J, Chi X, Ni K, Wang R, Chen X, Chen Z, Gao J (2013) Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat Commun 4:2266/1–2266/7. https://doi.org/10.1038/ncomms3266

  612. Zheng C, Zheng A-X, Liu B, Zhang X-L, He Y, Li J, Yang H-H, Chen G (2014) One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun 50:13103–13106. https://doi.org/10.1039/c4cc05339g

    Article  CAS  Google Scholar 

  613. Zhou J (2010) Multi-drug resistance in cancer. Humana Press, Totowa

    Book  Google Scholar 

  614. Zhu C-L, Song X-Y, Zhou W-H, Yang H-H, Wen Y-H, Wang X-R (2009) An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates. J Mater Chem 19:7765–7770. https://doi.org/10.1039/b907978e

    Article  CAS  Google Scholar 

  615. Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y (2013) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46:622–631. https://doi.org/10.1021/ar300031y

    Article  CAS  Google Scholar 

  616. Zhu S, Niu M, O’Mary H, Cui Z (2013) Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm 10:3525–3530. https://doi.org/10.1021/mp400216r

    Article  CAS  Google Scholar 

  617. Zhuang J, Shaller AD, Lynch J, Wu H, Chen O, Li ADQ, Cao YC (2009) Cylindrical superparticles from semiconductor nanorods. J Am Chem Soc 131:6084–6085. https://doi.org/10.1021/ja9015183

    Article  CAS  Google Scholar 

  618. Zhuang J, Wu H, Yang Y, Cao YC (2007) Supercrystalline colloidal particles from artificial atoms. J Am Chem Soc 129:14166–14167. https://doi.org/10.1021/ja076494i

    Article  CAS  Google Scholar 

  619. Zhuang J, Wu H, Yang Y, Cao YC (2008) Controlling colloidal superparticle growth through solvophobic interactions. Angew Chem Int Ed 47:2208–2212. https://doi.org/10.1002/anie.200705049

    Article  CAS  Google Scholar 

  620. Zimmer JP, Kim S, Ohnishi S, Tanaka E, Frangioni JV, Bawendi MG (2006) Size series of small indium arsenide–zinc selenide core-shell nanocrystals and their application to in vivo imaging. J Am Chem Soc 128:2526–2527. https://doi.org/10.1021/ja0579816

    Article  CAS  Google Scholar 

  621. Zimmermann TS, Lee ACH, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M, Judge AD, Lam K, McClintock K, Nechev LV, Palmer LR, Racie T, Röhl I, Seiffert S, Shanmugam S, Sood V, Soutschek J, Toudjarska I, Wheat AJ, Yaworski E, Zedalis W, Koteliansky V, Manoharan M, Vornlocher H-P, MacLachlan I (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114. https://doi.org/10.1038/nature04688

    Article  CAS  Google Scholar 

  622. Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA (2010) Nanoparticles and the immune system. Endocrinology 151:458–465. https://doi.org/10.1210/en.2009-1082

    Article  CAS  Google Scholar 

  623. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307. https://doi.org/10.1038/nri1806

    Article  CAS  Google Scholar 

  624. Zou Z, He X, He D, Wang K, Qing Z, Yang X, Wen L, Xiong J, Li L, Cai L (2015) Programmed packaging of mesoporous silica nanocarriers for matrix metalloprotease 2-triggered tumor targeting and release. Biomaterials 58:35–45. https://doi.org/10.1016/j.biomaterials.2015.04.034

    Article  CAS  Google Scholar 

  625. Zürcher S, Wäckerlin D, Bethuel Y, Malisova B, Textor M, Tosatti S, Gademann K (2006) Biomimetic surface modifications based on the cyanobacterial iron chelator anachelin. J Am Chem Soc 128:1064–1065. https://doi.org/10.1021/ja056256s

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Tremel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kluenker, M., Kurch, S., Tahir, M.N., Tremel, W. (2018). Bio-nano: Theranostic at Cellular Level. In: Merkus, H., Meesters, G., Oostra, W. (eds) Particles and Nanoparticles in Pharmaceutical Products. AAPS Advances in the Pharmaceutical Sciences Series, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-319-94174-5_3

Download citation

Publish with us

Policies and ethics