Skip to main content

Probabilistic Analysis of Small-Signal Stability of a Power System Affected by Grid-Connected Wind Power Generation

  • Chapter
  • First Online:

Abstract

The operation of power system is stochastic in nature, and the uncertainties can be brought about by many aspects of the system, such as the stochastic variation of load conditions and intermittence of renewable energy generations (e.g., wind and solar). Analysis of power system small-signal stability introduced in this book so far (i.e., modal analysis and damping torque analysis) as well as system time-domain simulation are based on the deterministic system operating conditions with specific loading situation and constant network configuration. Hence, they are not able to deal with stochastic fluctuations of random variables in power systems and may bring impractical results to the system stability analysis. This limitation of deterministic analysis motivates the research of probabilistic analysis into small-signal stability issues, in which the uncertainty and randomness of power system behaviors can be fully considered and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kendall M (1987) Kendall’s advanced theory statistics. Oxford University Press, New York, NY

    MATH  Google Scholar 

  2. Cramer H (1946) Numerical methods of statistics. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  3. Ma J, Dong ZY, Zhang P (2006) Eigenvalue sensitivity analysis for dynamic power system. In: International conference on power system technology, Chongqing, pp 22–26

    Google Scholar 

  4. Dong ZY, Pang CK, Zhang P (2005) Power system sensitivity analysis for probabilistic small signal stability assessment in a deregulated environment. Int J Control Automat Syst 3:355–362

    Google Scholar 

  5. Robert CP, Casella G (2004) Monte Carlo statistical methods. Springer, New York

    Book  Google Scholar 

  6. Xu Z, Dong ZY, Zhang P (2005) Probabilistic small signal analysis using Monte Carlo simulation. In: IEEE PES SM Paper 2: San Francisco, pp 1658–1664

    Google Scholar 

  7. Xu Z, Ali M, Dong ZY, Li X (2006) A novel grid computing approach for probabilistic small signal analysis. In: IEEE PES SM Paper, Montreal, Que.

    Google Scholar 

  8. Burchett RC, Heydt GT (1978) Probabilistic methods for power system dynamic stability studies. IEEE Trans Power Appar Syst PAS-97:695–702

    Article  Google Scholar 

  9. Burchett RC, Heydt GT (1978) A generalized method for stochastic analysis of the dynamic stability of electric power system. IEEE PES SM Paper, A78528

    Google Scholar 

  10. Brucoli M, Torelli F, Trovato M (1981) Probabilistic approach for power system dynamic stability studies. IEE Proc 128(5):295–301

    Google Scholar 

  11. Wang KW, Tse CT, Tsang KM (1997) Algorithm for power system dynamic stability studies taking account the variation of load power. In: 4th International conference on advances in power system control operation and management 2(2), Hong Kong, pp 445–450

    Google Scholar 

  12. Pang CK, Dong ZY, Zhang P, Yin X (2005) Probabilistic analysis of power system Small signal stability region. In: International conference on control and automation 1(1), Budapest, pp 503–509

    Google Scholar 

  13. Wang KW, Chung CY, Tse CT, Tsang KM (2000) Improved probabilistic method for power system dynamic stability studies. IEE Proc Gener Transm Distrib 147(1):37–43

    Article  Google Scholar 

  14. Yi HQ, Hou YH, Cheng SJ, Zhou H, Chen GG (2007) Power system probabilistic small signal stability analysis using two point estimation method. In: 402–407, UPEC, Brighton

    Google Scholar 

  15. Xu XL, Lin T, Zhang XM (2009) Probabilistic analysis of small signal stability of microgrid using point estimate method. In: International conference on SUPERGEN, Nanjing, pp 1–6

    Google Scholar 

  16. Li MY, Ma J, Dong ZY (2009) Uncertainty analysis of load models in small signal stability. In: International conference on SUPERGEN, Nanjing, pp 1–6

    Google Scholar 

  17. Bu SQ (2012) Probabilistic small-signal stability analysis and improved transient stability control strategy of grid-connected doubly fed induction generators in large-scale power systems. PhD thesis.

    Google Scholar 

  18. Freris L, Infield D (2008) Renewable energy in power systems. John Wiley and Sons

    Google Scholar 

  19. Usaola J (2010) Probabilistic load flow with correlated wind power injections. Electr Power Syst Res 80(5):528–536

    Article  Google Scholar 

  20. Morales JM, Baringo L, Conejo AJ, Minguez R (2010) Probabilistic power flow with correlated wind sources. IET Gener Transm Distrib 4(5):641–651

    Article  Google Scholar 

  21. Papaefthymiou G, Kurowicka D (2009) Using copulas for modeling stochastic dependence in power system uncertainty analysis. IEEE Trans Power Syst 24(1):40–49

    Article  Google Scholar 

  22. Abouzahr I, Ramakumar R (1991) An approach to assess the performance of utility-interactive wind electric conversion systems. IEEE Trans Energy Conver 6:627–638

    Article  Google Scholar 

  23. Akagi H, Sato H (2002) Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system. IEEE Trans Power Electron 17:109–116

    Article  Google Scholar 

  24. Gao B, Morison GK, Kundur P (1992) Voltage stability evaluation using modal analysis. IEEE Trans Power Syst 7(4):1529–1542

    Article  Google Scholar 

  25. Aik D, Andersson G (1997) Voltage stability analysis of multi-infeed HVDC systems. IEEE Trans Power Deliver 12(3):1309–1318

    Article  Google Scholar 

  26. Aik D, Andersson G (1998) Use of participation factors in modal voltage stability analysis of multi-infeed HVDC systems. IEEE Trans Power Deliver 13(1):203–211

    Article  Google Scholar 

  27. Allan R, Silva A (1981) Probabilistic load flow using multilinearizations. IEE Proc 128(5)

    Article  Google Scholar 

  28. Blau J (2010) Europe plans a north sea grid. IEEE Spectr 47(3):12–13

    Article  Google Scholar 

  29. Rudion K, Orths A, Eriksen PB, Styczynski ZA (2010) Toward a benchmark test system for the offshore grid in the north sea. In: IEEE power and energy society general meeting, Providence, RI, pp 1–8.

    Google Scholar 

  30. Simonsen T, Stevens B (2004) Regional wind energy analysis for the contral United States. In: Proceedings of the global wind power conference, pp 1–16

    Google Scholar 

  31. Beerten J, Cole S, Belmans R (2012) Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms. IEEE Trans Power Syst 27(2):821–829

    Article  Google Scholar 

  32. Gomis-Bellmunt O, Liang J, Ekanayake J, King R, Jenkins N (2010) Topologies of multiterminal HVDC-VSC transmission for large offshore wind farms. Electr Power Syst Res 81:271–281

    Article  Google Scholar 

  33. Beerten J, Belmans R (2012) Modeling and control of multi-terminal VSC HVDC systems. Energy Procedia 24:123–130

    Article  Google Scholar 

  34. Rogers G (2000) Power system oscillations. Kluwer, Norwell, MA

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix 8.1: Data of Examples 8.1, 8.2 and 8.3

Appendix 8.1: Data of Examples 8.1, 8.2 and 8.3

8.1.1 Example 16-Machine 68-Bus New York and New England Power System [34] (Tables 8.5, 8.6 and 8.7)

All the synchronous generators employ sixth-order detailed model with damping D = 0.0. The structure of first-order excitation system model is shown by Fig. 8.19.

Table 8.5 Bus data
Table 8.6 Line data
Table 8.7 Machine data
Fig. 8.19
figure 19

The first-order excitation system model of synchronous generator

The parameters of excitation system model are

KA = 7.4, TA = 0.1s, efdmax = 10.0, efdmin =  − 10.0 (Example 8.1).

KA = 2.85, TA = 0.1s, efdmax = 10.0, efdmin =  − 10.0 (Example 8.2).

KA = 3.95, TA = 0.1s, efdmax = 10.0, efdmin =  − 10.0 (Example 8.3).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, W., Wang, H., Bu, S. (2018). Probabilistic Analysis of Small-Signal Stability of a Power System Affected by Grid-Connected Wind Power Generation. In: Small-Signal Stability Analysis of Power Systems Integrated with Variable Speed Wind Generators. Springer, Cham. https://doi.org/10.1007/978-3-319-94168-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94168-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94167-7

  • Online ISBN: 978-3-319-94168-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics