Skip to main content

Damping Torque Analysis of Small-Signal Angular Stability of a Power System Affected by Grid-Connected Wind Power Induction Generators

  • Chapter
  • First Online:
Small-Signal Stability Analysis of Power Systems Integrated with Variable Speed Wind Generators
  • 663 Accesses

Abstract

Induction generator based wind power generation has been dominating the wind market since the rise of wind power industry at the end of last century and will be continuously in a favorable position for large-scale grid connection given its lower cost and more mature technology compared with other wind generation for the foreseeable future [1]. Fixed-speed induction generator (FSIG-Type 1 Wind Gen Model) and doubly-fed induction generator (DFIG-Type 3 Wind Gen Model) are two main types of induction generator adopted for wind power generation especially considering the fact that DFIG is the most frequently-used technology to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global Wind Energy Council (2016) Global Wind Report, Annual Market Update 2016. http://www.gwec.net/

  2. Thakur D, Mithulananthan N (2009) Influence of constant speed wind turbine generator on power system oscillation. Electr Power Compo Syst 37:478–494

    Article  Google Scholar 

  3. Fayek HM, Elamvazuthi I, Perumal N, Benkatesh B (2014) The impact of DFIG and FSIG Wind Farms on the Small Signal Stability of a Power System. In: 5th International Conference on Intelligent and Advanced Systems, Kuala Lumpur, pp 1–6.

    Google Scholar 

  4. Slootweg JG, Kling WL (2003) The impact of large scale wind power generation on power system oscillations. Electr Power Syst Res 67:9–20

    Article  Google Scholar 

  5. Mei F, Pal BC (2007) Modal analysis of a grid-connected doubly fed induction generator. IEEE Trans Energy Convers 22(3):728–736

    Article  Google Scholar 

  6. Wu F, Zhang XP, Godfrey K, Ju P (2007) Small signal stability analysis and optimal control of a wind turbine with doubly fed Induction generator. IET Gener Transm Distrib 1(5):751–760

    Article  Google Scholar 

  7. Sanchez-Gasca JJ, Miller NW, Price WW (2004) A modal analysis of a two-area system with significant wind Power penetration. In: Power systems conference and exposition 2, New York, pp 1148–1152

    Google Scholar 

  8. Mendonca A, Pecas Lopes JA (2005) Impact of large scale wind power integration on small signal stability. Future Power Syst:1–5

    Google Scholar 

  9. Quintero J, Vittal V, Heydt GT, Zhang H (2014) The impact of increased penetration of converter control-based generators on power system modes of oscillation. IEEE Trans Power Syst 29(5):2248–2256

    Article  Google Scholar 

  10. Gautam D, Vittal V, Harbour T (2009) Impact of increased penetration of DFIG-based wind turbine generators on transient and small signal stability of power systems. IEEE Trans Power Syst 24(3):1426–1434

    Article  Google Scholar 

  11. Jafarian M, Ranjbar AM (2012) Interaction of the dynamics of doubly fed wind generators with power system electromechanical oscillations. IET Renew Power Gen 7(2):89–97

    Article  Google Scholar 

  12. Garmroodi M, Hill DJ, Verbic G, Ma J (2016) Impact of tie-line power on inter-area modes with increased penetration of wind power. IEEE Trans Power Syst 31(4):3051–3060

    Article  Google Scholar 

  13. Vittal E, O'Malley M, Keane A (2012) Rotor angle stability with high penetrations of wind generation. IEEE Trans Power Syst 27(1):353–362

    Article  Google Scholar 

  14. Vittal E, Keane A (2013) Identification of critical wind farm locations for improved stability and system planning. IEEE Trans Power Syst 28(3):2950–2958

    Article  Google Scholar 

  15. Tsourakis G, Nomikos BM, Vournas CD (2009) Effect of wind parks with doubly fed asynchronous generators on small-signal stability. Elect Power Syst Res 79(1):190–200

    Article  Google Scholar 

  16. Fan L, Miao Z, Osborn D (2008) Impact of doubly fed wind turbine generation on inter-area oscillation damping. In: IEEE Power Eng Soc General Meeting, Pittsburgh, PA, pp 1–8

    Google Scholar 

  17. Tsourakis G, Nomikos BM, Vournas CD (2009) Contribution of doubly fed wind generators to oscillation damping. IEEE Trans Energy Conver 24(3):783–791

    Article  Google Scholar 

  18. Kunjumuhammed LP, Pal BC, Anaparthi KK, Thornhill NF (2013) Effect of wind penetration on power system stability. In: IEEE power and energy Soc general meeting (PES), Vancouver, BC, pp 1–5.

    Google Scholar 

  19. Gautam D, Goel L, Ayyanar R, Vittal V, Harbour T (2011) Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems. IEEE Trans Power Syst 26(1):214–224

    Article  Google Scholar 

  20. Arani MFM, El-Saadany EF (2013) Implementing virtual inertia in DFIG-based wind power generation. IEEE Trans Power Syst 28(2):214–224

    Article  Google Scholar 

  21. Ma J, Qiu Y, Zhang WB, Song ZX, Thorp JS (2016) Research on the impact of DFIG virtual inertia control on power system small-signal stability considering the phase-locked loop. IEEE Trans Power Syst 32(3):2094–2105

    Article  Google Scholar 

  22. Dominguez-Garcia J, Bianchi FD, Gomis-Bellmunt O (2013) Control signal selection for damping oscillations with wind power plants based on fundamental limitations. IEEE Trans Power Syst 28(4):4274–4281

    Article  Google Scholar 

  23. Arani MFM, Mohamed Y (2015) Analysis and impacts of implementing droop control in DFIG-based wind turbines on microgrid/weak-grid stability. IEEE Trans Power Syst 30(1):385–396

    Article  Google Scholar 

  24. Surinkaew T, Ngamroo I (2014) Coordinated robust control of DFIG wind turbine and PSS for stabilization of power oscillations considering system uncertainties. IEEE Trans Sustain Energ 5(3):823–833

    Article  Google Scholar 

  25. Surinkaew T, Ngamroo I (2016) Hierarchical co-ordinated wide area and local controls of DFIG wind turbine and PSS for robust power oscillation damping. IEEE Trans Sustainable Energ 7(3):943–955

    Article  Google Scholar 

  26. Liu Y, Gracia JR, King TJ, Liu YL (2015) Frequency regulation and oscillation damping contributions of variable-speed wind generators in the U.S. Eastern Interconnection (EI). IEEE Trans Sustain Energ 6(3):951–958

    Article  Google Scholar 

  27. Zeni L, Eriksson R, Goumalatsos S, Altin M, Sorensen P, Hansen A, Kjar P, Hesselbak B (2016) Power oscillation damping from VSC-HVDC connected offshore wind power plants. IEEE Trans Power Deliver 31(2):829–838

    Article  Google Scholar 

  28. Singh M, Allen AJ, Muljadi E, Gevorgian V, Zhang YC, Santoso S (2015) Interarea oscillation damping controls for wind power plants. IEEE Trans Sustain Energ 6(3):967–975

    Article  Google Scholar 

  29. Mishra Y, Mishra S, Li FX, Dong ZY, Bansal RC (2009) Small-signal stability analysis of a DFIG-based wind power system under different modes of operation. IEEE Trans Energy Conver 24(4):972–982

    Article  Google Scholar 

  30. Mokhtari M, Aminifar F (2014) Toward wide-area oscillation control through doubly-fed induction generator wind farms. IEEE Trans Power Syst 29(6):2985–2992

    Article  Google Scholar 

  31. Chandra S, Gayme DF, Chakrabortty A (2014) Coordinating wind farms and battery management systems for inter-area oscillation damping: a frequency-domain approach. IEEE Trans Power Syst 29(3):1454–1462

    Article  Google Scholar 

  32. Jamehbozorg A, Radman G (2015) Small-signal analysis of power systems with wind and energy storage units. IEEE Trans Power Syst 30(1):298–305

    Article  Google Scholar 

  33. Yu YN (1983) Electric power system dynamics. Academic Press, New York

    Google Scholar 

  34. CIGRE Technical Brochure on Modeling and Dynamic Behavior of Wind Generation as it Relates to Power System Control and Dynamic Performance, Working Group 01 (2006) Advisory Group 6, Study Committee C4 Draft Rep

    Google Scholar 

  35. Rodriguez JM, Fernandez JL, Beato D, Iturbe R, Usaola J, Ledesma P, Wilhelmi JR (2002) Incidence on power system dynamics of high penetration of fixed speed and doubly fed wind energy systems: study of the Spanish case. IEEE Trans Power Syst 17(4):1089–1095

    Article  Google Scholar 

  36. Rogers G (2000) Power system oscillations. Kluwer, Norwell, MA

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 3.1: A Typical Example of a SMIB System with Interface Equations of a WPIG

From Fig. 3.11, it can obtain

$$ {\overline{\mathrm{I}}}_{\mathrm{L}\mathrm{b}}={\overline{\mathrm{I}}}_{\mathrm{t}\mathrm{L}}+{\overline{\mathrm{I}}}_{\mathrm{w}}={\overline{\mathrm{I}}}_{\mathrm{t}\mathrm{L}}+\frac{{\overline{\mathrm{V}}}_{\mathrm{w}}-{\overline{\mathrm{V}}}_{\mathrm{L}}}{{\mathrm{jX}}_{\mathrm{w}\mathrm{L}}}={\overline{\mathrm{I}}}_{\mathrm{t}\mathrm{L}}+\frac{{\overline{\mathrm{V}}}_{\mathrm{w}}-{\overline{\mathrm{V}}}_{\mathrm{t}}+{\mathrm{jX}}_{\mathrm{t}\mathrm{L}}{\overline{\mathrm{I}}}_{\mathrm{t}\mathrm{L}}}{{\mathrm{jX}}_{\mathrm{w}\mathrm{L}}} $$
(3.34)
$$ {\overline{\mathrm{V}}}_{\mathrm{t}}={\mathrm{jX}}_{\mathrm{t}\mathrm{L}}{\overline{\mathrm{I}}}_{\mathrm{t}\mathrm{L}}+{\mathrm{jX}}_{\mathrm{Lb}}{\overline{\mathrm{I}}}_{\mathrm{Lb}}+{\overline{\mathrm{V}}}_{\mathrm{b}} $$
(3.35)
Fig. 3.11
figure 11

Diagram of a SMIB power system connected with a WPIG

Substituting (3.34) into (3.35) gives

$$ {\displaystyle \begin{array}{l}{\overline{\mathrm{I}}}_{\mathrm{t}\mathrm{L}}=-\frac{{\mathrm{jX}}_{\mathrm{w}\mathrm{L}}}{{\mathrm{X}}_{\mathrm{t}\mathrm{L}}{\mathrm{X}}_{\mathrm{Lb}}+{\mathrm{X}}_{\mathrm{Lb}}{\mathrm{X}}_{\mathrm{w}\mathrm{L}}+{\mathrm{X}}_{\mathrm{w}\mathrm{L}}{\mathrm{X}}_{\mathrm{t}\mathrm{L}}}\left[\left(1+\frac{{\mathrm{X}}_{\mathrm{Lb}}}{{\mathrm{X}}_{\mathrm{w}\mathrm{L}}}\right){\overline{\mathrm{V}}}_{\mathrm{t}}-\frac{{\mathrm{X}}_{\mathrm{Lb}}}{{\mathrm{X}}_{\mathrm{w}\mathrm{L}}}{\overline{\mathrm{V}}}_{\mathrm{w}}-{\overline{\mathrm{V}}}_{\mathrm{b}}\right]\\ {}=-\frac{{\mathrm{jX}}_{\mathrm{w}\mathrm{L}}}{{\mathrm{X}}_{\mathrm{t}\mathrm{L}}{\mathrm{X}}_{\mathrm{Lb}}+{\mathrm{X}}_{\mathrm{Lb}}{\mathrm{X}}_{\mathrm{w}\mathrm{L}}+{\mathrm{X}}_{\mathrm{w}\mathrm{L}}{\mathrm{X}}_{\mathrm{t}\mathrm{L}}}\left[\left(1+\frac{{\mathrm{X}}_{\mathrm{Lb}}}{{\mathrm{X}}_{\mathrm{w}\mathrm{L}}}\right){\overline{\mathrm{V}}}_{\mathrm{t}}-\frac{{\mathrm{X}}_{\mathrm{Lb}}}{{\mathrm{X}}_{\mathrm{w}\mathrm{L}}}{\overline{\mathrm{V}}}_{\mathrm{w}}-1\right]\end{array}} $$
(3.36)

As \( {\overline{\mathrm{I}}}_{\mathrm{w}}=-\left({\overline{\mathrm{I}}}_{\mathrm{tL}}+{\overline{\mathrm{I}}}_{\mathrm{Lb}}\right) \) and \( {\overline{\mathrm{V}}}_{\mathrm{L}}={\overline{\mathrm{V}}}_{\mathrm{w}}-{\mathrm{jX}}_{\mathrm{w}\mathrm{L}}{\overline{\mathrm{I}}}_{\mathrm{w}} \), it can have

$$ {\overline{\mathrm{I}}}_{\mathrm{w}}={\overline{\mathrm{Y}}}_1{\overline{\mathrm{V}}}_{\mathrm{w}}+{\overline{\mathrm{Y}}}_2{\overline{\mathrm{V}}}_{\mathrm{t}}+\frac{{\mathrm{jX}}_{\mathrm{t}\mathrm{L}}}{{\mathrm{X}}_{\mathrm{t}\mathrm{L}}{\mathrm{X}}_{\mathrm{Lb}}+{\mathrm{X}}_{\mathrm{Lb}}{\mathrm{X}}_{\mathrm{w}\mathrm{L}}+{\mathrm{X}}_{\mathrm{w}\mathrm{L}}{\mathrm{X}}_{\mathrm{t}\mathrm{L}}} $$
(3.37)

where \( {\overline{\mathrm{Y}}}_1=-\frac{\mathrm{j}\left({\mathrm{X}}_{\mathrm{tL}}+{\mathrm{X}}_{\mathrm{Lb}}\right)}{{\mathrm{X}}_{\mathrm{tL}}{\mathrm{X}}_{\mathrm{Lb}}+{\mathrm{X}}_{\mathrm{Lb}}{\mathrm{X}}_{\mathrm{wL}}+{\mathrm{X}}_{\mathrm{wL}}{\mathrm{X}}_{\mathrm{tL}}} \), \( {\overline{\mathrm{Y}}}_2=-\frac{{\mathrm{jX}}_{\mathrm{Lb}}}{{\mathrm{X}}_{\mathrm{tL}}{\mathrm{X}}_{\mathrm{Lb}}+{\mathrm{X}}_{\mathrm{Lb}}{\mathrm{X}}_{\mathrm{wL}}+{\mathrm{X}}_{\mathrm{wL}}{\mathrm{X}}_{\mathrm{tL}}} \).

(3.37) can be linearized to be

$$ \Delta {\mathbf{I}}_{\mathrm{w}}={\mathbf{Y}}_1\Delta {\mathbf{V}}_{\mathrm{w}}+{\mathbf{Y}}_2\Delta {\mathbf{V}}_{\mathrm{t}} $$
(3.38)

As the standard algebraic linearized model of a WPIG can be written as ΔI w = C wΔX w + D wΔV w, by eliminating ΔI w, (3.38) becomes

$$ \Delta {\mathbf{V}}_{\mathrm{w}}={\left({\mathbf{Y}}_1-{\mathbf{D}}_{\mathrm{w}}\right)}^{-1}{\mathbf{C}}_{\mathrm{w}}\Delta {\mathbf{X}}_{\mathrm{w}}-{\left({\mathbf{Y}}_1-{\mathbf{D}}_{\mathrm{w}}\right)}^{-1}{\mathbf{Y}}_2\Delta {\mathbf{V}}_{\mathrm{t}} $$
(3.39)

Substituting (3.39) into the linearized equation of (3.36) to eliminate ΔV w gives

$$ \Delta {\mathbf{I}}_{\mathrm{t}\mathrm{L}}={\mathbf{R}}_{1\mathrm{IB}}\Delta {\mathbf{V}}_{\mathrm{t}}+{\mathbf{R}}_{2\mathrm{IB}}\Delta {\mathbf{X}}_{\mathrm{w}} $$
(3.40)

Transforming (3.40) from the Infinite Bus reference frame to d-q reference frame by introducing Δδ, (3.40) becomes

$$ \Delta {\mathbf{I}}_{\mathrm{t}\mathrm{L}}={\mathbf{R}}_1\Delta {\mathbf{V}}_{\mathrm{t}}+{\mathbf{R}}_2\Delta {\mathbf{X}}_{\mathrm{w}}+{\mathbf{R}}_3\Delta \updelta $$
(3.41)

Substituting the linearized SG equation ΔVtd = XqΔItLq and \( \Delta {\mathrm{V}}_{\mathrm{tq}}=\Delta {\mathrm{E}}_{\mathrm{q}}^{\prime }-{\mathrm{X}}_{\mathrm{d}}^{\prime}\Delta {\mathrm{I}}_{\mathrm{tLq}} \) into (3.41) and decomposing ΔI tL to ΔItLd and ΔItLq gives

$$ {\displaystyle \begin{array}{l}\Delta {\mathrm{I}}_{\mathrm{tLd}}={\mathrm{R}}_{\updelta d}\Delta \updelta +{\mathrm{R}}_{{\mathrm{E}}_{\mathrm{q}}^{\prime}\mathrm{d}}\Delta {\mathrm{E}}_{\mathrm{q}}^{\prime }+{\mathrm{R}}_{{\mathrm{I}}_{\mathrm{q}}\mathrm{d}}\Delta {\mathrm{I}}_{\mathrm{tLq}}+{\mathbf{R}}_{{\mathrm{X}}_{\mathrm{w}}\mathrm{d}}\Delta {\mathbf{X}}_{\mathrm{w}}\\ {}\Delta {\mathrm{I}}_{\mathrm{tLq}}={\mathrm{R}}_{\updelta q}\Delta \updelta +{\mathrm{R}}_{{\mathrm{E}}_{\mathrm{q}}^{\prime}\mathrm{q}}\Delta {\mathrm{E}}_{\mathrm{q}}^{\prime }+{\mathrm{R}}_{{\mathrm{I}}_{\mathrm{q}}\mathrm{q}}\Delta {\mathrm{I}}_{\mathrm{tLq}}+{\mathbf{R}}_{{\mathrm{X}}_{\mathrm{w}}\mathrm{q}}\Delta {\mathbf{X}}_{\mathrm{w}}\end{array}} $$
(3.42)

Then (3.42) is substituted into the SMIB system linearized model in (3.43) and the Phillips-Heffron model of a SMIB system with interface equations of a WPIG is derived.

$$ {\displaystyle \begin{array}{l}\Delta \dot{\updelta}={\upomega}_0\Delta \upomega \\ {}\Delta \dot{\upomega}={\mathrm{M}}^{-1}\left(\Delta {\mathrm{T}}_{\mathrm{E}}-\mathrm{D}\Delta \upomega \right)\\ {}\Delta {\dot{{\mathbf{E}}^{\prime}}}_{\mathrm{q}}={\mathrm{T}}_{\mathrm{d}0}^{-1}\left(-\Delta {\mathrm{E}}_{\mathrm{Q}}+\Delta {\mathrm{E}}_{\mathrm{fd}}\right)\\ {}\Delta {\dot{\mathrm{E}}}_{\mathrm{fd}}=\left(-\Delta {\mathrm{E}}_{\mathrm{fd}}-{\mathrm{K}}_{\mathrm{A}}\Delta {\mathrm{V}}_{\mathrm{t}}\right)\Delta {\mathrm{T}}_{\mathrm{A}}^{-1}\end{array}} $$
(3.43)

where

$$ \Delta {\mathrm{T}}_{\mathrm{E}}=\Delta {\mathrm{I}}_{\mathrm{tLq}}{\mathrm{E}}_{\mathrm{q}0}^{\prime }+{\mathrm{I}}_{\mathrm{q}0}\Delta {\mathrm{E}}_{\mathrm{q}}^{\prime }+\Delta {\mathrm{I}}_{\mathrm{tLq}}\left({\mathrm{X}}_{\mathrm{q}}-{\mathrm{X}}_{\mathrm{d}}^{\prime}\right){\mathrm{I}}_{\mathrm{tLd}0}+{\mathrm{I}}_{\mathrm{tLq}0}\left({\mathrm{X}}_{\mathrm{q}}-{\mathrm{X}}_{\mathrm{d}}^{\prime}\right)\Delta {\mathrm{I}}_{\mathrm{tLd}}, $$

\( \Delta {\mathrm{E}}_{\mathrm{Q}}=\Delta {\mathrm{E}}_{\mathrm{q}}^{\prime }-\left({\mathrm{X}}_{\mathrm{d}}-{\mathrm{X}}_{\mathrm{d}}^{\prime}\right)\Delta {\mathrm{I}}_{\mathrm{tLd}} \), ΔVtd = XqΔItLq and \( \Delta {\mathrm{V}}_{\mathrm{tq}}=\Delta {\mathrm{E}}_{\mathrm{q}}^{\prime }-{\mathrm{X}}_{\mathrm{d}}^{\prime}\Delta {\mathrm{I}}_{\mathrm{tLd}} \).

Appendix 3.2: Data of Examples 3.1 and 3.2

3.1.1 Example 16-Machine 68-Bus New York and New England Power System [36] (Tables 3.4, 3.5 and 3.6)

All the synchronous generators employ sixth-order detailed model with damping D = 0.0. The structure of first-order excitation system model is shown by Fig. 3.12.

Table 3.4 Bus data
Table 3.5 Line data
Table 3.6 Machine data
Fig. 3.12
figure 12

The first-order excitation system model of synchronous generator

The parameters of excitation system model are KA = 3.95, TA = 0.1s, efdmax = 10.0, efdmin =  − 10.0.

3.1.2 Data of DFIG and FSIG

3.1.2.1 Induction Generator Parameters

Mw = 3.4s, Dw = 0, Rr = 0.0007, Xs = 0.0878, Xr = 0.0373, Xm = 1.3246, Xr3 = 0.05, Xss = Xs + Xm, Xrr = Xr + Xm, Pw = 2.0 p. u., Vw = 1.015 p. u.

3.1.2.2 Control Parameters of RSC

Kpsp1 = Kqsp1 = 0.2, Kpsp2 = Kqsp2 = 1,

KpsI1 = KqsI1 = 12.56 s−1, KpsI2 = KqsI2 = 62.5 s−1.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, W., Wang, H., Bu, S. (2018). Damping Torque Analysis of Small-Signal Angular Stability of a Power System Affected by Grid-Connected Wind Power Induction Generators. In: Small-Signal Stability Analysis of Power Systems Integrated with Variable Speed Wind Generators. Springer, Cham. https://doi.org/10.1007/978-3-319-94168-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94168-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94167-7

  • Online ISBN: 978-3-319-94168-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics