Skip to main content

Landscape and Nature: Olive Tree Digital Parameterization

  • Chapter
  • First Online:
Landscape Lab

Part of the book series: Urban and Landscape Perspectives ((URBANLAND,volume 20))

  • 477 Accesses

Abstract

In the centrality of perception, landscape is connected to natural elements. It is almost impossible to think about landscape without reference to environmental elements. The celebrated quote by Mies Van Der Rohe, God is in the details, is valid also for landscape, where to understand the whole that is landscape, a process that drills down and analyzes the singular elements is necessary. But in this idea of landscape it is possible to lose oneself inside the romantic echoes of artistic research, forgetting the scientific needs so important in a landscape project. It can represent a theme of representation study, even more in function than digital tools. The project of landscape involves similarly architectural and agricultural sciences, both addressed to the transformation of natural elements, both finalized to a better life, both based on morphological evolution, both aimed to give efficiency in performance and results. In this sense, this research integrates the science of representation studies with agricultural tree analysis to describe the architectural form of an olive tree and to show a scientific visualization of the relationship between morphology and light interception in the canopy. The representation of plant architecture, manipulated with pruning operations for agricultural purposes of light optimization, describes the action of sunlight in the tree, by testing the potential of digital design tools – especially generative modelling. Through the design of a specific algorithm, the tree is interpreted as a fragmented photovoltaic panel, analyzed by using 14,000 control points corresponding to its leaves. The possibility of selecting these classes of elements becomes the instrument to explain the canopy structure, finding the categories that describe and simulate the annual radiance and illuminance. The developed modelling process and its purely theoretical significance constitute the basis for a variety of applications in data analysis and comparison among different models, evaluations, theories, and operations. This research is the first step of an important action of the European project OLIVE4CLIMATE-LIFE (LIFE15 CCM/IT/000141), the sustainable olive oil supply chain for climate change mitigation. The approach in the representation topic is central to its autoptical capacity to analyze the relationship between the elements and the whole in the landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrieu B, Allirand JM, Jaggard K (1997) Ground cover and leaf area index of maize and sugar beet crops. Agronomie 17:315–321

    Google Scholar 

  • Andrieuay B, Ivanova N, Boissard P (1995) Simulation of light interception from a maize canopy model constructed by stereo plotting. Agric For Meteorol 75:103–119

    Article  Google Scholar 

  • Béland M, Widlowski JL, Fournier RA (2014) A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR. Environ Model Softw 51:184–189

    Article  Google Scholar 

  • Bellasio C, Olejníčková J, Tesař R, Šebela D, Nedbal L (2012) Computer reconstruction of plant growth and chlorophyll fluorescence emission in three spatial dimensions. Sensors 12, 1052:–1071

    Google Scholar 

  • Benes B (1995) Generating a model of plant using NURBS. J WSCG 1

    Google Scholar 

  • Birch C, Andrieu B, Fournier C, Vos J, Room P (2003) Modelling kinetics of plant canopy architecture. Concepts and applications. Eur J Agron 19:519–533

    Article  Google Scholar 

  • Blunt W, Stearn WT (1950) The art of botanical illustration: an illustrated history. Dover, New York

    Google Scholar 

  • Bourgeois D, Reinhart CF, Ward G (2008) A standard daylight coefficient model for dynamic daylighting simulations. Build Res Inf 36:68–82

    Article  Google Scholar 

  • Casella E, Sinoquet H (2003) A method for describing the canopy architecture of coppice poplar with allometric relationships. Tree Physiol 23:1153–1170

    Article  Google Scholar 

  • Cassirer E (1963) The individual and the Cosmos in renaissance philosophy. Harper & Row, New York

    Google Scholar 

  • Charles-Edwards DA, Thorpe MR (1976) Interception of diffuse and direct-beam radiation by a hedgerow apple orchard. Ann Bot 40:603–613

    Article  Google Scholar 

  • Chelle M, Andrieu B (1998) The nested radiosity model for the distribution of light within plant canopies. Ecol Model 111:75–91

    Article  Google Scholar 

  • Cluzeau C, Dupouey JL, Courbaud B (1995) Polyhedral representation of crown shape. A geometric tool for growth modelling. Annales des sciences forestieres 52:297–306

    Article  Google Scholar 

  • Cohen S, Fuchs M (1987) The distribution of leaf area, radiation, photosynthesis and transpiration in a shamouti orange hedgerow orchard. Agric For Meteorol 40:123–144

    Article  Google Scholar 

  • Colwell JE (1974) Vegetation canopy reflectance. Remote Sens Environ 3:175–183

    Article  Google Scholar 

  • Côté JF, Widlowski JL, Fournier RA, Verstraete MM (2009) The structural and radiative consistency of three-dimensional tree reconstruction from terrestrial Lidar. Remote Sens Environ 113:1067–1081

    Article  Google Scholar 

  • Côté JF, Fournier R, Egli R (2011) An architectural model of trees for estimation of forest structural attributes using terrestrial lidar. Environ Model Softw 26:761–777

    Article  Google Scholar 

  • Crawley DB, Lawrie LK, Winkelmann FC, Buhl WF, Huang Y, Curtis O, Pedersen J, Strand RK, Liesen RJ, Fisher DE, Witte MJ, Glazer J (2001) EnergyPlus: creating a new-generation building energy simulation program. Energy Build 33:319–331

    Article  Google Scholar 

  • Leonardo da Vinci, Trattato della pittura, 1540, Biblioteca Apostolica Vaticana, Roma: Codex Urbinas Latinus 1270

    Google Scholar 

  • Daughtry CST (1990) Direct measurements of canopy structure. Remote Sens Rev 5:45–60

    Article  Google Scholar 

  • De Reffye P, Houllier F (1997) Modelling plant growth and architecture: some recent advances and applications to agronomy and forestry. Curr Sci 73:984

    Google Scholar 

  • De Reffye P, Lecoustre R, Dauzat J, Ouattara S, Flori A, N’Cho YP (1989) Modelling of plant architecture. Application to tropical agronomic perennial plants. Particular case of Palmaceae. Oleagineux 44(11):22–52

    Google Scholar 

  • de Rubertis R, Soletti A (eds) (2000) De Vulgari Architectura. Indagine sui luoghi urbani irrisolti. Officina, Roma

    Google Scholar 

  • Díaz-Espejo A, Fernández JE, Durán PJ, Girón IF, Sinoquet H, Sonohat G, Phattaralerphong J, Infante JM, Chamorro V, Villagarcía L, Palomo J (2008) Canopy architecture and radiation interception measurements in olive. Acta Hortic 791:531–540

    Article  Google Scholar 

  • Dioscoride, Codex Aniciae Julianae, 512, in Nationalbibliothek, Vien: cod. MS. med gr.1, Ms. Medicus graecus I

    Google Scholar 

  • Docci M (1996) Il rilievo come conoscenza profonda, in Istituto di Disegno e Architettura dell’Università degli Studi di Perugia (ed) Il rilievo. Dall’architettura concreta al suo modello immateriale. Atti del Convegno, Centro stampa della Università degli Studi di Perugia, Perugia

    Google Scholar 

  • Dornbusch T, Andrieu B (2010) Lamina2Shape – an image processing tool for an explicit description of lamina shape tested on winter wheat (Triticum aestivum L.). Comput Electron Agric 70:217–224

    Article  Google Scholar 

  • Dornbusch T, Wernecke P, Diepenbrock W (2007) A method to extract morphological traits of plant organs from 3D point clouds as a database for an architectural plant model. Ecol Model 200:119–129

    Article  Google Scholar 

  • Edinburgh UK, Seidel D, Fleck S, Leuschner C (2012) Analyzing forest canopies with ground based laser scanning: a comparison with hemispherical photography. Agric For Meteorol 154:1–8

    Google Scholar 

  • Eloy C (2011) Leonardo’s rule, self-similarity and wind-induced stresses in trees. Phys Rev Lett 107:258101

    Article  Google Scholar 

  • Falster DS, Westoby M (2003) Leaf size and angle vary widely across species: what consequences for light interception? New Phytol 158:509–525

    Article  Google Scholar 

  • Filippucci M (2010a) Nuvole di pixel. La fotomodellazione con software liberi per il rilievo d’architettura. Disegnarecon 3(6):50–63

    Google Scholar 

  • Filippucci M (2010b) Virtual in virtual, discretization in discretization: shape and perception in parametric modelling for renewing descriptive geometry. In: Ando N et al (eds) Proceedings of ICGG 2010 14th international conference on geometry and graphics, International society for Geometry and Graphics, Kyoto

    Google Scholar 

  • Filippucci M, Regni L, Nasini L, Brunori A, Rinchi G, Proietti P (2016) Architectural modelling of an olive tree. Generative tools for the scientific visualization of morphology and radiation relationships. Ecol Inform 36:84–93

    Article  Google Scholar 

  • Fourcaud T, Lac P (2003) Numerical modelling of shape regulation and growth stresses in trees. I. An incremental static finite element formulation. Trees 17:23–30

    Article  Google Scholar 

  • Fourcaud T, Blaise F, Lac P, Castera P, de Reffye P (2003) Numerical modelling of shape regulation and growth stresses in trees. II. Implementation in the AMAPpara software and simulation of tree growth. Trees 17:31–39

    Article  Google Scholar 

  • Ganis A (1997) Radiation transfer estimate in a row canopy: a simple procedure. Agric For Meteorol 88:67

    Article  Google Scholar 

  • Giordano G (1988) Tecnologia del legno. UTET, Torino

    Google Scholar 

  • Giuliani R, Magnanini E, Fracassa C, Nerozzi F (2000) Ground monitoring the light-shadow windows of a tree canopy to yield canopy light interception and morphological traits. Plant Cell Environ 23:783–796

    Article  Google Scholar 

  • Godin C (2000) Representing and encoding plant architecture: a review. Ann For Sci 57:413–438

    Article  Google Scholar 

  • Godin C, Caraglio Y (1998) A multiscale model of plant topological structure. J Theor Biol 191:1

    Article  Google Scholar 

  • Godin C, Costes E, Caraglio Y (1997) Exploring plant topological structure with the AMAPmod software: an outline. Silva Fenn 31:357–368

    Article  Google Scholar 

  • Godin C, Costes E, Sinoquet H (1999) A method for describing plant architecture which integrates topology and geometry. Ann Bot 84:343–357

    Article  Google Scholar 

  • Hallè F (1986) Modular growth in seed plants. Philosophical transactions of the Royal Society of London, Series B 313:77–87

    Article  Google Scholar 

  • Hanan J (1997) Virtual plants – integrating architectural and physiological models. Environ Model Softw 12:35–42

    Article  Google Scholar 

  • Hanan JS, Room PM (1996) Practical aspects of virtual plant research. In: Second CSIRO symposium on computational challenges in life sciences, Melbourne

    Google Scholar 

  • Kandinsky W (1926) Punkt und Linie zu Fläche. Beitrag zur Analyse der malerischen Elemente. 9

    Google Scholar 

  • Klee P (1956) Das bildnerische Denken. Benno Schwabe & Co, Basel

    Google Scholar 

  • Küppers M (1989) Ecological significance of aboveground architectural patterns in woody plants: a question of cost-benefit relationships. Trends Ecol Evol 4:375–379

    Article  Google Scholar 

  • Kuuluvainen T, Pukkala T (1987) Effect of crown shape and tree distribution on the spatial distribution of shade. Agric For Meteorol 40:215–231

    Article  Google Scholar 

  • Lagios K, Niemasz J, Reinhart CF (2010) Animated building performance simulation (ABPS) – linking Rhinoceros/Grasshopper with radiance/daysim. In: Proceedings of SimBuild 2010, IBSA, New York

    Google Scholar 

  • Lang A (1973) Leaf orientation of a cotton plant. Agric Meteorol 11:37–51

    Article  Google Scholar 

  • Lévi-Strauss C (1962) Le pensee sauvage. Presses Pocket, Paris

    Google Scholar 

  • Lewis P (1999) Three-dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system. Agronomie 19:185–210

    Article  Google Scholar 

  • Li X, Zhao H, Liu Y, Jiang H, Bian Y (2014) Laser scanning based three dimensional measurement of vegetation canopy structure. Opt Lasers Eng 54:152–158

    Article  Google Scholar 

  • Llorens J, Gil E, Llop J, Escolà A (2011) Ultrasonic and LIDAR sensors for electronic canopy characterization in Vineyards: advances to improve pesticide application methods. Sensors 11:2177–2194

    Article  Google Scholar 

  • Mandelbrot B (1982) The fractal geometry of nature. W. H. Freeman and Co., New York

    Google Scholar 

  • Mariscal MJ, Orgaz F, Villalobos FJ (2000) Modelling and measurement of radiation interception by olive canopies. Agric For Meteorol 100:183–197

    Article  Google Scholar 

  • McClelland CK (1916) On the regularity of blooming in the cotton plant. Science 44:578–581

    Article  Google Scholar 

  • McLuhan M (1964) Understanding media: the extensions of man. Gingko Press, Berkeley

    Google Scholar 

  • McNeil A, Jonsson CJ, Appelfeld D, Ward G, Lee ES (2013) A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems. Sol Energy 98:404–414

    Article  Google Scholar 

  • Migliari R (2012) La Geometria Descrittiva e il suo rinnovamento. Gangemi, Roma

    Google Scholar 

  • Miranda-Fuentes A, Llorens J, Gamarra-Diezma JL, Gil-Ribes JA, Gil E (2015) Towards an optimized method of olive tree crown volume measurement. Sensors 15:3671–3687

    Article  Google Scholar 

  • Mondrian P (1957) Life and work. Abrams, New York

    Google Scholar 

  • Monge G (1798) Gèomètrie descriptive. Boudouin, Paris

    Google Scholar 

  • Monsi M, Saeki T (1953) Uber den Liechfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52

    Google Scholar 

  • Munari B (1978) Disegnare un albero. Corraini, Bologna

    Google Scholar 

  • Munoz-Garcıa MA, Melado-Herreros A, Balenzategui JL, Barrerio P (2014) Low-cost irradiance sensors for irradiation assessments inside tree canopies. Sol Energy 103:143–153

    Article  Google Scholar 

  • Myneni R (1991) Modeling radiative transfer and photosynthesis in three-dimensional vegetation canopies. Agric For Meteorol 55:323–344

    Article  Google Scholar 

  • Norman JM, Welles JM (1983) Radiative transfer in an array of canopies. Agron J 75:80

    Article  Google Scholar 

  • Paris C, Bruzzone L (2015) A three-dimensional model-based approach to the estimation of the tree top height by fusing low-density LiDAR data and very high resolution optical images. IEEE Trans Geosci Remote Sens 53:467–480

    Article  Google Scholar 

  • Parveaud CE, Chopard J, Dauzat J, Courbaud B, Auclair D (2008) Modelling foliage characteristics in 3D tree crowns: influence on light interception and leaf irradiance. Trees 22:87–104

    Article  Google Scholar 

  • Pearcy RW, Yang W (1996) A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants. Oecologia 108:1–12

    Article  Google Scholar 

  • Prata de Moraes Frasson R, Krajewski WF (2010) Three-dimensional digital model of a maize plant. Agric For Meteorol 150:478–488

    Article  Google Scholar 

  • Proietti P, Tombesi A, Boco M (1994) Influence of leaf shading and defoliation on oil synthesis and growth of olive fruit. Acta Hortic 356:272–277

    Article  Google Scholar 

  • Proietti P, Nasini L, Famiani F, Guelfi P, Standardi A (2008) Influence of light availability on fruit and oil characteristics in Olea europea L. Acta Hortic 949:243–250

    Google Scholar 

  • Proietti P, Nasini L, Reale L, Caruso T, Ferranti F (2015) Productive and vegetative behaviour of olive cultivars in super high-density olive grove. Sci Agric 72:20–27

    Article  Google Scholar 

  • Prusinkiewicz P (1998) Modeling of spatial structure and development of plants: a review. Sci Hortic 74:113–149

    Article  Google Scholar 

  • Prusinkiewicz P, Hanan J (1989) Lindenmayer systems, fractals, and plants. Springer, New York

    Book  Google Scholar 

  • Ross J (1981) The radiation regime and architecture of plant stands. W. Junk, Neanderthal, The Hague

    Book  Google Scholar 

  • Salminen H, Saarenmaa H, Perttunen J, Sievanen R, Kev JV, Nikinmaa E (1994) Modelling trees using an object-oriented scheme. Math Comput Model 20:49–64

    Article  Google Scholar 

  • Schumacher P (2017) On parametricism, market processes and the politicization of architectural education, interviewed by Berrin Chatzi Chousein for the World Architecture Community, in http://www.patrikschumacher.com/ [2018]

  • Sievanen R, Nikinmaa E, Nygren P, Ozier-Lafontaine H, Perttunen J, Hakula H (2000) Components of functional-structural tree models. Ann For Sci 57:399–412

    Article  Google Scholar 

  • Sinoquet H, Andrieu B (1993) The geometrical structure of plant canopies: characterization and direct measurement methods. In: Varlet-Grancher C, Sinoquet H, Bonhomme R (eds) Crop structure and light microclimate. INRA, Paris

    Google Scholar 

  • Sinoquet H, Adam B, Rivet P, Godin C (1997a) Interactions between light and plant architecture in an agroforestry walnut tree. Agrofor Forum 8:37–40

    Google Scholar 

  • Sinoquet H, Rivet P, Godin C (1997b) Assessment of the three-dimensional architecture of walnut trees using digitising. Silva Fennica 31:265–273

    Article  Google Scholar 

  • Sonohat G, Sinoquet H, Kulandaivelu V, Combes D, Lescourret F (2006) Three-dimensional reconstruction of partially 3D-digitized peach tree canopies. Tree Physiol 26:337–351

    Article  Google Scholar 

  • Sterck FJ, Schieving F, Lemmensand A, Pons TL (2005) Performance of trees in forest canopies: explorations with a bottom-up functional–structural plant growth model. New Phytol 166:827–843

    Article  Google Scholar 

  • Takafumi T, Yamaguchi J, Takeda Y (1998) Measurements of forest canopy structure with laser plane range-finding method – development of a measurement system and applications to real forests. Agric For Meteorol 91:149–160

    Article  Google Scholar 

  • Takenaka A, Inui Y, Osawa A (1998) Measurements of threedimensional structure of plants with a simple device and estimation of light capture of individual leaves. Funct Ecol 12:159–165

    Article  Google Scholar 

  • Taylor R (2005) Pollock, Mondrian and nature: recent scientific investigations. Chaos Complex Lett 1(3):112–134

    Google Scholar 

  • Tremmel DC, Bazzaz FA (1993) How neighbor canopy architecture affects target plant performance. Ecology 74:2114–2124

    Article  Google Scholar 

  • Van Elsacker P, Keppens H, Lemeur R (1983) A simple photographical method for analyzing the radiation interception by an individual tree. Agric Meteorol 29:296–303

    Google Scholar 

  • Villalobos FJ, Testi L, Hidalgo J, Pastor M, Orgaz F (2006) Modelling potential growth and yield of olive (Olea europaea L.) canopies. Eur J Agron 24:296–303

    Article  Google Scholar 

  • Vitruvius M.P., De Architectura

    Google Scholar 

  • Wagenmakers PS (1991) Simulation of light distribution in dense orchard systems. Agric For Meteorol 57:13–25

    Article  Google Scholar 

  • Ward G, Rubinstein F (1988) A new technique for computer simulation of illuminated spaces. J IES 17(1):80–91

    Google Scholar 

  • Willaume M, Lauri PE, Sinoquet H (2004) Light interception in apple trees influenced by canopy architecture manipulation. Trees 18:705

    Article  Google Scholar 

  • Xu W, Su Z, Feng Z, Xu H, Jiao Y, Yan F (2013) Comparison of conventional measurement and LiDAR-based measurement for crown structures. Comput Electron Agric 98:242–251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bianconi, F., Filippucci, M. (2019). Landscape and Nature: Olive Tree Digital Parameterization. In: Landscape Lab. Urban and Landscape Perspectives, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-94150-9_3

Download citation

Publish with us

Policies and ethics