Skip to main content

Life History Constraints Facilitate the Evolution of Androdioecy and Male Dwarfing

  • Chapter
  • First Online:
Transitions Between Sexual Systems

Abstract

“Sex allocation” is the allocation of resources between male and female functions, while “life history strategy” is one between growth and reproduction (and survival). Although life history strategy and sex allocation theories have commonly been studied separately, they interact strongly since both study the optimal allocation of resources available for each individual. For example, individuals with different life history schedules may also differ in terms of sexuality. To illustrate how such life history/sex allocation polymorphism evolves to form various sexual systems such as androdioecy (the coexistence of males and hermaphrodites), I introduce simple mathematical models that consider how constraints (temporal or spatial limitations) on the decision-making of life history path facilitate the coexistence of individuals with different schedules of resource allocation (life history and sexuality), focusing on androdioecious barnacles (dwarf males + hermaphrodites) as an example. The temporal limitation model shows that an unlucky individual who enters an old microhabitat should become a dwarf male to make the best of a bad situation. Although the individual’s fitness could be higher if it has sufficient time for growth in a young microhabitat, becoming a dwarf male is the optimal tactic for the unlucky individual. The coexistence of different sexualities was also explained by the spatial limitation model, which assumes life history constraints among based on the microscopic environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angeloni L, Bradbury JW, Charnov EL (2002) Body size and sex allocation in simultaneously hermaphroditic animals. Behav Ecol 13:419–426

    Article  Google Scholar 

  • Buhl-Mortensen L, Høeg JT (2006) Reproduction and larval development in three scalpellid barnacles, Scalpellum scalpellum (Linnaeus 1767), Ornatoscalpellum stroemii (M. Scars 1859) and Arcoscalpellum michelottianum (Seguenza 1876), Crustacea: Cirripedia: Thoracica: implication for reproduction and dispersal in the deep sea. Mar Biol 149:829–844

    Article  Google Scholar 

  • Buhl-Mortensen L, Høeg JT (2013) Reproductive strategy of two deep-sea scalpellid barnacles (Crustacea: Cirripedia: Thoracica) associated with decapods and pycnogonids and the first description of a penis in scalpellid dwarf males. Org Divers Evol 13:545–557

    Article  Google Scholar 

  • Cadet C, Metz JA, Klinkhamer PG (2004) Size and the not-so-single sex: disentangling the effects of size and budget on sex allocation in hermaphrodites. Am Nat 164:779–792

    PubMed  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Charnov EL (1987) Sexuality and hermaphroditism in barnacles: a natural selection approach. In: Southward AJ (ed) Barnacle biology. Crustacean issues, vol 5. A. A. Belkema, Rotterdam, pp 89–103

    Google Scholar 

  • Chou CC, Iwasa Y, Nakazawa T (2016) Incorporating an ontogenetic perspective into evolutionary theory of sexual size dimorphism. Evolution 70:369–384

    Article  Google Scholar 

  • Crisp DJ (1983) Chelonobia patula (Ranzani), a pointer to the evolution of the complemental male. Mar Biol Lett 4:281–294

    Google Scholar 

  • Darwin C (1851) A monograph on the sub-class Cirripedia, The Lepadidae, vol 1. The Ray Society, London

    Google Scholar 

  • Emlen DJ (1997) Alternative reproductive tactics and male-dimorphism in the horned beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Behav Ecol Sociobiol 41:335–341

    Article  Google Scholar 

  • Ewers-Saucedo C, Arendt MD, Wares JP, Rittschof D (2015) Growth, mortality, and mating group size of an androdioecious barnacle: implications for the evolution of dwarf males. J Crustac Biol 35:166–176

    Article  Google Scholar 

  • Ewers-Saucedo C, Hope NB, Wares JP (2016) The unexpected mating system of the androdioecious barnacle Chelonibia testudinaria (Linnaeus, 1758). Mol Ecol 25:2081–2092

    Article  Google Scholar 

  • Ghiselin MT (1974) The economy of nature and the evolution of sex. University of California Press, Berkeley

    Google Scholar 

  • Goto R, Okamoto T, Ishikawa H, Hamamura Y, Kato M (2013) Molecular phylogeny of echiuran worms (Phylum: Annelida) reveals evolutionary pattern of feeding mode and sexual dimorphism. PLoS One 8:e56809

    Article  CAS  Google Scholar 

  • Henshaw JM, Marshall DJ, Jennions MD, Kokko H (2014) Local gamete competition explains sex allocation and fertilization strategies in the sea. Am Nat 184:E32–E49

    Article  Google Scholar 

  • Høeg JT, Yusa Y, Dreyer N (2016) Sex determination in the androdioecious barnacle Scalpellum scalpellum (Crustacea: Cirripedia). Biol J Linn Soc 118:359–368

    Article  Google Scholar 

  • Jaccarini V, Agius L, Schembri PJ, Rizzo M (1983) Sex determination and larval sexual interaction in Bonellia viridis Rolando (Echiura: Bonelliidae). J Exp Mar Biol Ecol 66:25–40

    Article  Google Scholar 

  • Kato M, Itani G (1995) Commensalism of a bivalve, Peregrinamor ohshimai, with a thalassinidean burrowing shrimp, Upogebia major. J Mar Biol Assoc UK 75:941–947

    Article  Google Scholar 

  • Kelly MW, Sanford E (2010) The evolution of mating systems in barnacles. J Exp Mar Biol Ecol 392:37–45

    Article  Google Scholar 

  • Kolbasov GA, Zevina GB (1999) A new species of Paralepas (Cirripedia: Heteralepadidae) symbiotic with Xenophora (Mollusca: Gastropoda); with the first complemental male known for the family. Bull Mar Sci 64:391–398

    Google Scholar 

  • Lloyd DG (1975) The maintenance of gynodioecy and androdioecy in angiosperms. Genetica 45:325–339

    Article  Google Scholar 

  • Martin E, Taborsky M (1997) Alternative male mating tactics in a cichlid, Pelvicachromis pulcher: a comparison of reproductive effort and success. Behav Ecol Sociobiol 41:311–319

    Article  Google Scholar 

  • Moczek AP, Emlen DJ (2000) Male horn dimorphism in the scarab beetle, Onthophagus taurus: do alternative reproductive tactics favour alternative phenotypes? Anim Behav 59:459–466

    Article  CAS  Google Scholar 

  • Ó Foighil D (1985) Form, function, and origin of temporary dwarf males in Pseudopythina rugifera (Carpenter, 1864) (Bivalvia: Galeommatacea). Veliger 27:245–252

    Google Scholar 

  • Ozaki Y, Yusa Y, Yamato S, Imaoka T (2008) Reproductive ecology of the pedunculate barnacle Scalpellum stearnsii (Cirripedia: Lepadomorpha: Scalpellidae). J Mar Biol Assoc UK 88:77–83

    Article  Google Scholar 

  • Rouse GW, Goffredi SK, Vrijenhoek RC (2004) Osedax: bone-eating marine worms with dwarf males. Science 305:668–671

    Article  CAS  Google Scholar 

  • Sakai A, Sakai S (2003) Size-dependent ESS sex allocation in wind-pollinated cosexual plants: fecundity vs. stature effects. J Theor Biol 222:283–295

    Article  Google Scholar 

  • Sawada K, Yoshida R, Yasuda K, Yamaguchi S, Yusa Y (2015) Dwarf males in the epizoic barnacle Octolasmis unguisiformis and their implications for sexual system evolution. Invertebr Biol 134:162–167

    Article  Google Scholar 

  • Spremberg U, Hoeg JT, Buhl-Mortensen L, Yusa Y (2012) Cypris settlement and dwarf male formation in the barnacle Scalpellum scalpellum: a model for an androdioecious reproductive system. J Exp Mar Biol Ecol 422–423:39–47

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Svane I (1986) Sex determination in Scalpellum scalpellum (Cirripedia: Thoracica: Lepadomorpha), a hermaphroditic goose barnacle with dwarf males. Mar Biol 90:249–253

    Article  Google Scholar 

  • Turner RD, Yakovlev Y (1983) Dwarf males in the Teredinidae (Bivalvia, Pholadacea). Science 219:1077–1078

    Article  CAS  Google Scholar 

  • Vollrath F (1998) Dwarf males. Trends Ecol Evol 13:159–163

    Article  CAS  Google Scholar 

  • Weeks SC (2012) The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the Animalia. Evolution 66:3670–3686

    Article  Google Scholar 

  • Weeks SC, Benvenuto C, Reed SK (2006) When males and hermaphrodites coexist: a review of androdioecy in animals. Integr Comp Biol 46:449–464

    Article  Google Scholar 

  • Wijayanti H, Yusa Y (2016) Plastic sexual expression in the Androdioecious Barnacle Octolasmis warwickii (Cirripedia: Pedunculata). Biol Bull 230:51–55

    Article  Google Scholar 

  • Yamaguchi S, Ozaki Y, Yusa Y, Takahashi S (2007) Do tiny males grow up? Sperm competition and optimal resource allocation schedule of dwarf males of barnacles. J Theor Biol 245:319–328

    Article  Google Scholar 

  • Yamaguchi S, Yusa Y, Yamato S, Urano S, Takahashi S (2008) Mating group size and evolutionarily stable pattern of sexuality in barnacles. J Theor Biol 253:61–73

    Article  Google Scholar 

  • Yamaguchi S, Charnov EL, Sawada K, Yusa Y (2012) Sexual systems and life history of barnacles: a theoretical perspective. Integr Comp Biol 52:356–365

    Article  Google Scholar 

  • Yamaguchi S, Sawada K, Yusa Y, Iwasa Y (2013a) Dwarf males, hermaphrodites, and large females in marine species: a dynamic optimization model of sex allocation and growth. Theor Popul Biol 85:49–57

    Article  Google Scholar 

  • Yamaguchi S, Sawada K, Yusa Y, Iwasa Y (2013b) Dwarf males and hermaphrodites can coexist in marine sedentary species if the opportunity to become a dwarf male is limited. J Theor Biol 334:101–108

    Article  Google Scholar 

  • Yamaguchi S, Yusa Y, Sawada K, Takahashi S (2013c) Sexual systems and dwarf males in barnacles: integrating life history and sex allocation theories. J Theor Biol 320:1–9

    Article  Google Scholar 

  • Yusa Y, Takemura M, Miyazaki K, Watanabe T, Yamato S (2010) Dwarf males of Octolasmis warwickii (Cirripedia: Thoracica): the first example of coexistence of males and hermaphrodites in the suborder Lepadomorpha. Biol Bull 218:259–265

    Article  Google Scholar 

  • Yusa Y, Yoshikawa M, Kitaura J, Kawane M, Ozaki Y, Yamato S, Høeg JT (2012) Adaptive evolution of sexual systems in pedunculate barnacles. Proc R Soc B 279:959–966

    Article  Google Scholar 

  • Yusa Y, Sawada K, Yamaguchi S (2013) Diverse, continuous, and plastic sexual systems in barnacles. Integr Comp Biol 53:701–712

    Article  Google Scholar 

  • Zardus JD, Hadfield MG (2004) Larval development and complemental males in Chelonibia testudinaria, a barnacle commensal with sea turtles. J Crustac Biol 24:409–421

    Article  Google Scholar 

  • Zhang DY, Wang G (1994) Evolutionarily stable reproductive strategies in sexual organisms: an integrated approach to life-history evolution and sex allocation. Am Nat 144:65–75

    Article  Google Scholar 

Download references

Acknowledgments

The models introduced in this chapter were results of collaborative works with Y. Iwasa, K. Sawada, and Y. Yusa. I am very grateful to E.L. Charnov and J.T. Høeg for the valuable discussion about barnacles’ sexual systems and H. Kokko for helpful comments. I thank J.L. Leonard for encouraging me to write this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamaguchi, S. (2018). Life History Constraints Facilitate the Evolution of Androdioecy and Male Dwarfing. In: Leonard, J. (eds) Transitions Between Sexual Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-94139-4_9

Download citation

Publish with us

Policies and ethics