Skip to main content

Sexual Systems in Shrimps (Infraorder Caridea Dana, 1852), with Special Reference to the Historical Origin and Adaptive Value of Protandric Simultaneous Hermaphroditism

  • Chapter
  • First Online:
Transitions Between Sexual Systems

Abstract

In this chapter, the diversity of sexual systems in the infraorder Caridea is summarized. Caridean shrimps exhibit six different sexual systems: gonochorism (separate sexes), strict protandry, partial protandry with primary females, partial protandry with primary males, partial protandry with primary males and primary females, and protandric simultaneous hermaphroditism. Within monophyletic clades belonging to the species-rich and ecologically dissimilar order Decapoda, gender expression is the most diverse in caridean shrimps. Additional studies on the life history and sexual system of caridean shrimps coupled with improvements on our understanding of the internal phylogenetic relationships within this species-rich clade are needed for a formal testing of transition asymmetries in the group. The historical origin of protandric simultaneous hermaphroditism, a sexual system that represents the “pinnacle” of evolution with respect to gender expression in the Caridea, remains to be fully understood. The conditions that maintain protandric simultaneous hermaphroditism include sex-dependent time commitments and sex-dependent energetic costs. The role of sexual selection in explaining the adaptive value of protandric simultaneous hermaphroditism needs to be addressed. Caridean shrimps represent excellent model systems to continue improving our understanding about the mechanisms explaining the diversity of gender expression patterns in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JA (1959) On biology of Pandalus borealis Kroyer, with reference to a population off the Northumberland coast. J Mar Biol Assoc UK 38:189–220

    Article  Google Scholar 

  • Angeloni L, Bradbury JW, Charnov EL (2002) Body size and sex allocation in simultaneously hermaphroditic animals. Behav Ecol 13:419–426

    Article  Google Scholar 

  • Baeza JA (2006) Testing three models on the adaptive significance of protandric simultaneous hermaphroditism in a marine shrimp. Evolution 60:1840–1850

    Article  PubMed  Google Scholar 

  • Baeza JA (2007a) Sex allocation in a simultaneously hermaphroditic marine shrimp. Evolution 61:2360–2373

    Article  PubMed  Google Scholar 

  • Baeza JA (2007b) No effect of group size on sex allocation in a protandric-simultaneous hermaphroditic shrimp. J Mar Biol Assoc UK 87:1169–1174

    Article  Google Scholar 

  • Baeza JA (2008) Social monogamy in the shrimp Pontonia margarita, a symbiont of Pinctada mazatlantica, in the tropical eastern Pacific coast. Mar Biol 153:387–395

    Article  Google Scholar 

  • Baeza JA (2009) Protandric simultaneous hermaphroditism is a conserved trait in Lysmata (Caridea: Lysmatidae): implications for the evolution of hermaphroditism in the genus. Smith Contrib Mar Sci 38:95–110

    Google Scholar 

  • Baeza JA (2010a) The symbiotic lifestyle and its evolutionary consequences: social monogamy and sex allocation in the hermaphroditic shrimp Lysmata pederseni. Naturwissenschaften 97:729–741

    Article  CAS  PubMed  Google Scholar 

  • Baeza JA (2010b) Sexual system and natural history observations on semi-terrestrial shrimp Merguia rhizophorae. Invertebr Biol 129:266–276

    Article  Google Scholar 

  • Baeza JA (2013) Multi-locus molecular phylogeny of broken-back shrimps (genus Lysmata and allies): a test of the ‘Tomlinson-Ghiselin’ hypothesis explaining the evolution of simultaneous hermaphroditism. Mol Evol Phylogen 69:46–62

    Article  Google Scholar 

  • Baeza JA, Anker A (2008) Lysmata hochi n sp, a new species of hermaphroditic shrimp from the southern Caribbean. J Crustac Biol 28:148–155

    Article  Google Scholar 

  • Baeza JA, Bauer RT (2004) Experimental test of socially mediated sex change in a protandric simultaneous hermaphrodite, the marine shrimp Lysmata wurdemanni (Caridea: Hippolytidae). Behav Ecol Sociobiol 55:544–550

    Article  Google Scholar 

  • Baeza JA, Fernández M (2002) Active brood care in Cancer setosus (Crustacea: Decapoda: Cancridae): the relationship between female behaviour, embryo oxygen consumption, and the cost of brooding. Funct Ecol 16:241–251

    Article  Google Scholar 

  • Baeza JA, Piantoni C (2010) Sexual system, sex ratio and group living in the shrimp Thor amboinensis (De Man): relevance to resource-monopolization and sex-allocation theories. Biol Bull 219:151–165

    Article  CAS  PubMed  Google Scholar 

  • Baeza JA, Reitz J, Collin R (2008) Protandric simultaneous hermaphroditism and sex ratio in the shrimp Lysmata nayaritensis. J Nat Hist 41:2843–2850

    Article  Google Scholar 

  • Baeza JA, Farías NE, Luppi TA, Spivak ED (2010a) Habitat size, social grouping and symbiosis: testing the “resource economic monopolization” hypothesis with the shrimp Betaeus lilianae and description of its partnership with the crab Platyxanthus crenulatus. J Exp Mar Biol Ecol 389:85–92

    Article  Google Scholar 

  • Baeza JA, Braga AA, López-Greco LS, Perez E, Negreiros-Fransozo ML, Fransozo A (2010b) Population dynamics, sex ratio and size at sex change in a protandric-simultaneous hermaphrodite, the spiny shrimp Exhippolysmata oplophoroides. Mar Biol 157:2643–2653

    Article  Google Scholar 

  • Baeza JA, Bolaños JA, Hernandez JE, Lira C, López R (2011) Monogamy does not last long in Pontonia mexicana, a symbiotic shrimp of the Amber pen-shell Pinna carnea from the southeastern Caribbean Sea. J Exp Mar Biol Ecol 407:41–47

    Article  Google Scholar 

  • Baeza JA, Ritson-Williams R, Fuentes MS (2013) Sexual and mating system in a caridean shrimp symbiotic with the winged pearl oyster in the Coral Triangle. J Zool 289:172–181

    Article  Google Scholar 

  • Baeza JA, Hemphill CA, Ritson-Williams R (2015) The sexual and mating system of the shrimp Odontonia katoi (Palaemonidae, Pontoniinae), a symbiotic guest of the ascidian Polycarpa aurata in the Coral Triangle. PLoS One 10(3):e0121120. https://doi.org/10.1371/journal.pone.0121120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baeza JA, Simpson L, Ambrosio LJ, Guéron R, Mora N (2016) Monogamy in a hyper-symbiotic shrimp. PLoS One 11(3):e0149797. https://doi.org/10.1371/journal.pone.0149797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin AP, Bauer RT (2003) Growth, survivorship, life span, and sex change in the hermaphroditic shrimp Lysmata wurdemanni (Decapoda: Caridea: Hippolytidae). Mar Biol 143:157–166

    Article  Google Scholar 

  • Banner AH, Banner DM (1975) Contributions to the knowledge of the alpheid shrimp of the Pacific Ocean Part XVIII: a new species of the genus Alpheus from the mouth of the Sepik River, New Guinea. Rec Aust Mus 29:261–266

    Article  Google Scholar 

  • Barki A, Karplus I, Goren M (1991) Morphotype related dominance hierarchies in males of Macrobrachium rosenbergii (Crustacea, Palaemonidae). Behaviour 117:145–160

    Article  Google Scholar 

  • Barrett SCH (2013) The evolution of plant reproductive systems: how often are transitions irreversible? Proc R Soc B 280:20130913

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer RT (1976) Mating behaviour and spermatophore transfer in the shrimp Heptacarpus pictus (Stimpson) (Decapoda: Caridea: Hippolytidae). J Nat Hist 10:415–440

    Article  Google Scholar 

  • Bauer RT (1986) Sex change and life history pattern in the shrimp Thor manningi (Decapoda: Caridea): a novel case of partial protandric hermaphroditism. Biol Bull 170:11–31

    Article  Google Scholar 

  • Bauer RT (2000) Simultaneous hermaphroditism in caridean shrimps: a unique and puzzling sexual system in the Decapoda. J Crustac Biol 20(Spec 2):116–128

    Article  Google Scholar 

  • Bauer RT (2002a) Test of hypotheses on the adaptive value of an extended male phase in the hermaphroditic shrimp Lysmata wurdemanni (Caridea: Hippolytidae). Biol Bull 203:347–357

    Article  PubMed  Google Scholar 

  • Bauer RT (2002b) Reproductive ecology of a protandric simultaneous hermaphrodite, the shrimp Lysmata wurdemanni (Decapoda: Caridea: Hippolytidae). J Crustac Biol 22:742–749

    Article  Google Scholar 

  • Bauer RT (2004) Remarkable shrimps: adaptations and natural history of the carideans. Oklahoma University Press, Norman

    Google Scholar 

  • Bauer RT (2006) Same sexual system but variable sociobiology: evolution of protandric simultaneous hermaphroditism in Lysmata shrimps. Integr Comp Biol 46:430–438

    Article  PubMed  Google Scholar 

  • Bauer RT, Conner SL (2011) Gonochoric sexual system in the caridean shrimps Processa riveroi and P bermudensis (Decapoda: Processidae) inhabiting a tropical seagrass meadows. J Mar Biol Assoc UK 92:521–529

    Article  Google Scholar 

  • Bauer RT, Holt GJ (1998) Simultaneous hermaphroditism in the marine shrimp Lysmata wurdemanni (Caridea: Hippolytidae): an undescribed sexual system in the decapod Crustacea. Mar Biol 132:223–235

    Article  Google Scholar 

  • Bauer RT, Newman WA (2004) Protandric simultaneous hermaphroditism in the marine shrimp Lysmata californica (Caridea: Hippolytidae). J Crust Biol 24:131–139

    Article  Google Scholar 

  • Bauer RT, Thiel M (2011) First description of a pure-search mating system and protandry in the shrimp Rhynchocinetes uritai (Decapoda: Caridea). J Crustac Biol 31:286–295

    Article  Google Scholar 

  • Bauer RT, VanHoy R (1996) Variation in sexual systems (protandry, gonochorism) and reproductive biology among three species of the shrimp genus Thor (Decapoda: Caridea). Bull Mar Sci 59:53–73

    Google Scholar 

  • Bergstrom BI (1997) Do protandric pandalid shrimp have environmental sex determination? Mar Biol 128:397–407

    Article  Google Scholar 

  • Berkeley AA (1929) Sex reversal in Pandalus danae. Am Nat 63:571–573

    Article  Google Scholar 

  • Boddeke R, Bosschieter JR, Goudswaard PC (1991) Sex change, mating, and sperm transfer in Crangon crangon (L). In: Bauer RT, Martin JW (eds) Crustacean sexual biology. Columbia University Press, New York, pp 164–182

    Chapter  Google Scholar 

  • Bracken HD, De Grave S, Felder DL (2009) Phylogeny of the infraorder Caridea based on mitochondrial and nuclear genes (Crustacea: Decapoda). In: Martin JW, Crandall KA, Felder DL (eds) Decapod Crustacean phylogenetics Crustacean issues. Koenemann S (series ed), vol 18. CRC Press, Taylor & Francis Group, Boca Raton/London, pp 281–305

    Google Scholar 

  • Braga AA, López-Greco LS, Santos DC, Fransozo A (2009) Morphological evidence for protandric simultaneous hermaphroditism in the caridean Exhippolysmata oplophoroides. J Crustac Biol 29:34–41

    Article  Google Scholar 

  • Brook HJ, Rawlings TA, Davies RW (1994) Protogynous sex change in the intertidal isopod Gnorimosphaeroma oregonense (Crustacea: Isopoda). Biol Bull 187:99–111

    Article  CAS  PubMed  Google Scholar 

  • Buchanan JB (1963) The biology of Calocaris macandreae (Crustacea: Thalassinidea). J Mar Biol Assoc UK 43:729–748

    Article  Google Scholar 

  • Butler TH (1964) Growth, reproduction and distribution of pandalid shrimps in British Columbia. J Fish Res Board Can 21:1403–1452

    Article  Google Scholar 

  • Butler TH (1967) Shrimp exploration and fishing in the Gulf of Alaska and Bering Sea. Fish Res Board Can, Tech Rep 18, 49 p

    Google Scholar 

  • Butler TH (1980) Shrimps of the Pacific Coast of Canada. Can Bull Fish Aquat Sci 202:131–142

    Google Scholar 

  • Cadet C, Metz JAJ, Klinkhamer PGL (2004) Size and the not-no-single sex: disentangling the effects of size and budget on sex allocation in hermaphrodites. Am Nat 164:779–792

    PubMed  Google Scholar 

  • Charlesworth D (1999) Theories of the evolution of dioecy. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, Berlin, pp 33–60

    Chapter  Google Scholar 

  • Charlesworth D, Charlesworth B (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  • Charniaux-Cotton H (1965) Hormonal control of sex differentiation in invertebrates. In: de Hann R, Ursprung H (eds) Organogenesis. Holt, New York, pp 701–740

    Google Scholar 

  • Charniaux-Cotton H (1975) Hermaphroditism and gynandromorphism in malacostracan Crustacea. In: Reinboth R (ed) Intersexuality in the animal kingdom. Springer, Berlin, pp 91–105

    Chapter  Google Scholar 

  • Charniaux-Cotton H, Payen G (1975) Sexual differentiation. In: Bliss DE, Mantel LH (eds) The biology of Crustacea, Integument, pigments, and hormonal processes, vol 9. Academic, New York, pp 217–299

    Google Scholar 

  • Charnov EL (1981) Sex reversal in Pandalus borealis: effect of a shrimp fishery? Mar Biol Lett 2:53–57

    Google Scholar 

  • Charnov EL (1982) The theory of sex allocation. Princeton University Press, Princeton

    Google Scholar 

  • Charnov EL, Gotshall DW, Robinson JG (1978) Sex ratio: adaptive response to population fluctuations in pandalid shrimp. Science 200:204–206

    Article  CAS  PubMed  Google Scholar 

  • Chiba S (2007) A review of ecological and evolutionary studies on hermaphroditic decapod crustaceans. Plankton Benthos Res 2:107–119

    Article  Google Scholar 

  • Cobb J, Phillips B (1980) The biology and management of Lobsters, 1st edn. Academic, New York, 390 pp

    Chapter  Google Scholar 

  • Cobos V, Diaz V, Garcia Raso JE, Manjon-Cabeza ME (2005) Insights on the female reproductive system in Hippolyte inermis (Decapoda, Caridea): is this species really hermaphroditic? Invertebr Biol 128:310–320

    Article  Google Scholar 

  • Cobos V, Diaz V, Garcia Raso JE, Manjon-Cabeza ME (2010) The male reproductive system of Hippolyte inermis Leach 1815 (Decapoda, Caridea). Helgol Mar Res 65:17–24

    Article  Google Scholar 

  • Correa C, Thiel M (2003) Mating systems in caridean shrimp (Decapoda: Caridea) and their evolutionary consequences for sexual dimorphism and reproductive biology. Rev Chil Hist Nat 76:187–203

    Article  Google Scholar 

  • Crisp DJ (1983) Chelonobia patula (Ranzani), a pointer to the evolution of the complemental male. Mar Biol Lett 4:281–294

    Google Scholar 

  • Dahirel M, Ansart A, Madec L (2016) Potential syndromes linking dispersal and reproduction in the hermaphrodite land snail Cornu aspersum. J Zool 299:98–105

    Article  Google Scholar 

  • Dardeau MR (1984) Synalpheus shrimps (Crustacea: Decapoda: Alpheidae). I The Gambarelloides group, with a description of a new species. Mem Hourglass Cruises 7:1–125

    Google Scholar 

  • Day T, Aarssen LW (1997) A time commitment hypothesis for size-dependent gender allocation. Evolution 51:988–993

    Article  PubMed  Google Scholar 

  • De Grave S, Fransen CHJM (2011) Carideorum catalogus: the recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps (Crustacea: Decapoda). Zool Med Leiden 89:195–589

    Google Scholar 

  • De Grave S, Dean Pentcheff N, Ahyong ST, Chan T-Y, Crandall KA, Dworschak PC, Felder DL, Feldmann RM, Fransen CHJM, Goulding LYD, Lemaitre R, Low MEY, Martin JW, Ng PKL, Schweitzer CE, Tan SH, Tshudy D, Wetzer R (2009) A classification of living and fossil genera of decapod crustaceans. Raff Bull Zool Suppl Ser 21:1–109

    Google Scholar 

  • de Jong TJ, Klinkhamer PGL (1994) Plant size and reproductive success through female and male function. J Ecol 82:399–402

    Article  Google Scholar 

  • Espinoza NL, Thiel M, Dupre E, Baeza JA (2008) Is Hippolyte williamsi gonochoric or hermaphroditic? A multi-approach study and a review of sexual systems in Hippolyte shrimps. Mar Biol 155:623–635

    Article  Google Scholar 

  • Ewald JJ (1969) Observations on the biology of Tozeuma carolinense (Decapoda, Hippolytidae) from Florida, with special reference to larval development. Bull Mar Sci 19:510–549

    Google Scholar 

  • Fiedler GC (1998) Functional, simultaneous hermaphroditism in female-phase Lysmata amboinensis (Decapoda: Caridea: Hippolytidae). Pac Sci 52:161–169

    Google Scholar 

  • Fisher EA (1981) Sexual allocation in a simultaneously hermaphroditic coral reef fish. Am Nat 117:64–82

    Article  Google Scholar 

  • Fréchette JG, Corrivault GW, Couture R (1970) Hermaphroditisme protérandrique chez une crevette de la famille des crangonidés Argis dentata Rathbun. Nat Can 97:805–822

    Google Scholar 

  • Gavio MA, Orensanz JM, Amstrong D (2006) Evaluation of alternative life history hypotheses for the sand shrimp Crangon franciscorum (Decapoda: Caridea). J Crustac Biol 26:295–307

    Article  Google Scholar 

  • Gherardi F, Calloni C (1993) Protandrous hermaphroditism in the tropical shrimp Athanas indicus (Decapoda: Caridea), a symbiont of sea urchins. J Crust Biol 13:675–689

    Article  Google Scholar 

  • Ghiselin MT (1969) The evolution of hermaphroditism among animals. Q Rev Biol 44:189–208

    Article  CAS  PubMed  Google Scholar 

  • Heath DJ (1979) Brooding and the evolution of hermaphroditism. J Theor Biol 81:151–155

    Article  CAS  PubMed  Google Scholar 

  • Heergaard P (1967) On behavior, sex-ratio and growth of Solenocera membranacea (Risso) (Decapoda, Penaeidae). Crustaceana 13:227–237

    Article  Google Scholar 

  • Heggøy KK, Schander C, Åkesson B (2007) The phylogeny of the annelid genus Ophryotrocha (Dorvilleidae). Mar Biol Res 3:412–420

    Article  Google Scholar 

  • Hoffman DL (1972) The development of the ovotestis and copulatory organs in a population of protandric shrimp, Pandalus platyceros from Lopez Sound, Washington. Biol Bull 142:251–270

    Article  CAS  PubMed  Google Scholar 

  • Iwasa Y (1991) Sex change evolution and cost of reproduction. Behav Ecol 2:56–68

    Article  Google Scholar 

  • Klinkhamer PGL, de Jong TJ, Metz H (1997) Sex and size in cosexual plants. Trends Ecol Evol 12:260–365

    Article  CAS  PubMed  Google Scholar 

  • Labat JP, Noël PY (1987) Kinetical study of size structure and biological cycle of a mediterranean population of Processa edulis (Decapoda, Caridea). Investig Pesq 51:165–176

    Google Scholar 

  • LeBlanc GA (2007) Crustacean endocrine toxicology: a review. Ecotoxicology 16:61–81

    Article  CAS  PubMed  Google Scholar 

  • Li CP, De Grave S, Chan T-Y, Lei HC, Chu KH (2011) Molecular systematics of caridean shrimps based on five nuclear genes: implications for superfamily classification. Zool Anz 250:270–279

    Article  Google Scholar 

  • Lin J, Zhang D (2001) Reproduction in a simultaneous hermaphroditic shrimp, Lysmata wurdemanni: any two will do? Mar Biol 139:919–922

    Article  Google Scholar 

  • Lloyd DG, Bawa KS (1984) Modification of gender in seed plants in varying conditions. Evol Ecol 17:255–338

    Google Scholar 

  • Manjón-Cabeza ME, Cobos V, García Muñoz JE, García Raso JE (2009) Structure and absolute growth of a population of Hippolyte inermis Leach 1815 (Decapoda: Caridea) from Zostera marina (L) meadows (Malaga, southern Spain). Sci Mar 73:377–386

    Article  Google Scholar 

  • Manjón-Cabeza ME, Cobos V, García Raso JE (2011) The reproductive system of Hippolyte niezabitowskii (Decapoda, Caridea). Zoology 114:140–149

    Article  PubMed  Google Scholar 

  • Manríquez PH, Castilla JC (2005) Self-fertilization as an alternative mode of reproduction in the solitary tunicate Pyura chilensis. Mar Ecol Prog Ser 305:113–125

    Article  Google Scholar 

  • Mathers TC, Hammond RL, Jenner RA, Zierold T, Hänfling B, Gómez A (2013) High lability of sexual system over 250 million years of evolution in morphologically conservative tadpole shrimps. BMC Evol Biol 13:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Meagher TR (2007) Linking the evolution of gender variation to floral development. Ann Bot 100:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michiels NK, Crowley PH, Anthes N (2009) Accessory male investment can undermine the evolutionary stability of simultaneous hermaphroditism. Biol Lett 5:709–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Mistakidis MN (1957) The biology of Pandalus montagui Leach. Fish Invest Ser II 21:1–52

    Google Scholar 

  • Munday PL, Caley MJ, Jones GP (1998) Bi-directional sex change in a coral-dwelling goby. Behav Ecol Sociobiol 43:371–377

    Article  Google Scholar 

  • Nakashima Y (1987) Reproductive strategies in partially protandrous shrimp, Athanas kominatoensis (Decapoda: Alpheidae): sex change as the best of a bad situation for subordinates. J Ethol 5:145–159

    Article  Google Scholar 

  • Noël P (1973) Cycle biologique et inversion sexuelle du crustace decapode natantia Processa edulis. Cah Biol Mar 14:217–227

    Google Scholar 

  • Noël P (1976) L’évolution des caractères sexuels chez Processa edulis Risso (Décapode, Natantia). Vie et Milieu 26:65–104

    Google Scholar 

  • Oliveira MV, Costa-Souza AC, Guimarães FJ, Almeida AO, Baeza JA (2015) Observations on the life history of a rare shrimp, Salmoneus carvachoi (Crustacea: Caridea: Alpheidae), a possible simultaneous hermaphrodite, inhabiting the tropical western Atlantic. Mar Biodivers Rec 8(e141):1–8

    CAS  Google Scholar 

  • Onaga T, Fiedler C, Baeza JA (2012) Protandric simultaneous hermaphroditism in Parahippolyte misticia (Crustacea: Decapoda: Hippolytidae): implications for the evolution of mixed sexual systems in marine shrimps. J Crustac Biol 32:383–394

    Article  Google Scholar 

  • Pike RB (1952) Notes on the growth and biology of the prawn Pandalus bonnieri Caulleri. J Mar Biol Assoc UK 31:259–267

    Article  Google Scholar 

  • Policansky D (1982) Sex change in plants and animals. Annu Rev Ecol Syst 13:417–495

    Article  Google Scholar 

  • Premoli MC, Sella G (1995) Sex economy in benthic polychaetes. Ethol Ecol Evol 7:27–48

    Article  Google Scholar 

  • Reverberi G (1950) La situazione sessuale di Hippolyte viridis e le condizioni che la reggono. Boll Zool 4:91–94

    Article  Google Scholar 

  • Sanjeevi P, Ajithkumar TT, Bauer RT, Thiel M, Subramoniam T (2015) Reproductive morphology and mating behavior in the hingebeak shrimp Rhynchocinetes durbanensis Gordon, 1936 (Decapoda: Caridea: Rhynchocinetidae) in India. J Mar Biol Assoc UK 96:1331–1340

    Google Scholar 

  • Sassaman C (1995) Sex determination and evolution of unisexuality in the Conchostraca. Hydrobiologia 298:45–65

    Article  Google Scholar 

  • Schatte J, Saborowski R (2006) Change of external sexual characteristics during consecutive moults in Crangon crangon L. Helgol Mar Res 60:70–73

    Article  Google Scholar 

  • Sella G (1990) Sex allocation in the simultaneously hermaphroditic polychaete worm Ophryotrocha diadema. Ecology 71:27–32

    Article  Google Scholar 

  • Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton University Press, Princeton

    Google Scholar 

  • St Mary CM (1994) Sex allocation in a simultaneous hermaphrodite, the blue-banded goby (Lythrypnus dalli): the effects of body size and behavioral gender and the consequences for reproduction. Behav Ecol 5:304–131

    Article  Google Scholar 

  • St Mary CM (1997) Sequential patterns of sex allocation in simultaneous hermaphrodites: do we need models that specifically incorporate this complexity? Am Nat 150:73–97

    Article  CAS  PubMed  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Stevenson DK, Pierce F (1985) Life history characteristics of Pandalus montagui and Dichelopandalus leptocerus in Penobscot Bay, Maine. Fish Bull 83:219–233

    Google Scholar 

  • Strathmann RR, Strathmann MF, Emson RH (1984) Does limited brood capacity link adult size, brooding, and simultaneous hermaphroditism? A test with the starfish Asterina phylactica. Am Nat 123:796–818

    Article  Google Scholar 

  • Suzuki H (1970) Taxonomic review of four alpheid shrimps belonging to the genus Athanas with reference to their sexual phenomena. Sci Rep Yokohama Natl Univ Sect 2(17):1–37

    Google Scholar 

  • Tegelberg HC, Smith M (1957) Observations on the distribution and biology of the pink shrimp (Pandalus jordani) off the Washington coast. Wash Dept Fish Res Pap 2:1–10

    Google Scholar 

  • Terossi M, Lopez-Greco LS, Manttelato FI (2008) Hippolyte obliquimanus (Decapoda: Caridea: Hippolytidae): a gonochoric or hermaphroditic shrimp species? Mar Biol 154:127–135

    Article  Google Scholar 

  • Thiel M, Hinojosa I (2003) Mating behavior of female rock shrimp Rhynchocinetes typus (Decapoda: Caridea)—indication for convenience polyandry and cryptic female choice. Behav Ecol Sociobiol 55:113–121

    Article  Google Scholar 

  • Thiel M, Chak STC, Dumont CP (2010) Male morphotypes and mating behavior of the dancing shrimp Rhynchocinetes brucei (Decapoda: Caridea). J Crustac Biol 30:580–588

    Article  Google Scholar 

  • Todd CD, Hadfield MG, Snedden WA (1997) Juvenile mating and sperm storage in the tropical corallivorous nudibranch Phestilla sibogae. Invertebr Biol 116:322–330

    Article  Google Scholar 

  • Tomiyama K (1996) Mate-choice criteria in a protandrous simultaneously hermaphroditic land snail Achatina fulica (Férussac) (Stylommatophora: Achatinidae). J Moll Stud 62:101–111

    Article  Google Scholar 

  • Tomlinson J (1966) The advantages of hermaphroditism and parthenogenesis. J Theor Biol 11:54–58

    Article  CAS  PubMed  Google Scholar 

  • Toth E, Bauer RT (2007) Gonopore sexing technique allows determination of sex ratios and helper composition in eusocial shrimps. Mar Biol 151:1875–1886

    Article  Google Scholar 

  • Tóth E, Bauer RT (2008) Synalpheus paraneptunus (Crustacea: Decapoda: Caridea) populations with intersex gonopores: a sexual enigma among sponge-dwelling snapping shrimps. Invert Reprod Dev 51:49–59

    Article  Google Scholar 

  • Weeks SC, Chapman EG, Rogers DC, Senyo DM, Hoeh WR (2009) Evolutionary transitions among dioecy, androdioecy and hermaphroditism in limnadiid clam shrimp (Branchiopoda: Spinicaudata). J Evol Biol 22:1781–1799

    Article  CAS  PubMed  Google Scholar 

  • West SA (2009) Sex allocation. Princeton University Press, Princeton

    Book  Google Scholar 

  • Wirtz P (1997) Crustacean symbionts of the club-tipped sea anemone Telmatactis cricoides at Madeira and the Canary Islands. J Zool 242:799–811

    Article  Google Scholar 

  • Yaldwyn JC (1960) Biological results of the Chatham Islands 1954 Expedition, Part I—Crustacea Decapoda Natantia from the Chatham rise: a deep water bottom fauna from New Zealand. NZ Dept Sci Ind Res Bull 139:13–53

    Google Scholar 

  • Yaldwyn JC (1966) Protandous hermaphroditism in decapod prawn of the families Hippolytidae and Campilonotidae. Nature 209:1366–1378

    Article  Google Scholar 

  • Yusa Y, Yoshikawa M, Kitaura J, Kawane M, Ozaki Y, Yamato S, Hoeg JT (2012) Adaptive evolution of sexual systems in pedunculate barnacles. Proc R Soc B Biol Sci 279:959–966

    Article  Google Scholar 

  • Zhang D, Lin J (2004) Fertilization success without anterior pleopods in Lysmata wurdemanni (Decapoda: Caridea), a protandric simultaneous hermaphrodite. J Crustac Biol 24:470–473

    Article  Google Scholar 

  • Zucker N, Cunningham M, Adams HP (1997) Anatomical evidence for androdioecy in the clam shrimp Eulimnadia texana. Hydrobiologia 359:171–175

    Article  Google Scholar 

  • Zupo V (1994) Strategies of sexual inversion in Hippolyte inermis Leach (Crustacea, Decapoda) from a Mediterranean seagrass meadow. J Exp Mar Biol Ecol 178:131–145

    Article  Google Scholar 

  • Zupo V (2000) Effect of microalgal food on the sex reversal of Hippolyte inermis (Crustacea: Decapoda). Mar Ecol Prog Ser 201:251–259

    Article  Google Scholar 

Download references

Acknowledgments

I sincerely appreciate the comments by Raymond T. Bauer and Stephen M. Shuster that helped me improve earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Antonio Baeza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonio Baeza, J. (2018). Sexual Systems in Shrimps (Infraorder Caridea Dana, 1852), with Special Reference to the Historical Origin and Adaptive Value of Protandric Simultaneous Hermaphroditism. In: Leonard, J. (eds) Transitions Between Sexual Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-94139-4_10

Download citation

Publish with us

Policies and ethics