Skip to main content

Deep Convolutional Autoencoders vs PCA in a Highly-Unbalanced Parkinson’s Disease Dataset: A DaTSCAN Study

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 771))

Abstract

The automated analysis of medical imaging, especially brain imaging, is a challenging high-dimensional task. Computer Aided Diagnosis (CAD) tools often require the images to be spatially normalized and then perform feature extraction to be able to avoid the small sample size problem. However, the spatial normalization often introduces artefacts, especially in functional imaging. Furthermore, variance-based decomposition techniques like PCA, which are extensively used in CAD tools, often perform poorly in highly-unbalanced dataset. To overcome these two problems, we propose a deep Convolutional Autoencoder (CAE) architecture that performs image decomposition -or encoding- in images that were not spatially normalized. A CAD system that used CAE for feature extraction and a Support Vector Machine Classifier (SVC) for classification was tested on a strongly imbalanced (5.69/1) Parkinson’s Disease (PD) neuroimaging dataset from the Parkinson’s Progression Markers Initiative (PPMI), achieving more than 93% accuracy in detecting PD with DaTSCAN imaging, and a area under the ROC curve higher than 0.96. This system paves the way for new deep learning decompositions that bypass the common spatial normalization step and are able to extract relevant information in highly-imbalanced datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 37–49 (2012)

    Google Scholar 

  2. De Martino, F., Gentile, F., Esposito, F., Balsi, M., Di Salle, F., Goebel, R., Formisano, E.: Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers. Neuroimage 34(1), 177–194 (2007)

    Article  Google Scholar 

  3. Duin, R.P.W.: Classifiers in almost empty spaces. In: Proceedings 15th International Conference on Pattern Recognition, vol. 2, pp. 1–7. IEEE (2000)

    Google Scholar 

  4. Ecker, C., Marquand, A., Mourão-Miranda, J., Johnston, P., Daly, E.M., Brammer, M.J., Maltezos, S., Murphy, C.M., Robertson, D., Williams, S.C., Murphy, D.G.M.: Describing the brain in autism in five dimensions-magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J. Neurosci. 30(32), 10612–10623 (2010)

    Article  Google Scholar 

  5. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Nat. Acad. Sci. 97(20), 11050–11055 (2000)

    Article  Google Scholar 

  6. Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)

    Book  Google Scholar 

  7. Hansen, L.K., Larsen, J., Nielsen, F.Å., Strother, S.C., Rostrup, E., Savoy, R., Lange, N., Sidtis, J., Svarer, C., Paulson, O.B.: Generalizable patterns in neuroimaging: how many principal components? NeuroImage 9(5), 534–544 (1999)

    Article  Google Scholar 

  8. Initiative, T.P.P.M.: PPMI. Imaging Technical Operations Manual, 2 edn., June 2010

    Google Scholar 

  9. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of International Joint Conference on AI, pp. 1137–1145 (1995). http://citeseer.ist.psu.edu/kohavi95study.html

  10. Lila, E., Aston, J.A., Sangalli, L.M., et al.: Smooth principal component analysis over two-dimensional manifolds with an application to neuroimaging. Ann. Appl. Stat. 10(4), 1854–1879 (2016)

    Article  MathSciNet  Google Scholar 

  11. Martínez-Murcia, F., Górriz, J., Ramírez, J., Moreno-Caballero, M., Gómez-Río, M., Parkinson’s Progression Markers Initiative, et al.: Parametrization of textural patterns in 123I-ioflupane imaging for the automatic detection of parkinsonism. Med. Phys. 41(1), 012502 (2014)

    Google Scholar 

  12. Martinez-Murcia, F.J., Górriz, J.M., Ramírez, J., Illán, I.A., Segovia, F., Castillo-Barnes, D., Salas-Gonzalez, D.: Functional brain imaging synthesis based on image decomposition and kernel modeling: application to neurodegenerative diseases. Front. Neuroinformatics 11, 65 (2017)

    Article  Google Scholar 

  13. Martínez-Murcia, F.J., Górriz, J., Ramírez, J., Puntonet, C.G., Illán, I.: Functional activity maps based on significance measures and independent component analysis. Comput. Methods Programs Biomed. 111(1), 255–268 (2013)

    Article  Google Scholar 

  14. Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J., Illán, I.A., Puntonet, C.G.: Texture features based detection of Parkinson’s Disease on DaTSCAN images. In: Natural and Artificial Computation in Engineering and Medical Applications, pp. 266–277. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Martinez-Murcia, F.J., Ortiz, A., Górriz, J.M., Ramírez, J., Segovia, F., Salas-Gonzalez, D., Castillo-Barnes, D., Illán, I.A.: A 3D convolutional neural network approach for the diagnosis of Parkinson’s Disease. In: Natural and Artificial Computation for Biomedicine and Neuroscience, pp. 324–333. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  16. Martinez-Torteya, A., Rodriguez-Rojas, J., Celaya-Padilla, J.M., Galván-Tejada, J.I., Treviño, V., Tamez-Peña, J.: Magnetization-prepared rapid acquisition with gradient echo magnetic resonance imaging signal and texture features for the prediction of mild cognitive impairment to Alzheimer’s disease progression. J. Med. Imaging 1(3), 031005 (2014)

    Article  Google Scholar 

  17. Napierała, K., Stefanowski, J., Wilk, S.: Learning from imbalanced data in presence of noisy and borderline examples. In: International Conference on Rough Sets and Current Trends in Computing, pp. 158–167. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Nixon, M.: Feature Extraction & Image Processing. Academic Press, London (2008)

    Google Scholar 

  19. Ortiz, A., Górriz, J.M., Ramírez, J., Martinez-Murcia, F.J., Initiative, A.D.N., et al.: Automatic ROI selection in structural brain MRI using SOM 3D projection. PLOS ONE 9(4), e93851 (2014)

    Article  Google Scholar 

  20. Ortiz, A., Górriz, J.M., Ramírez, J., Martínez-Murcia, F.J.: LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer’s disease. Pattern Recogn. Lett. 34(14), 1725–1733 (2013)

    Article  Google Scholar 

  21. Ortiz, A., Martínez-Murcia, F.J., García-Tarifa, M.J., Lozano, F., Górriz, J.M., Ramírez, J.: Automated diagnosis of parkinsonian syndromes by deep sparse filtering-based features. In: Innovation in Medicine and Healthcare 2016, pp. 249–258. Springer, Cham (2016)

    Chapter  Google Scholar 

  22. Ortiz, A., Munilla, J., Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J., for the Alzheimer’s Disease Neuroimaging Initiative, et al.: Learning longitudinal MRI patterns by SICE and deep learning: assessing the alzheimers disease progression. In: Annual Conference on Medical Image Understanding and Analysis, pp. 413–424. Springer, Cham (2017)

    Google Scholar 

  23. Powers, D.M.: Evaluation: from precision, recall and f-measure to ROC, informedness, markedness and correlation (2011)

    Google Scholar 

  24. Quackenbush, J.: Computational analysis of microarray data. Nat. Rev. Genet. 2(6), 418–427 (2001)

    Article  Google Scholar 

  25. Segovia, F., Górriz, J.M., Ramírez, J., Chaves, R., Illán, I.Á.: Automatic differentiation between controls and Parkinson’s Disease DaTSCAN images using a partial least squares scheme and the fisher discriminant ratio. In: KES, pp. 2241–2250 (2012)

    Google Scholar 

  26. Sonka, M., Hlavac, V., Boyle, R.: Image processing, analysis, and machine vision. Cengage Learning (2014)

    Google Scholar 

  27. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: The all convolutional net (2014). arXiv preprint: arXiv:1412.6806

  28. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  29. Wang, X., Yang, W., Weinreb, J., Han, J., Li, Q., Kong, X., Yan, Y., Ke, Z., Luo, B., Liu, T., Wang, L.: Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci. Rep. 7(1), 15415 (2017)

    Article  Google Scholar 

  30. Weiner, M.W., Veitch, D.P., Aisen, P.S., Beckett, L.A., Cairns, N.J., Green, R.C., Harvey, D., Jack, C.R., Jagust, W., Liu, E., Morris, J.C., Petersen, R.C., Saykin, A.J., Schmidt, M.E., Shaw, L., Siuciak, J.A., Soares, H., Toga, A.W., Trojanowski, J.Q.: The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimer’s Dement. J. Alzheimer’s Assoc. 8(Suppl. 1), S1–S68 (2012). http://www.ncbi.nlm.nih.gov/pubmed/22047634, PMID: 22047634

    Google Scholar 

  31. Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the MINECO/FEDER under the TEC2015-64718-R project and the Consejera de Economía, Innovación, Ciencia y Empleo (Junta de Andalucía, Spain) under the Excellence Project P11-TIC- 7103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Jesús Martinez-Murcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinez-Murcia, F.J. et al. (2019). Deep Convolutional Autoencoders vs PCA in a Highly-Unbalanced Parkinson’s Disease Dataset: A DaTSCAN Study. In: Graña, M., et al. International Joint Conference SOCO’18-CISIS’18-ICEUTE’18. SOCO’18-CISIS’18-ICEUTE’18 2018. Advances in Intelligent Systems and Computing, vol 771. Springer, Cham. https://doi.org/10.1007/978-3-319-94120-2_5

Download citation

Publish with us

Policies and ethics