Skip to main content

Classification Improvement for Parkinson’s Disease Diagnosis Using the Gradient Magnitude in DaTSCAN SPECT Images

  • Conference paper
  • First Online:
International Joint Conference SOCO’18-CISIS’18-ICEUTE’18 (SOCO’18-CISIS’18-ICEUTE’18 2018)

Abstract

In this work, we propose a novel imaging preprocessing step based on the use of the gradient magnitude for medical DaTSCAN SPECT images. As Parkinson’s Disease (PD) is characterized by a marked reduction of intensity at striatum area, measuring intensities in this region is considered as a good marker for this neurological disorder. To extend this idea, we have been studying how quick these values decrease. A simple way to do this was using the gradient of each image. Applying Machine Learning algorithms, we have classified the gradient images and obtained an accuracy improvement of almost 2%. These results prove that the gradient magnitude is even a better marker for PD diagnosis and opens the door to new future investigations about this pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pohl, A.: Impaired emotional mirroring in Parkinsons disease - a study on brain activation during processing of facial expressions. Front. Neurol. 8, 682 (2017)

    Article  Google Scholar 

  2. Kordower, J.H.: Disease duration and the integrity of the nigrostriatal system in Parkinsons disease. Brain 136(8), 2419–2431 (2013)

    Article  Google Scholar 

  3. Neumeyer, J.L.: [123I]-2\(\beta \)-carbomethoxy-3\(\beta \)-(4-iodophenyl)tropane: high-affinity SPECT (single photon emission computed tomography) radiotracer of monoamine reuptake sites in brain. J. Med. Chem. 34(10), 3144–3146 (1991)

    Article  Google Scholar 

  4. Sixel-Döring, F.: The role of 123I-FP-CIT-SPECT in the differential diagnosis of Parkinson and tremor syndromes: a critical assessment of 125 cases. J. Neurol. 258(12), 2147–2154 (2011)

    Article  Google Scholar 

  5. Marek, K.L.: [123I]\(\beta \)-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology 57(11), 2089–2094 (2001)

    Article  Google Scholar 

  6. Illán, I.A.: Automatic assistance to Parkinsons disease diagnosis in DaTSCAN SPECT imaging. Med. Phys. 39(10), 5971–5980 (2012)

    Article  Google Scholar 

  7. Segovia, F.: Improved Parkinsonism diagnosis using a partial least squares based approach. Med. Phys. 39, 4395–4403 (2012)

    Article  Google Scholar 

  8. Martínez-Murcia, F.J.: Parametrization of textural patterns in 123I-ioflupane imaging for the automatic detection of Parkinsonism. Med. Phys. 41(1), 012502 (2014)

    Article  Google Scholar 

  9. Wyman-Chick, K.A.: Cognition in patients with a clinical diagnosis of Parkinson disease and scans without evidence of dopaminergic deficit (SWEDD): 2-year follow-up. Cognit. Behav. Neurol. 29(4), 190–196 (2016)

    Article  Google Scholar 

  10. Salas-González, D.: Finite mixture of \(\alpha \)-stable distributions. Digit. Signal Process. 19(2), 250–264 (2009)

    Article  Google Scholar 

  11. Salas-González, D.: Linear intensity normalization of FP-CIT SPECT brain images using the \(\alpha \)-stable distribution. NeuroImage 65(C), 449–455 (2013)

    Article  Google Scholar 

  12. Brahim, A.: Intensity normalization of DaTSCAN SPECT imaging using a model-based clustering approach. Appl. Soft Comput. 37(C), 234–244 (2015)

    Article  Google Scholar 

  13. Sobel, I.: History and Definition of the Sobel Operator (2014)

    Google Scholar 

  14. Engel, K.: Real-time Volume Graphics, 2nd edn, pp. 109–113. A. K. Peters Ltd., Natick (2006)

    Book  Google Scholar 

  15. Martínez-Murcia, F.J.: Computer aided diagnosis tool for Alzehimer’s disease based on Mann-Whitney-Wilcoxon U-Test. Expert Syst. Appl. 39(10), 9676–9685 (2012)

    Article  Google Scholar 

  16. Tong, T.: Multi-modal classification of Alzheimers disease using nonlinear graph fusion. Pattern Recognit. 63(C), 171–181 (2017)

    Article  Google Scholar 

  17. Li, Q.: Multi-modal discriminative dictionary learning for Alzheimers disease and mild cognitive impairment. Comput. Methods Programs Biomed. 150(C), 1–8 (2017)

    Article  Google Scholar 

  18. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), vol. 2, pp. 1137–1145 (1995)

    Google Scholar 

  19. Zweig, M.H.: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39(4), 561–577 (1993)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the MINECO/FEDER under the TEC2015-64718-R project and the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía under the Excellence Project P11-TIC-7103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Castillo-Barnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castillo-Barnes, D., Segovia, F., Martinez-Murcia, F.J., Salas-Gonzalez, D., Ramírez, J., Górriz, J.M. (2019). Classification Improvement for Parkinson’s Disease Diagnosis Using the Gradient Magnitude in DaTSCAN SPECT Images. In: Graña, M., et al. International Joint Conference SOCO’18-CISIS’18-ICEUTE’18. SOCO’18-CISIS’18-ICEUTE’18 2018. Advances in Intelligent Systems and Computing, vol 771. Springer, Cham. https://doi.org/10.1007/978-3-319-94120-2_10

Download citation

Publish with us

Policies and ethics