Skip to main content

Mosquitoes and the Risk of Pathogen Transmission in Europe

  • Chapter
  • First Online:
Mosquito-borne Diseases

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 10))

  • 1066 Accesses

Abstract

Worldwide, mosquitoes are known as nuisance biters and disease-transmitting vectors causing about one million deaths annually. In Europe, around 100 mosquito species have been described with the medically most relevant species belonging to the genera Aedes, Anopheles and Culex. Due to several climatic and non-climatic factors, some mosquito species as well as pathogens were either newly introduced or reintroduced to Europe within the last decades and have been causing different outbreaks of diseases. Currently, the risk of an infection with a mosquito-borne disease like dengue and chikungunya fever is higher in Mediterranean countries than in the north of Europe and can be partly ascribed to the establishment of Aedes albopictus, which is one of the most invasive mosquito species worldwide and a competent vector species for several diseases. Ecological niche modelling implies that Aedes albopictus could spread further north with the warming climate in the future. As species monitoring is cost and time-consuming, ecological niche modelling could help identify potential new habitats for mosquito establishment, in order to better target areas for monitoring and surveillance programmes to those at greatest risk. However, mosquito species native to Europe, like members of the Culex pipiens complex, can also act as vectors for pathogens like the West Nile virus and therefore should also be considered in those programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adouchief S, Smura T, Sane J, Vapalahti O, Kurkela S (2016) Sindbis virus as a human pathogen—epidemiology, clinical picture and pathogenesis. Rev Med Virol 26:221–241

    Article  PubMed  Google Scholar 

  • Akin S-M, Martens P (2014) A survey of Dutch expert opinion on climatic drivers of infectious disease risk in western Europe. Climate 2:310–328

    Article  Google Scholar 

  • AMCA (American Mosquito Control Association) (2017) Mosquito borne-diseases. http://www.mosquito.org/page/diseases. Accessed 13 Nov 2017

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Avšič-Županc T (2013) Mosquito-borne diseases—a new threat to Europe? Clin Microbiol Infect 19:683–684

    Article  PubMed  Google Scholar 

  • Babal P, Kobzova D, Novak I, Dubinsky P, Jalili N (2008) First case of cutaneous human dirofilariosis in Slovak Republic. Bratisl Lek Listy 109:486–488

    CAS  PubMed  Google Scholar 

  • Bairlein F, Metzger B (2014) Klimawandel, Zugvögel und ihre Rolle bei der Übertragung der Verbreitung von Infektionskrankheiten—zunehmende ‘Gefahr’ in Zeiten klimatischer Veränderung? In: Lozán JL, Grassl H, Karbe L, Jendritzky G (eds) Warnsingnal Klima. Gesundsheitsrisiken. Gefahren für Pflanzen, Tiere und Menschen, 2nd edn. Verlag Wissenschaftliche Auswertungen, Hamburg, p 384

    Google Scholar 

  • Baldacchino F, Marcantonio M, Manica M et al (2017) Mapping of Aedes albopictus abundance at a local scale in Italy. Remote Sens 9:749

    Article  Google Scholar 

  • Barzon L, Pacenti M, Franchin E et al (2013) Large human outbreak of West Nile virus infection in north-eastern Italy in 2013. Viruses 5:2825–2839

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker N (2008) Influence of climate change on mosquito development and mosquito-borne diseases in Europe. Parasitol Res 103:19–28

    Article  Google Scholar 

  • Becker N, Petric D, Zgomba M, Boase C, Madon MB, Dahl C, Kaiser A (2010) Mosquitoes and their control, 2nd edn. Springer, Heidelberg, p 577

    Book  Google Scholar 

  • Becker N, Jöst H, Ziegler U et al (2012) Epizootic emergence of Usutu virus in wild and captive birds in Germany. PLoS One 7:e32604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker N, Krüger A, Kuhn C, Plenge-Bönig A, Thomas SM, Schmidt-Chansit J, Tannich E (2014) Stechmücken als Überträger exotischer Krankheitserreger in Deutschland. Bundesgesundheitsblatt 57:531–540

    Article  CAS  Google Scholar 

  • Beerntsen BT, James AA, Christensen BM (2000) Genetics of mosquito vector competence. Microbiol Mol Biol Rev 64:115–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beierkuhnlein C (2007) Biogeographie: Die räumliche Organisation des Lebens in einer sich verändernden Welt, 1st edn. Eugen Ulmer, Stuttgart, p 400

    Google Scholar 

  • Bellini R, Albieri A, Balestrino F et al (2010) Dispersal and survival of Aedes albopictus (Diptera: Culicidae) males in Italian urban areas and significance for sterile insect technique application. J Med Entomol 47:1082–1091

    Article  PubMed  Google Scholar 

  • Beugnet F, Chalvet-Monfray K (2013) Impact of climate change in the epidemiology of vector-borne diseases in domestic carnivores. Comp Immunol Microbiol Infect Dis 36:559–566

    Article  CAS  PubMed  Google Scholar 

  • Bonilauri P, Bellini R, Calzolaro M et al (2008) Chikungunya virus in Aedes albopictus, Italy. Emerg Infect Dis 15:852–853

    Article  Google Scholar 

  • Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonnet DD, Worcester DJ (1946) The dispersal of Aedes albopictus in the territory of Hawaii. Am J Trop Med Hyg 26:465–476

    Article  CAS  PubMed  Google Scholar 

  • Buckley A, Dawson A, Gould EA (2006) Detection of seroconversion to West Nile virus, Usutu virus and Sindbis virus in UK sentinel chickens. Virol J 3:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buhagiar JA (2009) A second record of Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Malta. Eur Mosq Bull 27:65–67

    Google Scholar 

  • Busquets N, Alba A, Allepuz A, Aranda C, Ignacio Nuñez J (2008) Usutu virus sequences in Culex pipiens (Diptera: Culicidae), Spain. Emerg Infect Dis 14:861–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calzolari M (2016) Mosquito-borne diseases in Europe: an emerging public health threat. Rep Parasitol 5:1

    Google Scholar 

  • Cancrini G, Frangipane Di Regalbono A, Ricci I, Tessarin C, Gabrielli S, Pietrobelli M (2003a) Aedes albopictus is a natural vector of Dirofilaria immitis in Italy. Vet Parasitol 118:195–202

    Article  CAS  PubMed  Google Scholar 

  • Cancrini G, Romi R, Gabrielli S, Toma L, DI Paolo M, Scaramozzino P (2003b) First finding of Dirofilaria repens in a natural population of Aedes albopictus. Med Vet Entomol 17:448–451

    Article  CAS  PubMed  Google Scholar 

  • Cancrini G, Scaramozzino P, Gabrielli S, DI Paolo M, Toma L, Romi R (2007) Aedes albopictus and Culex pipiens implicated as natural vectors of Dirofilaria repens in central Italy. J Med Entomol 44:1064–1066

    CAS  PubMed  Google Scholar 

  • CDC (Centers for Disease Control and Prevention) (2015) Anopheles mosquitoes. https://www.cdc.gov/malaria/about/biology/mosquitoes/. Accessed 25 Nov 2017

  • Chvala S, Bakonyi T, Bukovsky C et al (2007) Monitoring of Usutu virus activity and spread by using dead bird surveillance in Austria, 2003-2005. Vet Microbiol 122:237–245

    Article  CAS  PubMed  Google Scholar 

  • Cielecka D, Żarnowska-Prymek H, Masny A, Salamatin R, Wesołowska M, Gołąb E (2012) Human dirofilariosis in Poland: the first cases of autochthonous infections with Dirofilaria repens. Ann Agric Environ Med 19:445–450

    PubMed  Google Scholar 

  • Cramer JP (2014) Globale Zunahme von Tropenkrankheiten. In: Lozán JL, Grassl H, Karbe L, Jendritzky G (eds) Warnsignal Klima: Gefahren für Pflanzen, Tiere und Menschen, 2nd edn. Verlag Wissenschaftliche Auswertungen, Hamburg, p 384

    Google Scholar 

  • Cunze S, Koch LK, Kochmann J, Klimpel S (2016a) Aedes albopictus and Aedes japonicus—two invasive mosquito species with different temperature niches in Europe. Parasit Vectors 9:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunze S, Kochmann J, Koch LK, Klimpel S (2016b) Aedes albopictus and its environmental limits in Europe. PLoS One 11:e0162116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danis K, Papa A, Theocharopoulos G et al (2011) Outbreak of West Nile virus infection in Greece, 2010. Emerg Infect Dis 17:1868–1872

    Article  PubMed  PubMed Central  Google Scholar 

  • Dzidová M, Čabanová V, Stloukal E, Miterpáková M (2016) Mosquito fauna and risk of mosquito borne diseases in the capital city Bratislava, Slovakia—the results of preliminary monitoring. Folia Faunistica Slovaca 21:245–250

    Google Scholar 

  • ECDC (European Centre for Disease Prevention and Control) (2014) Guidelines for the surveillance of native mosquitoes in Europe. https://ecdc.europa.eu/en/news-events/guidelines-mosquito-surveillance-europe-focus-native-mosquitoes. Accessed 10 Nov 2017

  • ECDC (European Centre for Disease Prevention and Control) (2017a) Health topics. Moquito maps. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps. Accessed 13 Nov 2017

  • ECDC (European Centre for Disease Prevention and Control) (2017b) Health topics. Mosquito factsheets. https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets. Accessed 13 Nov 2017

  • ECDC (European Centre for Disease Prevention and Control) (2017c) Infectious diseases & public health. Aedes japonicus—factsheet for experts. https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-japonicus. Accessed 14 Nov 2017

  • ECDC (European Centre for Disease Prevention and Control) (2017d) Infectious diseases & public health. Aedes atropalpus—factsheet for experts. https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-atropalpus. Accessed 13 Nov 2017

  • ECDC (European Centre for Disease Prevention and Control) (2017e) Infectious diseases & public health. Aedes koreicus—factsheet for experts. https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-koreicus. Accessed 13 Nov 2017

  • ECDC (European Centre for Disease Prevention and Control) (2017f) Infectious diseases & public health. Aedes aegypti—factsheet for experts. https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-aegypti. Accessed 14 Nov 2017

  • ECDC (European Centre for Disease Prevention and Control) (2017g) Infectious diseases & public health. Aedes albopictus—factsheet for experts. https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-japonicus. Accessed 20 Aug 2017

  • ECDC (European Centre for Disease Prevention and Control) (2017h) Surveillance atlas of infectious diseases. http://atlas.ecdc.europa.eu/public/index.aspx. Accessed 10 Nov 2017

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Engler O, Savini G, Papa A et al (2013) European surveillance for West Nile virus in mosquito populations. Int J Environ Res Public Health 10:4869–4895

    Article  PubMed  PubMed Central  Google Scholar 

  • Eritja R, Escosa R, Lucientes J, Marquès E, Roiz D, Ruiz S (2005) Worldwide invasion of vector mosquitoes: present European distribution and challenges for Spain. Biol Invasions 7:87

    Article  Google Scholar 

  • Escobar LE, Craft ME (2016) Advances and limitations of disease biogeography using ecological niche modeling. Front Microbiol 7:1174

    PubMed  PubMed Central  Google Scholar 

  • Farajollahi A, Fonseca DM, Kramer LD, Kilpatrick AM (2011) ‘Bird biting’ mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol 11:1577–1585

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseca DM, Keyghobadi N, Malcolm CA et al (2004) Emerging vectors in the Culex pipiens complex. Science 303:1535–1538

    Article  CAS  PubMed  Google Scholar 

  • Garigliany MM, Marlier D, Tenner-Racz K et al (2014) Detection of Usutu virus in a bullfinch (Pyrrhula pyrrhula) and a great spotted woodpecker (Dendrocopos major) in north-west Europe. Vet J 199:191–193

    Article  PubMed  Google Scholar 

  • Genchi C, Bowman D, Drake J (2014) Canine heartworm disease (Dirofilaria immitis) in Western Europe: survey of veterinary awareness and perceptions. Parasit Vectors 7:206

    Article  PubMed  PubMed Central  Google Scholar 

  • George S, Gourie-Devi M, Rao JA, Prasad SR, Pavri KM (1984) Isolation of West Nile virus from the brains of children who had died of encephalitis. Bull World Health Organ 62:879–882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giron S, Rizzi J, Leparc-Goffart I et al (2015) Nouvelles apparitions de cas autochtones de dengue en région Provence-Alpes-Côte d’Azur, France, août-septembre 2014. Bull Epidemiol Hebd 13–14:212–217

    Google Scholar 

  • Gjenero-Margan I, Aleraj B, Krajcar D et al (2011) Autochthonous dengue fever in Croatia, August-September 2010. Euro Surveill 16

    Google Scholar 

  • Gould EA, Higgs S (2009) Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg 103:109–121

    Article  CAS  PubMed  Google Scholar 

  • Gould EA, Gallian P, de Lamballerie X, Charrel RN (2010) First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality! Clin Microbiol Infect 16:1702–1704

    Article  CAS  PubMed  Google Scholar 

  • Gould E, Pettersson J, Higgs S, Charrel R, de Lamballerie X (2017) Emerging arboviruses: why today? One Health 4:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham H (1902) Dengue: a study of its mode of propagation and pathology. Med Rec 61:204–207

    Google Scholar 

  • Gratz NG (1999) Emerging and resurging vector—borne diseases. Annu Rev Entomol 44:51–75

    Article  CAS  PubMed  Google Scholar 

  • Gratz NG (2004) Critical review of Aedes albopictus. Med Vet Entomol 18:215–227

    Article  CAS  PubMed  Google Scholar 

  • Gubler DJ (1998) Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis 4:442–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • HCDCP (Hellenic Center for Disease Control and Prevention) (2015) Epidemiological surveillance report, malaria in Greece, 2015, up to 16/10/2015. HCDCP_2015 Malaria report, 16/10/2015. Accessed 20 Nov 2017

    Google Scholar 

  • Honório NA, Silva WC, Leite PJ, Gonçalves JM, Lounibos LP, Lourenço-de-Oliveira R (2003) Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 98:191–198

    Article  PubMed  Google Scholar 

  • Hubalek Z, Halouzka J (1999) West Nile Fever—a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5:643–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis: contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC Fifth Assessment Report (AR5). University Press, Cambridge, New York

    Google Scholar 

  • ISSG GISD (Global Invasive Species Database) (2017) http://www.iucngisd.org/gisd/100_worst.php. Accessed 1 Aug 2017

  • Jansen CC, Beebe NW (2010) The dengue vector Aedes aegypti: what comes next. Microbes Infect 12:272–279

    Article  PubMed  Google Scholar 

  • Kampen H, Medlock JM, Vaux AGC et al (2015) Approaches to passive mosquito surveillance in the EU. Parasit Vectors 8:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch LK, Cunze S, Werblow A, Kochmann J, Dörge DD, Mehlhorn H, Klimpel S (2016) Modeling the habitat suitability for the arbovirus vector Aedes albopictus (Diptera: Culicidae) in Germany. Parasitol Res 115:957–964

    Article  PubMed  Google Scholar 

  • Kowarik I (2010) Bioloische Invasionen. Neophyten und Neozoen in Mitteleuropa, 2nd edn. Eugen Ulmer Verlag, Stuttgart

    Google Scholar 

  • Kraemer MUG, Sinka ME, Duda KA et al (2015a) Data from: the global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci Data 2:150035

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraemer MUG, Sinka ME, Duda KA et al (2015b) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4:e08347

    Article  PubMed  PubMed Central  Google Scholar 

  • Krüger A, Börstler J, Badusche M, Lühken R, Garms R, Tannich E (2014) Mosquitoes (Diptera: Culicidae) of metropolitan Hamburg, Germany. Parasitol Res 113:2907–2914

    Article  PubMed  Google Scholar 

  • Kurkela S, Rätti O, Huhtamo E et al (2008) Sindbis Virus infection in resident birds, migratory birds, and humans, Finland. Emerg Infect Dis 14:41–47

    Article  PubMed  PubMed Central  Google Scholar 

  • La Ruche G, Souarès Y, Armengaud A et al (2010) First two autochthonous dengue virus infections in metropolitan France, September 2010. Euro Surveill 15:19676

    PubMed  Google Scholar 

  • Lehane MJ (2005) The biology of blood-sucking insects, 2nd edn. Cambridge University Press, New York, p 321

    Book  Google Scholar 

  • Mani P, Rossi G, Perrucci S, Bertini S (1998) Mortality of Turdus merula in Tuscany. Selezione Veterinaria 39:749–753

    Google Scholar 

  • Marchand E, Prat C, Jeannin C et al (2013) Autochthonous case of dengue in France, October 2013. Euro Surveill 18:20661

    Article  CAS  PubMed  Google Scholar 

  • Matějů J, Chanová M, Modrý D, Mitková B, Hrazdilová K, Žampachová V, Kolářová L (2016) Dirofilaria repens: emergence of autochthonous human infections in the Czech Republic (case reports). BMC Infect Dis 16:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGreevy PB, Bryan JH, Oothuman P, Kolstrup N (1978) The lethal effects of the cibarial and pharyngeal armatures of mosquitoes on microfilariae. Trans R Soc Trop Med Hyg 72:361–368

    Article  CAS  PubMed  Google Scholar 

  • Medlock JM, Leach SA (2015) Effect of climate change on vector-borne disease risk in the UK. Lancet Infect Dis 15:721–730

    Article  PubMed  Google Scholar 

  • Medlock JM, Hansford KM, Versteirt V et al (2015) An entomological review of invasive mosquitoes in Europe. Bull Entomol Res 105:637–663

    Article  CAS  PubMed  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241

    Article  CAS  Google Scholar 

  • Mitchell C (1991) Vector competence of North and South American strains of Aedes albopictus for certain arboviruses: a review. J Am Mosq Control Assoc 7:446–451

    CAS  PubMed  Google Scholar 

  • Morchón R, Carretón E, González-Miguel J, Mellado-Hernández I (2012) Heartworm disease (Dirofilaria immitis) and their vectors in Europe—new distribution trends. Front Physiol 3:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Mori A (1979) Effects of larval density and nutrition on some attributes of immature and adult Aedes albopictus. Trop Med 21:85–103

    Google Scholar 

  • Nájera JA, González-Silva M, Alonso PL (2011) Some lessons for the future from the Global Malaria Eradication Programme (1955-1969). PLoS Med 8:e1000412

    Article  PubMed  PubMed Central  Google Scholar 

  • Nathan R (2006) Long distance dispersal of plants. Science 313:786–788

    Article  CAS  PubMed  Google Scholar 

  • Niebylski M, Craig GB (1994) Dispersal and survival of Aedes albopictus at a scrap tyre yard in Missouri. J Am Mosq Control Assoc 10:339–343

    CAS  PubMed  Google Scholar 

  • Osório HC, Zé-Zé L, Amaro F, Alves MJ (2014) Mosquito surveillance for prevention and control of emerging mosquito-borne diseases in Portugal—2008-2014. Int J Environ Res Public Health 11:11583–11596

    Article  PubMed  PubMed Central  Google Scholar 

  • Otero M, Solari HG, Schweigmann N (2006) A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate. Bull Math Biol 68:1945–1974

    Article  PubMed  Google Scholar 

  • Paupy C, Delatte H, Bagny L et al (2009) Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect 11:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Petrić D, Bellini R, Scholte E-J, Rakotoarivony LM, Schaffner F (2014) Monitoring population and environmental parameters of invasive mosquito species in Europe. Parasit Vectors 7:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Peyton EL, Campbell SR, Candeletti TM, Romanowski M, Crans WJ (1999) Aedes (Finlaya) japonicus japonicus (Theobald), a new introduction into the United States. J Am Mosq Control Assoc 15:238–241

    CAS  PubMed  Google Scholar 

  • Ready PD (2010) Leishmaniasis emergence in Europe. Euro Surveill 15:19505

    CAS  PubMed  Google Scholar 

  • Reed W, Carrollgramonte A, Lazear JW (1900) The etiology of yellow fever—a preliminary note. Public Health Pap Rep 26:37–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter P (2010) Yellow fever and dengue: a threat to Europe? Euro Surveill 15:1–7

    Google Scholar 

  • Rezza G, Nicoletti L, Angelini R et al (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846

    Article  CAS  PubMed  Google Scholar 

  • Roiz D, Neteler M, Castellani C, Arnoldi D, Rizzoli A (2011) Climatic factors driving invasion of the tiger mosquito (Aedes albopictus) into new areas of Trentino, Northern Italy. PLoS One 6:4–11

    Article  CAS  Google Scholar 

  • Romi R, Toma L, Severini F, Di Luca M (2008) Twenty years of the presence of Aedes albopictus in Italy–from the annoying pest mosquito to the real disease vector. Eur Infect Dis 2:98–101

    Google Scholar 

  • Ross R (1897) On same peculiar pigmented cells found in two mosquitoes fed on malaria blood. Br Med J 2:1786–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rückert C, Weger-Lucarelli J, Garcia-Luna SM et al (2017) Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat Commun 8:15412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaffner F, Thiéry I, Kaufmann C, Zettor A, Lengeler C, Mathis A, Bourgouin C (2012) Anopheles plumbeus (Diptera: Culicidae) in Europe: a mere nuisance mosquito or potential malaria vector? Malar J 11:393

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaffner F, Medlock JM, Van Bortel W (2013) Public health significance of invasive mosquitoes in Europe. Clin Microbiol Infect 19:685–692

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Chanasit J, Haditsch M, Schoneberg I, Gunther S, Stark K, Frank C (2010) Dengue virus infection in a traveller returning from Croatia to Germany. Euro Surveill 15:19677

    Article  PubMed  Google Scholar 

  • Scholte E-J, Dijkstra E, Blok H et al (2008) Accidental importation of the mosquito Aedes albopictus into the Netherlands: a survey of mosquito distribution and the presence of dengue virus. Med Vet Entomol 22:352–358

    Article  PubMed  Google Scholar 

  • Semenza JC, Menne B (2009) Climate change and infectious diseases in Europe. Lancet Infect Dis 9:365–375

    Article  PubMed  Google Scholar 

  • Semenza JC, Suk JE, Estevez V, Ebi KL, Lindgren E (2012) Mapping climate change vulnerabilities to infectious diseases in Europe. Environ Health Perspect 120:385–392

    Article  PubMed  Google Scholar 

  • Sirbu A, Ceianu CS, Panculescu-Gatej RI et al (2011) Outbreak of West Nile virus infection in humans, Romania, July to October 2010. Euro Surveill 16:19762

    PubMed  Google Scholar 

  • Soberón JM (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography 33:159–167

    Article  Google Scholar 

  • Steinmetz HW, Bakonyi T, Weissenböck H et al (2011) Emergence and establishment of Usutu virus infection in wild and captive avian species in and around Zurich, Switzerland-genomic and pathologic comparison to other central European outbreaks. Vet Microbiol 148:207–212. https://doi.org/10.1016/j.vetmic.2010.09.018

    Article  PubMed  Google Scholar 

  • Tappe D, Plauth M, Bauer T, Muntau B, Dießel L, Tannich E, Herrmann-Trost P (2014) A case of autochthonous human Dirofilaria infection, Germany, March 2014. Euro Surveill 19:2–4

    CAS  PubMed  Google Scholar 

  • Thuiller W, Albert C, Araújo MB et al (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol 9:137–152

    Article  Google Scholar 

  • Tomasello D, Schlagenhauf P (2013) Chikungunya and dengue autochthonous cases in Europe, 2007-2012. Travel Med Infect Dis 11:274–284

    Article  PubMed  Google Scholar 

  • Versteirt V, De Clercq EM, Fonseca DM, Pecor J, Schaffner F, Coosemans M, Van Bortel W (2012) Bionomics of the established exotic mosquito species Aedes koreicus in Belgium, Europe. J Med Entomol 49:1226–1232

    Article  CAS  PubMed  Google Scholar 

  • Weissenböck H, Bakonyi T, Rossi G, Mani P, Nowotny N (2013) Usutu virus, Italy, 1996. Emerg Infect Dis 19:274–277

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO (World Health Organisation) (2014) A global brief on vector-borne diseases. http://apps.who.int/iris/bitstream/10665/111008/1/WHO_DCO_WHD_2014.1_eng.pdf. Accessed 25 Nov 2017

  • WHO (World Health Organisation) (2017) Media centre: vector-borne diseases. Fact Sheet N°387. http://www.who.int/mediacentre/factsheets/fs387/en/. Accessed 21 Nov 2017

  • Zeller H, Marrama L, Sudre B, Van Bortel W, Warns-Petit E (2013) Mosquito-borne disease surveillance by the European Centre for Disease Prevention and Control. Clin Microbiol Infect 19:693–698

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This present research was funded by the ERA-Net BiodivERsA, with the national funding body DFG KL 2087/6-1, FWF I-1437 and ANR-13-EBID-0007-01 as part of the 2012–2013 BiodivERsA call for research proposals, and by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE), grant number 2819105115, the Graduate School IMPact-Vector funded by the Senate Competition Committee grant (SAW-2014-SGN-3) of the Leibniz Association and the Uniscientia Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Steinbrink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steinbrink, A. et al. (2018). Mosquitoes and the Risk of Pathogen Transmission in Europe. In: Benelli, G., Mehlhorn, H. (eds) Mosquito-borne Diseases. Parasitology Research Monographs, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-94075-5_10

Download citation

Publish with us

Policies and ethics