Advertisement

Mosquitoes and the Risk of Pathogen Transmission in Europe

Chapter
  • 733 Downloads
Part of the Parasitology Research Monographs book series (Parasitology Res. Monogr., volume 10)

Abstract

Worldwide, mosquitoes are known as nuisance biters and disease-transmitting vectors causing about one million deaths annually. In Europe, around 100 mosquito species have been described with the medically most relevant species belonging to the genera Aedes, Anopheles and Culex. Due to several climatic and non-climatic factors, some mosquito species as well as pathogens were either newly introduced or reintroduced to Europe within the last decades and have been causing different outbreaks of diseases. Currently, the risk of an infection with a mosquito-borne disease like dengue and chikungunya fever is higher in Mediterranean countries than in the north of Europe and can be partly ascribed to the establishment of Aedes albopictus, which is one of the most invasive mosquito species worldwide and a competent vector species for several diseases. Ecological niche modelling implies that Aedes albopictus could spread further north with the warming climate in the future. As species monitoring is cost and time-consuming, ecological niche modelling could help identify potential new habitats for mosquito establishment, in order to better target areas for monitoring and surveillance programmes to those at greatest risk. However, mosquito species native to Europe, like members of the Culex pipiens complex, can also act as vectors for pathogens like the West Nile virus and therefore should also be considered in those programmes.

Keywords

Ecological niche modelling Europe Health threat Invasive mosquitoes Pathogens Vector-borne disease 

Notes

Acknowledgements

This present research was funded by the ERA-Net BiodivERsA, with the national funding body DFG KL 2087/6-1, FWF I-1437 and ANR-13-EBID-0007-01 as part of the 2012–2013 BiodivERsA call for research proposals, and by the German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE), grant number 2819105115, the Graduate School IMPact-Vector funded by the Senate Competition Committee grant (SAW-2014-SGN-3) of the Leibniz Association and the Uniscientia Stiftung.

References

  1. Adouchief S, Smura T, Sane J, Vapalahti O, Kurkela S (2016) Sindbis virus as a human pathogen—epidemiology, clinical picture and pathogenesis. Rev Med Virol 26:221–241PubMedCrossRefPubMedCentralGoogle Scholar
  2. Akin S-M, Martens P (2014) A survey of Dutch expert opinion on climatic drivers of infectious disease risk in western Europe. Climate 2:310–328CrossRefGoogle Scholar
  3. AMCA (American Mosquito Control Association) (2017) Mosquito borne-diseases. http://www.mosquito.org/page/diseases. Accessed 13 Nov 2017
  4. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47PubMedCrossRefPubMedCentralGoogle Scholar
  5. Avšič-Županc T (2013) Mosquito-borne diseases—a new threat to Europe? Clin Microbiol Infect 19:683–684PubMedCrossRefPubMedCentralGoogle Scholar
  6. Babal P, Kobzova D, Novak I, Dubinsky P, Jalili N (2008) First case of cutaneous human dirofilariosis in Slovak Republic. Bratisl Lek Listy 109:486–488PubMedPubMedCentralGoogle Scholar
  7. Bairlein F, Metzger B (2014) Klimawandel, Zugvögel und ihre Rolle bei der Übertragung der Verbreitung von Infektionskrankheiten—zunehmende ‘Gefahr’ in Zeiten klimatischer Veränderung? In: Lozán JL, Grassl H, Karbe L, Jendritzky G (eds) Warnsingnal Klima. Gesundsheitsrisiken. Gefahren für Pflanzen, Tiere und Menschen, 2nd edn. Verlag Wissenschaftliche Auswertungen, Hamburg, p 384Google Scholar
  8. Baldacchino F, Marcantonio M, Manica M et al (2017) Mapping of Aedes albopictus abundance at a local scale in Italy. Remote Sens 9:749CrossRefGoogle Scholar
  9. Barzon L, Pacenti M, Franchin E et al (2013) Large human outbreak of West Nile virus infection in north-eastern Italy in 2013. Viruses 5:2825–2839PubMedPubMedCentralCrossRefGoogle Scholar
  10. Becker N (2008) Influence of climate change on mosquito development and mosquito-borne diseases in Europe. Parasitol Res 103:19–28CrossRefGoogle Scholar
  11. Becker N, Petric D, Zgomba M, Boase C, Madon MB, Dahl C, Kaiser A (2010) Mosquitoes and their control, 2nd edn. Springer, Heidelberg, p 577CrossRefGoogle Scholar
  12. Becker N, Jöst H, Ziegler U et al (2012) Epizootic emergence of Usutu virus in wild and captive birds in Germany. PLoS One 7:e32604PubMedPubMedCentralCrossRefGoogle Scholar
  13. Becker N, Krüger A, Kuhn C, Plenge-Bönig A, Thomas SM, Schmidt-Chansit J, Tannich E (2014) Stechmücken als Überträger exotischer Krankheitserreger in Deutschland. Bundesgesundheitsblatt 57:531–540CrossRefGoogle Scholar
  14. Beerntsen BT, James AA, Christensen BM (2000) Genetics of mosquito vector competence. Microbiol Mol Biol Rev 64:115–137PubMedPubMedCentralCrossRefGoogle Scholar
  15. Beierkuhnlein C (2007) Biogeographie: Die räumliche Organisation des Lebens in einer sich verändernden Welt, 1st edn. Eugen Ulmer, Stuttgart, p 400Google Scholar
  16. Bellini R, Albieri A, Balestrino F et al (2010) Dispersal and survival of Aedes albopictus (Diptera: Culicidae) males in Italian urban areas and significance for sterile insect technique application. J Med Entomol 47:1082–1091PubMedCrossRefPubMedCentralGoogle Scholar
  17. Beugnet F, Chalvet-Monfray K (2013) Impact of climate change in the epidemiology of vector-borne diseases in domestic carnivores. Comp Immunol Microbiol Infect Dis 36:559–566PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bonilauri P, Bellini R, Calzolaro M et al (2008) Chikungunya virus in Aedes albopictus, Italy. Emerg Infect Dis 15:852–853CrossRefGoogle Scholar
  19. Bonizzoni M, Gasperi G, Chen X, James AA (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bonnet DD, Worcester DJ (1946) The dispersal of Aedes albopictus in the territory of Hawaii. Am J Trop Med Hyg 26:465–476PubMedCrossRefPubMedCentralGoogle Scholar
  21. Buckley A, Dawson A, Gould EA (2006) Detection of seroconversion to West Nile virus, Usutu virus and Sindbis virus in UK sentinel chickens. Virol J 3:71PubMedPubMedCentralCrossRefGoogle Scholar
  22. Buhagiar JA (2009) A second record of Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Malta. Eur Mosq Bull 27:65–67Google Scholar
  23. Busquets N, Alba A, Allepuz A, Aranda C, Ignacio Nuñez J (2008) Usutu virus sequences in Culex pipiens (Diptera: Culicidae), Spain. Emerg Infect Dis 14:861–863PubMedPubMedCentralCrossRefGoogle Scholar
  24. Calzolari M (2016) Mosquito-borne diseases in Europe: an emerging public health threat. Rep Parasitol 5:1Google Scholar
  25. Cancrini G, Frangipane Di Regalbono A, Ricci I, Tessarin C, Gabrielli S, Pietrobelli M (2003a) Aedes albopictus is a natural vector of Dirofilaria immitis in Italy. Vet Parasitol 118:195–202PubMedCrossRefGoogle Scholar
  26. Cancrini G, Romi R, Gabrielli S, Toma L, DI Paolo M, Scaramozzino P (2003b) First finding of Dirofilaria repens in a natural population of Aedes albopictus. Med Vet Entomol 17:448–451PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cancrini G, Scaramozzino P, Gabrielli S, DI Paolo M, Toma L, Romi R (2007) Aedes albopictus and Culex pipiens implicated as natural vectors of Dirofilaria repens in central Italy. J Med Entomol 44:1064–1066PubMedPubMedCentralGoogle Scholar
  28. CDC (Centers for Disease Control and Prevention) (2015) Anopheles mosquitoes. https://www.cdc.gov/malaria/about/biology/mosquitoes/. Accessed 25 Nov 2017
  29. Chvala S, Bakonyi T, Bukovsky C et al (2007) Monitoring of Usutu virus activity and spread by using dead bird surveillance in Austria, 2003-2005. Vet Microbiol 122:237–245PubMedCrossRefPubMedCentralGoogle Scholar
  30. Cielecka D, Żarnowska-Prymek H, Masny A, Salamatin R, Wesołowska M, Gołąb E (2012) Human dirofilariosis in Poland: the first cases of autochthonous infections with Dirofilaria repens. Ann Agric Environ Med 19:445–450PubMedPubMedCentralGoogle Scholar
  31. Cramer JP (2014) Globale Zunahme von Tropenkrankheiten. In: Lozán JL, Grassl H, Karbe L, Jendritzky G (eds) Warnsignal Klima: Gefahren für Pflanzen, Tiere und Menschen, 2nd edn. Verlag Wissenschaftliche Auswertungen, Hamburg, p 384Google Scholar
  32. Cunze S, Koch LK, Kochmann J, Klimpel S (2016a) Aedes albopictus and Aedes japonicus—two invasive mosquito species with different temperature niches in Europe. Parasit Vectors 9:573PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cunze S, Kochmann J, Koch LK, Klimpel S (2016b) Aedes albopictus and its environmental limits in Europe. PLoS One 11:e0162116PubMedPubMedCentralCrossRefGoogle Scholar
  34. Danis K, Papa A, Theocharopoulos G et al (2011) Outbreak of West Nile virus infection in Greece, 2010. Emerg Infect Dis 17:1868–1872PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dzidová M, Čabanová V, Stloukal E, Miterpáková M (2016) Mosquito fauna and risk of mosquito borne diseases in the capital city Bratislava, Slovakia—the results of preliminary monitoring. Folia Faunistica Slovaca 21:245–250Google Scholar
  36. ECDC (European Centre for Disease Prevention and Control) (2014) Guidelines for the surveillance of native mosquitoes in Europe. https://ecdc.europa.eu/en/news-events/guidelines-mosquito-surveillance-europe-focus-native-mosquitoes. Accessed 10 Nov 2017
  37. ECDC (European Centre for Disease Prevention and Control) (2017a) Health topics. Moquito maps. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps. Accessed 13 Nov 2017
  38. ECDC (European Centre for Disease Prevention and Control) (2017b) Health topics. Mosquito factsheets. https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets. Accessed 13 Nov 2017
  39. ECDC (European Centre for Disease Prevention and Control) (2017c) Infectious diseases & public health. Aedes japonicus—factsheet for experts. https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-japonicus. Accessed 14 Nov 2017
  40. ECDC (European Centre for Disease Prevention and Control) (2017d) Infectious diseases & public health. Aedes atropalpus—factsheet for experts. https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-atropalpus. Accessed 13 Nov 2017
  41. ECDC (European Centre for Disease Prevention and Control) (2017e) Infectious diseases & public health. Aedes koreicus—factsheet for experts. https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-koreicus. Accessed 13 Nov 2017
  42. ECDC (European Centre for Disease Prevention and Control) (2017f) Infectious diseases & public health. Aedes aegypti—factsheet for experts. https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-aegypti. Accessed 14 Nov 2017
  43. ECDC (European Centre for Disease Prevention and Control) (2017g) Infectious diseases & public health. Aedes albopictus—factsheet for experts. https://ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-japonicus. Accessed 20 Aug 2017
  44. ECDC (European Centre for Disease Prevention and Control) (2017h) Surveillance atlas of infectious diseases. http://atlas.ecdc.europa.eu/public/index.aspx. Accessed 10 Nov 2017
  45. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342CrossRefGoogle Scholar
  46. Engler O, Savini G, Papa A et al (2013) European surveillance for West Nile virus in mosquito populations. Int J Environ Res Public Health 10:4869–4895PubMedPubMedCentralCrossRefGoogle Scholar
  47. Eritja R, Escosa R, Lucientes J, Marquès E, Roiz D, Ruiz S (2005) Worldwide invasion of vector mosquitoes: present European distribution and challenges for Spain. Biol Invasions 7:87CrossRefGoogle Scholar
  48. Escobar LE, Craft ME (2016) Advances and limitations of disease biogeography using ecological niche modeling. Front Microbiol 7:1174PubMedPubMedCentralGoogle Scholar
  49. Farajollahi A, Fonseca DM, Kramer LD, Kilpatrick AM (2011) ‘Bird biting’ mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol 11:1577–1585PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fonseca DM, Keyghobadi N, Malcolm CA et al (2004) Emerging vectors in the Culex pipiens complex. Science 303:1535–1538PubMedCrossRefPubMedCentralGoogle Scholar
  51. Garigliany MM, Marlier D, Tenner-Racz K et al (2014) Detection of Usutu virus in a bullfinch (Pyrrhula pyrrhula) and a great spotted woodpecker (Dendrocopos major) in north-west Europe. Vet J 199:191–193PubMedCrossRefGoogle Scholar
  52. Genchi C, Bowman D, Drake J (2014) Canine heartworm disease (Dirofilaria immitis) in Western Europe: survey of veterinary awareness and perceptions. Parasit Vectors 7:206PubMedPubMedCentralCrossRefGoogle Scholar
  53. George S, Gourie-Devi M, Rao JA, Prasad SR, Pavri KM (1984) Isolation of West Nile virus from the brains of children who had died of encephalitis. Bull World Health Organ 62:879–882PubMedPubMedCentralGoogle Scholar
  54. Giron S, Rizzi J, Leparc-Goffart I et al (2015) Nouvelles apparitions de cas autochtones de dengue en région Provence-Alpes-Côte d’Azur, France, août-septembre 2014. Bull Epidemiol Hebd 13–14:212–217Google Scholar
  55. Gjenero-Margan I, Aleraj B, Krajcar D et al (2011) Autochthonous dengue fever in Croatia, August-September 2010. Euro Surveill 16Google Scholar
  56. Gould EA, Higgs S (2009) Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg 103:109–121PubMedCrossRefGoogle Scholar
  57. Gould EA, Gallian P, de Lamballerie X, Charrel RN (2010) First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality! Clin Microbiol Infect 16:1702–1704PubMedCrossRefPubMedCentralGoogle Scholar
  58. Gould E, Pettersson J, Higgs S, Charrel R, de Lamballerie X (2017) Emerging arboviruses: why today? One Health 4:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  59. Graham H (1902) Dengue: a study of its mode of propagation and pathology. Med Rec 61:204–207Google Scholar
  60. Gratz NG (1999) Emerging and resurging vector—borne diseases. Annu Rev Entomol 44:51–75PubMedCrossRefPubMedCentralGoogle Scholar
  61. Gratz NG (2004) Critical review of Aedes albopictus. Med Vet Entomol 18:215–227PubMedCrossRefPubMedCentralGoogle Scholar
  62. Gubler DJ (1998) Resurgent vector-borne diseases as a global health problem. Emerg Infect Dis 4:442–450PubMedPubMedCentralCrossRefGoogle Scholar
  63. HCDCP (Hellenic Center for Disease Control and Prevention) (2015) Epidemiological surveillance report, malaria in Greece, 2015, up to 16/10/2015. HCDCP_2015 Malaria report, 16/10/2015. Accessed 20 Nov 2017Google Scholar
  64. Honório NA, Silva WC, Leite PJ, Gonçalves JM, Lounibos LP, Lourenço-de-Oliveira R (2003) Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 98:191–198PubMedCrossRefGoogle Scholar
  65. Hubalek Z, Halouzka J (1999) West Nile Fever—a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis 5:643–650PubMedPubMedCentralCrossRefGoogle Scholar
  66. IPCC (2013) Climate change 2013: the physical science basis: contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC Fifth Assessment Report (AR5). University Press, Cambridge, New YorkGoogle Scholar
  67. ISSG GISD (Global Invasive Species Database) (2017) http://www.iucngisd.org/gisd/100_worst.php. Accessed 1 Aug 2017
  68. Jansen CC, Beebe NW (2010) The dengue vector Aedes aegypti: what comes next. Microbes Infect 12:272–279PubMedCrossRefGoogle Scholar
  69. Kampen H, Medlock JM, Vaux AGC et al (2015) Approaches to passive mosquito surveillance in the EU. Parasit Vectors 8:9PubMedPubMedCentralCrossRefGoogle Scholar
  70. Koch LK, Cunze S, Werblow A, Kochmann J, Dörge DD, Mehlhorn H, Klimpel S (2016) Modeling the habitat suitability for the arbovirus vector Aedes albopictus (Diptera: Culicidae) in Germany. Parasitol Res 115:957–964PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kowarik I (2010) Bioloische Invasionen. Neophyten und Neozoen in Mitteleuropa, 2nd edn. Eugen Ulmer Verlag, StuttgartGoogle Scholar
  72. Kraemer MUG, Sinka ME, Duda KA et al (2015a) Data from: the global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci Data 2:150035PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kraemer MUG, Sinka ME, Duda KA et al (2015b) The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4:e08347PubMedPubMedCentralCrossRefGoogle Scholar
  74. Krüger A, Börstler J, Badusche M, Lühken R, Garms R, Tannich E (2014) Mosquitoes (Diptera: Culicidae) of metropolitan Hamburg, Germany. Parasitol Res 113:2907–2914PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kurkela S, Rätti O, Huhtamo E et al (2008) Sindbis Virus infection in resident birds, migratory birds, and humans, Finland. Emerg Infect Dis 14:41–47PubMedPubMedCentralCrossRefGoogle Scholar
  76. La Ruche G, Souarès Y, Armengaud A et al (2010) First two autochthonous dengue virus infections in metropolitan France, September 2010. Euro Surveill 15:19676PubMedPubMedCentralGoogle Scholar
  77. Lehane MJ (2005) The biology of blood-sucking insects, 2nd edn. Cambridge University Press, New York, p 321CrossRefGoogle Scholar
  78. Mani P, Rossi G, Perrucci S, Bertini S (1998) Mortality of Turdus merula in Tuscany. Selezione Veterinaria 39:749–753Google Scholar
  79. Marchand E, Prat C, Jeannin C et al (2013) Autochthonous case of dengue in France, October 2013. Euro Surveill 18:20661PubMedCrossRefPubMedCentralGoogle Scholar
  80. Matějů J, Chanová M, Modrý D, Mitková B, Hrazdilová K, Žampachová V, Kolářová L (2016) Dirofilaria repens: emergence of autochthonous human infections in the Czech Republic (case reports). BMC Infect Dis 16:171PubMedPubMedCentralCrossRefGoogle Scholar
  81. McGreevy PB, Bryan JH, Oothuman P, Kolstrup N (1978) The lethal effects of the cibarial and pharyngeal armatures of mosquitoes on microfilariae. Trans R Soc Trop Med Hyg 72:361–368PubMedCrossRefPubMedCentralGoogle Scholar
  82. Medlock JM, Leach SA (2015) Effect of climate change on vector-borne disease risk in the UK. Lancet Infect Dis 15:721–730PubMedCrossRefPubMedCentralGoogle Scholar
  83. Medlock JM, Hansford KM, Versteirt V et al (2015) An entomological review of invasive mosquitoes in Europe. Bull Entomol Res 105:637–663PubMedCrossRefPubMedCentralGoogle Scholar
  84. Meinshausen M, Smith SJ, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241CrossRefGoogle Scholar
  85. Mitchell C (1991) Vector competence of North and South American strains of Aedes albopictus for certain arboviruses: a review. J Am Mosq Control Assoc 7:446–451PubMedPubMedCentralGoogle Scholar
  86. Morchón R, Carretón E, González-Miguel J, Mellado-Hernández I (2012) Heartworm disease (Dirofilaria immitis) and their vectors in Europe—new distribution trends. Front Physiol 3:196PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mori A (1979) Effects of larval density and nutrition on some attributes of immature and adult Aedes albopictus. Trop Med 21:85–103Google Scholar
  88. Nájera JA, González-Silva M, Alonso PL (2011) Some lessons for the future from the Global Malaria Eradication Programme (1955-1969). PLoS Med 8:e1000412PubMedPubMedCentralCrossRefGoogle Scholar
  89. Nathan R (2006) Long distance dispersal of plants. Science 313:786–788PubMedCrossRefPubMedCentralGoogle Scholar
  90. Niebylski M, Craig GB (1994) Dispersal and survival of Aedes albopictus at a scrap tyre yard in Missouri. J Am Mosq Control Assoc 10:339–343PubMedPubMedCentralGoogle Scholar
  91. Osório HC, Zé-Zé L, Amaro F, Alves MJ (2014) Mosquito surveillance for prevention and control of emerging mosquito-borne diseases in Portugal—2008-2014. Int J Environ Res Public Health 11:11583–11596PubMedPubMedCentralCrossRefGoogle Scholar
  92. Otero M, Solari HG, Schweigmann N (2006) A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate. Bull Math Biol 68:1945–1974PubMedCrossRefGoogle Scholar
  93. Paupy C, Delatte H, Bagny L et al (2009) Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect 11:1177–1185PubMedCrossRefGoogle Scholar
  94. Petrić D, Bellini R, Scholte E-J, Rakotoarivony LM, Schaffner F (2014) Monitoring population and environmental parameters of invasive mosquito species in Europe. Parasit Vectors 7:187PubMedPubMedCentralCrossRefGoogle Scholar
  95. Peyton EL, Campbell SR, Candeletti TM, Romanowski M, Crans WJ (1999) Aedes (Finlaya) japonicus japonicus (Theobald), a new introduction into the United States. J Am Mosq Control Assoc 15:238–241PubMedPubMedCentralGoogle Scholar
  96. Ready PD (2010) Leishmaniasis emergence in Europe. Euro Surveill 15:19505PubMedPubMedCentralGoogle Scholar
  97. Reed W, Carrollgramonte A, Lazear JW (1900) The etiology of yellow fever—a preliminary note. Public Health Pap Rep 26:37–53PubMedPubMedCentralGoogle Scholar
  98. Reiter P (2010) Yellow fever and dengue: a threat to Europe? Euro Surveill 15:1–7Google Scholar
  99. Rezza G, Nicoletti L, Angelini R et al (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846CrossRefGoogle Scholar
  100. Roiz D, Neteler M, Castellani C, Arnoldi D, Rizzoli A (2011) Climatic factors driving invasion of the tiger mosquito (Aedes albopictus) into new areas of Trentino, Northern Italy. PLoS One 6:4–11CrossRefGoogle Scholar
  101. Romi R, Toma L, Severini F, Di Luca M (2008) Twenty years of the presence of Aedes albopictus in Italy–from the annoying pest mosquito to the real disease vector. Eur Infect Dis 2:98–101Google Scholar
  102. Ross R (1897) On same peculiar pigmented cells found in two mosquitoes fed on malaria blood. Br Med J 2:1786–1788PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rückert C, Weger-Lucarelli J, Garcia-Luna SM et al (2017) Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat Commun 8:15412PubMedPubMedCentralCrossRefGoogle Scholar
  104. Schaffner F, Thiéry I, Kaufmann C, Zettor A, Lengeler C, Mathis A, Bourgouin C (2012) Anopheles plumbeus (Diptera: Culicidae) in Europe: a mere nuisance mosquito or potential malaria vector? Malar J 11:393PubMedPubMedCentralCrossRefGoogle Scholar
  105. Schaffner F, Medlock JM, Van Bortel W (2013) Public health significance of invasive mosquitoes in Europe. Clin Microbiol Infect 19:685–692PubMedCrossRefPubMedCentralGoogle Scholar
  106. Schmidt-Chanasit J, Haditsch M, Schoneberg I, Gunther S, Stark K, Frank C (2010) Dengue virus infection in a traveller returning from Croatia to Germany. Euro Surveill 15:19677PubMedCrossRefPubMedCentralGoogle Scholar
  107. Scholte E-J, Dijkstra E, Blok H et al (2008) Accidental importation of the mosquito Aedes albopictus into the Netherlands: a survey of mosquito distribution and the presence of dengue virus. Med Vet Entomol 22:352–358PubMedCrossRefGoogle Scholar
  108. Semenza JC, Menne B (2009) Climate change and infectious diseases in Europe. Lancet Infect Dis 9:365–375PubMedCrossRefPubMedCentralGoogle Scholar
  109. Semenza JC, Suk JE, Estevez V, Ebi KL, Lindgren E (2012) Mapping climate change vulnerabilities to infectious diseases in Europe. Environ Health Perspect 120:385–392PubMedCrossRefPubMedCentralGoogle Scholar
  110. Sirbu A, Ceianu CS, Panculescu-Gatej RI et al (2011) Outbreak of West Nile virus infection in humans, Romania, July to October 2010. Euro Surveill 16:19762PubMedPubMedCentralGoogle Scholar
  111. Soberón JM (2010) Niche and area of distribution modeling: a population ecology perspective. Ecography 33:159–167CrossRefGoogle Scholar
  112. Steinmetz HW, Bakonyi T, Weissenböck H et al (2011) Emergence and establishment of Usutu virus infection in wild and captive avian species in and around Zurich, Switzerland-genomic and pathologic comparison to other central European outbreaks. Vet Microbiol 148:207–212.  https://doi.org/10.1016/j.vetmic.2010.09.018 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Tappe D, Plauth M, Bauer T, Muntau B, Dießel L, Tannich E, Herrmann-Trost P (2014) A case of autochthonous human Dirofilaria infection, Germany, March 2014. Euro Surveill 19:2–4PubMedPubMedCentralGoogle Scholar
  114. Thuiller W, Albert C, Araújo MB et al (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol 9:137–152CrossRefGoogle Scholar
  115. Tomasello D, Schlagenhauf P (2013) Chikungunya and dengue autochthonous cases in Europe, 2007-2012. Travel Med Infect Dis 11:274–284PubMedCrossRefPubMedCentralGoogle Scholar
  116. Versteirt V, De Clercq EM, Fonseca DM, Pecor J, Schaffner F, Coosemans M, Van Bortel W (2012) Bionomics of the established exotic mosquito species Aedes koreicus in Belgium, Europe. J Med Entomol 49:1226–1232PubMedCrossRefPubMedCentralGoogle Scholar
  117. Weissenböck H, Bakonyi T, Rossi G, Mani P, Nowotny N (2013) Usutu virus, Italy, 1996. Emerg Infect Dis 19:274–277PubMedPubMedCentralCrossRefGoogle Scholar
  118. WHO (World Health Organisation) (2014) A global brief on vector-borne diseases. http://apps.who.int/iris/bitstream/10665/111008/1/WHO_DCO_WHD_2014.1_eng.pdf. Accessed 25 Nov 2017
  119. WHO (World Health Organisation) (2017) Media centre: vector-borne diseases. Fact Sheet N°387. http://www.who.int/mediacentre/factsheets/fs387/en/. Accessed 21 Nov 2017
  120. Zeller H, Marrama L, Sudre B, Van Bortel W, Warns-Petit E (2013) Mosquito-borne disease surveillance by the European Centre for Disease Prevention and Control. Clin Microbiol Infect 19:693–698PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Goethe University (GU), Institute of Ecology, Evolution and Diversity, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberg Gesellschaft für Naturforschung (SGN)Frankfurt am MainGermany

Personalised recommendations