Skip to main content

Remote Sensing of Korean Tidal Flats

  • Chapter
  • First Online:
Remote Sensing of the Asian Seas
  • 1175 Accesses

Abstract

In Korea , coastal reclamation was constructed as a project to create vast rice fields while simultaneously serving a symbolic role demonstrating the country’s capacity for reconstruction that began in 1953. Korean tidal flats are increasingly being changed by various construction projects. This chapter reviews the remote sensing techniques used to monitor Korean tidal flats and suggests appropriate techniques for meeting monitoring targets for the effective management of tidal flats . Three different monitoring targets were examined: topography, sedimentary facies, and bio facies. Waterline method and SAR interferometry have been used for generating the intertidal digital elevation model (DEM). Sedimentary facies of the tidal flats can be classified into the three categories mud, mixed, and sand, at a spatial resolution of 4 m. A potential map for macro benthos was generated with high accuracy based on the spatial variables such as exposure time and sedimentary facies map . The details of those data can be further enhanced by the use of an unmanned aerial vehicle (UAV) and new satellite system. Thematic maps based on remote sensing can help improve policy decisions from a management perspective. In this study, contents were constructed and summarized according to the research of Ryu et al. (Ocean Coast Manage 102:458–470, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetl Ecol Manage 18:281–296

    Article  Google Scholar 

  • Boak EH, Turner IL (2005) Shoreline definition and detection: a review. J Coast Res 21:688–703

    Article  Google Scholar 

  • Brooks TM, Mittermeier RA, de Fonseca GAB, Gerlach J, Hoffmann N, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues ASL (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  Google Scholar 

  • Cho JY, Son JG, Song CH, Hwang SA, Lee YM, Jeong SY, Chung BY (2008) Integrated nutrient management for environmental-friendly rice production in salt-affected rice paddy fields of Saemangeum reclaimed land of South Korea. Paddy Water Environ 6:263–273

    Article  Google Scholar 

  • Choi JK, Ryu JH, Eom JA, Rho SM, Nho JH (2010a) Analysis on the sedimentary environment and microphytobenthos distribution in the Geunso bay tidal flat using remotely sensed data. J Wetl Res 12(3):67–78

    Google Scholar 

  • Choi JK, Ryu JH, Lee YK, Yoo HR, Woo HJ, Kim CH (2010b) Quantitative estimation of intertidal sediment characteristics using remote sensing and GIS. Estuar Coast Shelf Sci 88:125–134

    Article  Google Scholar 

  • Choi JK, Oh HJ, Koo BJ, Ryu JH, Lee SR (2011a) Spatial Polychaeta habitat potential mapping using probabilistic models. Estuar Coast Shelf Sci 93:98–105

    Article  Google Scholar 

  • Choi JK, Oh HJ, Koo BJ, Ryu JH, Lee SR (2011b) Crustacean habitat potential mapping in a tidal flat using remote sensing and GIS. Ecol Model 222:1522–1533

    Article  Google Scholar 

  • Choi JK, Oh HJ, Koo BJ, Lee SR, Ryu JH (2011c) Macrobenthos habitat mapping in a tidal flat using remotely sensed data and a GIS-based probabilistic model. Mar Pollut Bull 62:564–572

    Article  Google Scholar 

  • Choi JK, Ryu JH, Eom J (2011d) Integration of spatial variables derived from remotely sensed data for the mapping of the tidal surface sediment distribution. J Coast Res SI64:1653–1657

    Google Scholar 

  • Cracknell AP (1999) Remote sensing techniques in estuaries and coastal zones. Int J Remote Sens 19:485–496

    Article  Google Scholar 

  • DLR blog (2016) http://www.dlr.de/blogs/en/home/tandem-x/How-researchers-use-the-latest-Earth-observation-data.aspx. Accessed 20 March 2017

  • Eom J, Choi JK, Ryu JH, Won JS, Noh JH (2011) Spectral characteristics of microphytobenthos on the surface sediments in Geunso-bay tidal flat. In: International Symposium on Remote Sensing 2011

    Google Scholar 

  • Eom J, Choi JK, Ryu JH, Woo HJ, Won JS, Jang S (2012) Tidal channel distribution in relation to surface sedimentary facies based on remotely sensed data. Geosci J 16:127–137

    Article  Google Scholar 

  • Henderson FM, Chasanm R, Portolese J, Hart T (2002) Evaluation of SAR-optical imagery synthesis techniques in a complex coastal ecosystem. Photogramm Eng Remote Sens 68:839–846

    Google Scholar 

  • Heygster G, Dannenberg J, Notholt J (2010) Topographic mapping of the German tidal flats analyzing SAR images with the waterline method. IEEE Trans Geosci Remote 48:1019–1030

    Article  Google Scholar 

  • Hong SK, Koh CH, Harris RR, Kim JE, Lee JS, Ihm BS (2010) Land use in Korean tidal wetlands: impacts and management strategies. Environ Manage 45:1014–1026

    Article  Google Scholar 

  • Hong SH, Chun SS, Eom JA (2015) The 2009-based detailed distribution pattern and area of Phragmites communis-dominant and Suaeda japonica-dominant communities on the Suncheon-bay and Beolgyo estuarine wetlands. J Wetl Res 17(1):26–37

    Article  Google Scholar 

  • Kim DJ, Moon WM, Park SE, Kim JE, Lee HS (2007) Dependence of waterline mapping on radar frequency used for SAR images in intertidal areas. IEEE Geosci Remote Sens 4:269–273

    Article  Google Scholar 

  • Kim DJ, Moon WM, Kim G, Park SE, Lee H (2011) Submarine groundwater discharge in tidal flats revealed by space-borne synthetic aperture radar. Remote Sens Environ 115:793–800

    Article  Google Scholar 

  • Kim K, Choi JK, Ryu JH, Jeong HJ, Lee K, Park MG, Kim KY (2015) Observation of typhoon-induced seagrass die-off using remote sensing. Estuar Coast Shelf Sci 154:111–121

    Article  Google Scholar 

  • Kim BJ, Lee YK, Ryu JH, Lee SK, Kim KL (2016) DEM generation of intertidal zone in Korea using unmanned aerial vehicle. In: Proceedings IEEE international geoscience and remote sensing symposium. https://doi.org/10.1109/igarss.2016.7730749

  • Kirwan ML, Murray AB (2007) A coupled geomorphic and ecological model of tidal marsh evolution. Proc Natl Acad Sci USA 105(15):6118–6122

    Article  Google Scholar 

  • Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37:L23401. https://doi.org/10.1029/2010GL045489

    Article  Google Scholar 

  • Klemas V (2013) Airborne remote sensing of coastal features and processes: an overview. J Coast Res 29:239–255

    Article  Google Scholar 

  • Koh CH, Khim JS (2014) The Korean tidal flat of the Yellow Sea: physical setting, ecosystem and management. Ocean Coast Manage 102:398–414

    Article  Google Scholar 

  • KORDI (Korea Ocean Research Development Institute) (2010) Studies on sediments, waters and biota to understand major environmental factors in rehabilitation of degraded tidal flats

    Google Scholar 

  • Lee H, Chae H, Cho SJ (2011a) Radar backscattering of intertidal mudflats observed by Radarsat-1 SAR images and ground-based scatterometer experiments. IEEE Trans Geosci Remote 49:1701–1711

    Article  Google Scholar 

  • Lee YK, Ryu JH, Choi JK, Soh JG, Eom J, Won JS (2011b) A study of decadal sedimentation trend changes by waterline comparisons within the Ganghwa tidal flats initiated by human activities. J Coast Res 27:857–869

    Article  Google Scholar 

  • Lee YK, Park JW, Choi JK, Oh Y, Won JS (2012) Potential uses of TerraSAR-X for mapping herbaceous halophytes over salt marsh and tidal flats. Estuar Coast Shelf Sci 115:366–376

    Article  Google Scholar 

  • Lee S, Park I, Koo BJ, Ryu JH, Choi JK, Woo HJ (2013) Macrobenthos habitat potential mapping using GIS-based artificial neural network models. Mar Pollut Bull 67:177–186

    Article  Google Scholar 

  • Lee S, Choi JK, Park IH, Koo BJ, Ryu JH, Lee YK (2014) Application of geospatial models to map potential Ruditapes philippinarum habitat using remote sensing and GIS. Int J Remote Sens 35(1):3875–3891

    Article  Google Scholar 

  • Lee YK, Ryu JH, Choi JK, Lee S, Woo HJ (2015) Satellite-based observations of unexpected coastal changes due to the Saemangeum Dyke construction, Korea. Mar Pollut Bull 97:150–159

    Article  Google Scholar 

  • Lee SK, Ryu JH, Lee YK, Kim KL (2016) Tidal flat digital elevation model (DEM) construction by means of Tandem-X. In: Proceedings 2016 IEEE international geoscience and remote sensing symposium https://doi.org/10.1109/igarss.2016.7729081

  • MLTM (Ministry of Land, Transport, and Maritime Affairs) (2010) The Basic Survey of Coastal Wetland in 2008

    Google Scholar 

  • Pal SK, Majumdar TJ, Bhattacharya AK (2007) ERS-2 SAR and IRS-1C LISS III data fusion: a PCA approach to improve remote sensing based geological interpretation. ISPRS J Photogramm Remote Sens 61:281–297

    Article  Google Scholar 

  • Park NW, Jang DH, Chi KH (2009a) Integration of IKONOS imagery for geostatistical mapping of sediment grain size at Baramarae beach, Korea. Int J Remote Sens 30:5703–5724

    Article  Google Scholar 

  • Park SE, Moon WM, Kim DJ (2009b) Estimation of surface roughness parameter in intertidal mudflat using airborne polarimetric SAR data. IEEE Trans Geosci Remote 47:1022–1031

    Article  Google Scholar 

  • Park JW, Choi JH, Lee YK, Won JS (2012) Intertidal DEM generation using satellite radar interferometry. Kor J Remote Sens 28(1):121–128

    Article  Google Scholar 

  • Ryu JH, Won JS, Min KD (2002) Waterline extraction from Landsat TM data in a tidal flat e a case study in Gomso Bay, Korea. Remote Sens Environ 83:442–456

    Article  Google Scholar 

  • Ryu JH, Na YH, Won JS, Doerffer R (2004) A critical grain size for Landsat ETM+ investigations into intertidal sediments: a case study of the Gomso tidal flats, Korea. Estuar Coast Shelf Sci 60:491–502

    Article  Google Scholar 

  • Ryu JH, Kim CH, Lee YK, Won JS, Chun SS, Lee S (2008) Detecting the intertidal morphologic change using satellite data. Estuar Coast Shelf Sci 78:623–632

    Article  Google Scholar 

  • Ryu JH, Choi JK, Lee YK (2014) Potential of remote sensing in management of tidal flats: a case study of thematic mapping in the Korean tidal flats. Ocean Coast Manage 102:458–470

    Article  Google Scholar 

  • Sondak CFA, Chung IK (2015) Potential blue carbon from coastal ecosystems in the Republic of Korea. Ocean Sci J 50(1):1–8

    Article  Google Scholar 

  • Tyler AN, Sanderson DCW, Scott EM, Allyson JD (1996) Accounting for spatial variability and fields of view in environmental gamma ray spectrometry. J Environ Rad 33:213–235

    Article  Google Scholar 

  • van der Wal D, Herman PMJ (2007) Regression-based synergy of optical, shortwave infrared and microwave remote sensing for monitoring the grain-size of intertidal sediments. Remote Sens Environ 111:89–106

    Article  Google Scholar 

  • Wilson MA, Costanza R, Boumans R, Liu S (2005) Integrated assessment and valuation of ecosystem goods and services provided by coastal systems. In: Wilson, JG (ed) The intertidal ecosystem: the value of Ireland’s Shores. Royal Irish Academy, Dublin, pp 1–24

    Google Scholar 

  • Won JS, Na YH, Kim SW (2003) Tidal flat DEM generation by satellite remote sensing. Proc 2003 IEEE Int Geosci Remote Sens Symp 3, 2116–2118

    Google Scholar 

  • Yang CS, Ouchi K (2012) Analysis of bar morphology using multi-temporal and multi-sensor satellite images: example from the Han Estuary, Korea. Mar Geol 311:17–31

    Article  Google Scholar 

  • Yoo HR (1986) Three dimensional study of the tidal flat geomorphology in the Kum River estuary by multidate image analysis. J. Korean Soc Remote Sens 2(2):95–105

    Google Scholar 

  • Zhao B, Guo H, Yan Y, Wang Q, Li B (2008) A simple waterline approach for tidelands using multi-temporal satellite images: a case study in the Yangtze Delta. Estuar Coast Shelf Sci 77:134–142

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Hyung Ryu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ryu, JH., Lee, YK. (2019). Remote Sensing of Korean Tidal Flats. In: Barale, V., Gade, M. (eds) Remote Sensing of the Asian Seas. Springer, Cham. https://doi.org/10.1007/978-3-319-94067-0_12

Download citation

Publish with us

Policies and ethics